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S1 Additional free energy model details

S1.1 Strand association penalty for a complex
Based on dimensional analysis, we define the complex concentrations xΨ for a test tube containing the set of complexes
Ψ as mole fractions rather than molarities (see (14)). Therefore, we adjust the strand association penalty

∆Gassoc = ∆Gassoc
pub − kT log[ρH2O/(1 mol/liter)] (S1)

where ∆Gassoc
pub is the published value for two strands associating1 and ρH2O is the molarity of water (e.g., ρH2O =

55.14 mol/liter at 37 ◦C).2 The strand association penalty for a complex of L strands (see (1)) is then

(L− 1)∆Gassoc. (S2)

S1.2 Salt corrections for DNA complexes

The default salt conditions for RNA3–8 and DNA6,9–11 parameter sets are [NaCl] = 1 M. Salt corrections are available
for DNA parameters9,10,12,13 to permit calculations in user-specified sodium, potassium, ammonium, and magnesium
ion concentrations. Following SantaLucia and co-workers, the free energy of a DNA duplex at 37◦C is augmented by

−0.114
N

2
log[Na+], (S3)

for user-specified 0.05 M ≤ [Na+] ≤ 1.0 M, where N is the number of phosphates in the duplex and it is assumed
that ∆H is independent of [Na+], which is valid for this salt regime.9,12 This salt correction was derived using
duplexes with 16 bp or less and the accuracy decreases as duplex length increases further.9,12 The expression can be
generalized to monovalent potassium and ammonium ions12 as well as to divalent magnesium cations:10,13

−0.114
N

2
log
(

[Na+] + [K+] + [NH+
4 ] + 3.3 [Mg++]1/2

)
, (S4)

for user-specified for 0.05 M ≤ [Na+] + [K+] + [NH+
4 ] ≤ 1.0 M and 0.0 M ≤ [Mg++] ≤ 0.2 M.

To apply this salt correction to a complex of L strands at temperature T , consider a secondary structure s
containing one or more duplexes. We assume that strands are synthesized with one phosphate per base so that
N/2 = nbp(s) where N is the total number of phosphates in duplexes and nbp(s) is the total number of base pairs in
s. (If strands are synthesized without a 5′ terminal phosphate, then N approximates the total number of phosphates
in duplexes.) We further assume that ∆H is independent of cation concentration in this regime. The secondary
structure free energy ∆G(φ, s) is then augmented by

nbp(s)∆Gsalt (S5)

with

∆Gsalt = −0.114 log
(

[Na+] + [K+] + [NH+
4 ] + 3.3 [Mg++]1/2

) T

T37
(S6)

for user-specified

0.05 M ≤ [Na+] + [K+] + [NH+
4 ] ≤ 1.0 M, (S7)

0.0 M ≤ [Mg++] ≤ 0.2 M, (S8)

with T37 = 310.15 K. In order to incorporate this salt correction in dynamic programs without explicitly calculating
nbp(s), note that for a complex of L strands, the total number of loops in each secondary structure is

nloop(s) = nbp(s) + 1. (S9)

This may be seen, for example, by starting with a single strand with no base pairs (corresponding to a single exterior
loop). Each addition of a base pair adds one loop. Once all base pairs in s have been added, each addition of a
nick increases the number of strands by one without changing the number of loops (all secondary structures in the
complex ensemble are connected so introduction of each nick converts a loop from another type to an exterior loop).
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Let nother
loop denote the total number of non-exterior loops and nexterior

loop denote the total number of exterior loops, so
we have

nloop(s) = nexterior
loop (s) + nother

loop (s). (S10)

For a complex of L strands, nexterior
loop (s) = L. Thus, the salt correction (S5) becomes

nbp(s)∆Gsalt = (L− 1)∆Gsalt + nother
loop (s)∆Gsalt. (S11)

Hence, the salt correction can be implemented by adding

∆Gsalt (S12)

to every ∆G(loop) except for exterior loops as a pre-processing step, using our suite of dynamic programs without
modification, and then treating the constant term (L− 1)∆Gsalt in a post-processing step (see Section S1.4).

S1.3 Temperature dependence
The loop-based free energy model (1) is temperature dependent. Each loop free energy is calculated using

∆G(loop) = ∆H(loop)− T∆S(loop) (S13)

where T is in Kelvin and ∆H(loop) and ∆S(loop) are assumed to be temperature independent.12 Model parameters
are provided for RNA3–8 and DNA6,9–11 in the form of ∆G37(loop) and ∆H(loop) which can be used to calculate

∆S(loop) =
1

T37
[∆H(loop)−∆G37(loop)] (S14)

with T37 = 310.15 K, so (S13) becomes

∆G(loop) = ∆H(loop)− T

T37
[∆H(loop)−∆G37(loop)]. (S15)

Similarly, for the strand association penalty (S1):

∆Gassoc
pub = ∆Hassoc

pub − T∆Sassoc
pub . (S16)

and the provided parameters ∆Gassoc
37,pub and ∆Hassoc

pub yield

∆Gassoc
pub = ∆Hassoc

pub −
T

T37
[∆Hassoc

pub −∆Gassoc
37,pub]. (S17)

The temperature dependence is explicit in the form of the symmetry correction (5) and salt correction (S5).

S1.4 Treatment of constant free energy terms for complex ensembles
Consider a complex of L strands containing a total of N nucleotides. Suppose that free energy model terms have been
pre-processed as described above for units [see (S1)], salt corrections [see (S12)], and temperature corrections [see
(S15 and S16)] prior to calculating any physical quantities. The secondary structure free energy (1) then becomes

∆G(φ, s) = (L− 1)[∆Gassoc + ∆Gsalt] +
∑

loop∈s

∆G(loop). (S18)

After running the partition function dynamic program to calculate Q1,N , the partition function is then

Q(φ) = exp{−(L− 1)[∆Gassoc + ∆Gsalt]/kT}Q1,N . (S19)

where this post-processing step accounts for the constant terms ∆Gassoc and ∆Gsalt that affect all secondary struc-
tures in the complex ensemble. Likewise, after running the MFE dynamic program to calculate F1,N , the free energy
of the MFE stacking state is then

∆G(φ, sqMFE) = (L− 1)[∆Gsalt + ∆Gassoc] + F1,N . (S20)

The equilibrium base-pairing probability P i,j is calculated via (17) using the values of Qbi,j(φ), Qbj,N+i(φ
′) and

Q1,N (φ) returned by the dynamic program; the constant terms ∆Gassoc and ∆Gsalt do not affect the calculation as
they are omitted in both the numerator and the denominator of (17). The dynamic programs for calculating the
MFE proxy structure, suboptimal structures, or sampled structures are unaffected by the constant terms ∆Gassoc

and ∆Gsalt so no post-processing is required for those quantities.
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S1.5 RNA and DNA parameter sets
NUPACK 4 algorithms perform calculations on the following complex ensembles:

• stacking: with coaxial and dangle stacking (ensemble Γ
q
(φ)).

• nostacking: without coaxial and dangle stacking (ensemble Γ(φ)).

These ensembles can be used for calculations in combination with the following temperature-dependent DNA and
RNA parameter sets:

• rna95 based on (Serra & Turner, 1995)3 with additional parameters6 including coaxial stacking5,8 and dangle
stacking3,6, 8 in 1M Na+.

• dna04 based on (SantaLucia, 1998)9 and (SantaLucia & Hicks, 2004)12 with additional parameters6 including
coaxial stacking10 and dangle stacking6,11 in user-specified concentrations of Na+, K+, NH+

4 , and Mg++ (see
Section S1.2 for details on implementation of the salt corrections).9,10,12,13

• rna06 based on (Mathews et al., 1999),5 (Mathews et al., 2004),14 and (Lu et al., 2006)7 with additional
parameters4,6 including coaxial stacking5,8 and dangle stacking3,6, 8 in 1M Na+.

• custom based on user-specified parameters representing nucleic acids or synthetic nucleic acid analogs in ex-
perimental conditions of choice.

Base pairs are either Watson-Crick pairs (G·C and A·U for RNA; G·C and A·T for DNA) or wobble pairs (G·U for RNA).
Note that for DNA, G and T form a mismatch and not a wobble pair.12

S1.6 Historical RNA and DNA parameter sets (for backwards compatibility with
NUPACK 3)

For backwards compatibility, the following historical complex ensembles without coaxial stacking and with approxi-
mate dangle stacking are supported (see Section S2.5):

• none-nupack3: no dangle stacking and no coaxial stacking (dangles “none” option for NUPACK 3)

• some-nupack3: some dangle stacking and no coaxial stacking (dangles “some” option for NUPACK 3)

• all-nupack3: all dangle stacking and no coaxial stacking (dangles “all” option for NUPACK 3)

For these historical ensembles, base pairs are either Watson-Crick pairs (G·C and A·U for RNA; G·C and A·T for DNA)
or wobble pairs (G·U for RNA; G·T for DNA). Note that for the historical ensembles, G·T is classified as a DNA
wobble pair and not as a mismatch. The historical ensembles prohibit a wobble pair (G·U or G·T) as a terminal base
pair in an exterior loop or a multiloop. As a result, an attempt to evaluate a free energy for a sequence φ and
secondary structure s that place a wobble pair as a terminal base pair in an exterior loop or multiloop will return
∆G(φ, s) = ∆G(φ, s) =∞. These historical ensembles can be used for calculations in combination with the following
historical DNA and RNA parameter sets:

• rna95-nupack3 is the same as rna95 except that terminal mismatch free energies in exterior loops and multi-
loops are replaced by two dangle stacking free energies (see equation (S55)).

• dna04-nupack3 is the same as dna04 except that G·T was treated as a wobble pair (analogous to a G·U RNA
wobble pair) instead of classifying G and T as a mismatch. Note that while terminal mismatch free energies in
exterior loops and multiloops are replaced by two dangle stacking free energies (see equation (S55)), this is the
same treatment as in dna04, as terminal mismatch parameters are not public for DNA.12

• rna99-nupack3 based on (Mathews et al., 1999)5 with additional parameters4,6 including dangle stacking3,6, 8
in 1M Na+. Terminal mismatch free energies in exterior loops and multiloops are replaced by two dangle
stacking free energies (see equation (S55)). Parameters are provided only for 37 ◦C.
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S1.7 Functional form of RNA and DNA free energy models

S1.7.1 Free energy model for hairpin loops

A hairpin loop is defined for a subsequence φ[i:j] by the single base pair i · j such that there are no nicks or additional
base pairs in the range [i : j]. Let n ≡ j− i−1 denote the number of unpaired nucleotides in the hairpin loop. Steric
effects are assumed to prevent hairpin loops with n < 3 for both RNA3,8 and DNA.12 The functional form of the
hairpin free energy is as follows:

∆Ghairpin(φ[i:j]) = ∆Ghairpin
size (n) + ∆Ghairpin

seq (φ[i:j]) (S21)

For the size-dependent term:3,5, 7, 12

∆Ghairpin
size (n) =


∞, n < 3

∆Ghairpinsize
n , 3 ≤ n ≤ 30

∆Ghairpinsize
30 + log

(
n
30

)
∆Gpolymer

entropy , n > 30

(S22)

• ∆Ghairpinsize
n : a lookup table up to n = 30. rna95 and rna06 populate the lookup table using empirical values

of ∆Ghairpinsize
n up to n = 9 and logarithmic extrapolation for larger n.3,5, 7 dna04 populates the lookup table

using empirical values of ∆Ghairpinsize
n for a subset of 3 ≤ n ≤ 30 and logarithmic interpolation for the other

values.12

• ∆Gpolymer
entropy : a logarithmic extrapolation parameter based on Jacobson-Stockmayer polymer theory for n > 30.

rna95, dna04, and rna06 use previously published values.3,12

For the sequence-dependent term:5,7, 12

∆Ghairpin
seq (φ[i:j]) =


∆Gtriloop

φ[i:j]
+ ∆Gterminalbp

φj ,φi
n = 3

∆Gtetraloop
φ[i:j]

n = 4

∆Ghairpinmm
φj−1,φj ,φi,φi+1

n ≥ 5

(S23)

• ∆Gtriloop
φ[i:j]

: sequence-dependent penalty for hairpin loop of length n = 3. 0 kcal/mol for rna95.3 Empirical
values for dna0412 and rna06.14

• ∆Gterminalbp
φi,φj

: sequence-dependent penalty for non-GC terminal base pair at the end of a duplex. Empirical
values for rna95,3 dna04,12 and rna06.14

• ∆Gtetraloop
φ[i:j]

: sequence-dependent penalty for hairpin loop of length n = 4. Empirical values for rna95,3 dna04,12

and rna06.14

• ∆Ghairpinmm
φj−1,φj ,φi,φi+1

: sequence-dependent term for mismatched bases adjacent to base pair i · j. Empirical values
set equal to ∆Gterminalmm

φj−1,φj ,φi,φi+1
plus sequence-dependent modifications for rna953 and rna06.5,7 Empirical values

for ∆Gterminalmm
φj−1,φj ,φi,φi+1

not public for DNA,12 so ∆Ghairpinmm
φj−1,φj ,φi,φi+1

set to unpublished values made available in
the Mfold software6 for dna04. (See multiloops and exterior loops for a description of ∆Gterminalmm

φj−1,φj ,φi,φi+1
).

S1.7.2 Free energy model for interior loops

An interior loop may be defined via a pair of subsequences φ[i:d] and φ[e:j] such that i < d < e < j with base pairs
i · j and d · e, with no additional paired bases or nicks within the two subsequences.

Stacked pairs. Stacked pairs are the special case where d = i+ 1 and j = e+ 1.

∆Gstackedpair(φ[i:i+1], φ[j−1:j]) = ∆Gstack
φj ,φi,φi+1,φj−1

(S24)

• ∆Gstack
φj ,φi,φi+1,φj−1

: the stack free energy has been determined for all allowable base pair combinations from
experimental results for rna95,3 rna06,4,5, 7 and dna04.12
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Bulge loops. A bulge loop is the special case with either d = i + 1 or j = e + 1 but not both. Here, we will
outline the functional form when d = i+ 1. Let n ≡ j− e− 1 denote the number of unpaired nucleotides in the bulge
loop.

∆Gbulge(φ[i:i+1], φ[e:j]) = ∆Gbulge
size (n) + ∆Gbulge

seq (φ[i:i+1], φ[e:j]) (S25)

For the size-dependent term:

∆Gbulge
size (n) =

{
∆Gbulgesize

n , n ≤ 30

∆Gbulgesize
30 + log

(
n
30

)
∆Gpolymer

entropy , n > 30
(S26)

• ∆Gbulge size
n : rna95 uses empirical values for 1 ≤ n ≤ 5.3 rna06 uses empirical values for 1 ≤ n ≤ 6.5,7 dna04

uses empirical values for a subset of 1 ≤ n ≤ 30.12 Each parameter set uses a logarithmic approximation for
all other values of n.

For the sequence-dependent term:

∆Gbulge
seq (φ[i:i+1], φ[e:j]) =

{
∆Gstack

φj ,φi,φi+1,φe
, e+ 2 = j

∆Gterminalbp
φj ,φi

+ ∆Gterminalbp
φi+1,φe

, otherwise
(S27)

Other small interior loops. The free energies for interior loops with 2 ≤ d− i ≤ 3 and 2 ≤ j− e ≤ 3 are kept
in a lookup table.

• 1× 1 interior loop. Corresponds to d − i = 2 and j − e = 2. rna95 assigns a sequence-independent ∆G.3
rna06 uses unpublished parameters made available in the Mfold software.6 dna04 models these loops using
(S28) below;12 a positive constant free energy is assigned for mismatches where the unpaired nucleotides are
Watson-Crick complements.6

• 1×2 interior loop. Corresponds to d−i = 2 and j−e = 3, or d−i = 3 and j−e = 2. rna95 and dna04 model
these loops using (S28) below.3,12 For dna04, a positive constant free energy is assigned for mismatches where
the unpaired nucleotides are Watson-Crick complements.6 rna06 models these loops using a combination of
tabulated data and averaging.5,7

• 2 × 2 interior loop. Corresponds to d − i = 3 and j − e = 3. rna95 and dna04 model these loops using
(S28) below.3,12 For dna04, a positive constant free energy is assigned for mismatches where the unpaired
nucleotides are Watson-Crick complements.6 rna06 models these loops using tabulated symmetric tandem
interior mismatches and averaging for asymmetric tandem interior mismatches.5,7

Other interior loops. Let n1 ≡ d− i−1 and n2 ≡ j− e−1 denote the number of unpaired nucleotides for the
two sides of the interior loop. For the general case of interior loops not handled via special cases above, the following
formula is used:

∆Ginterior(φ[i:d], φ[e:j]) = ∆Ginterior
size (n1 + n2) + ∆Ginterior

asymm (n1, n2) + ∆Ginterior
mm (φ[i:d], φ[e:j]) (S28)

For the size-dependent term:

∆Ginterior
size (n) =

{
∆Ginteriorsize

n , n ≤ 30

∆Ginteriorsize
30 + log

(
n
30

)
∆Gpolymer

entropy , n > 30
(S29)

• ∆Ginteriorsize
n : rna95 uses empirical values for 2 ≤ n ≤ 6.3 rna06 uses empirical values for 4 ≤ n ≤ 6.5,7

dna04 uses empirical values for a subset of values in 3 ≤ n ≤ 30.12 Each parameter set uses a logarithmic
approximation for all other values of n.

For the asymmetry-based term:

∆Ginterior
asymm (n1, n2) = min(∆Ginteriorasymm

4 , |n1 − n2|∆Ginteriorasymm
min(4,n2,n1) ) (S30)

• ∆Ginteriorasymm
n : rna95,3 rna06,5,7 and dna0412 use values regressed from empirical data.
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For the mismatch-based term:

∆Ginterior
mm (φ[i:d], φ[e:j]) =

{
∆Ginteriormm′

φj−1,φj ,φi,φi+1
+ ∆Ginteriormm′

φd−1,φd,φe,φe+1
i+ 2 = d or e+ 2 = j

∆Ginteriormm
φj−1,φj ,φi,φi+1

+ ∆Ginteriormm
φd−1,φd,φe,φe+1

otherwise
(S31)

• ∆Ginteriormm
φj−1,φj ,φi,φi+1

: rna953 and rna065,7 use independently determined values for loops without complementary
unpaired bases. dna04 equates ∆Ginteriormm

φj−1,φj ,φi,φi+1
with ∆Gterminalmm

φj−1,φj ,φi,φi+1
,12 which are assigned unpublished

values made available in the Mfold software.6

• ∆Ginteriormm′
φj−1,φj ,φi,φi+1

: rna95,3 rna06,5,7 dna0412 use different parameters for the case when one side of the interior
loop has only one unpaired nucleotide.14

S1.7.3 Free energy model for multiloops

A multiloop contains 3 or more terminal base pairs and no nicks. It may be defined as a series of bounding
subsequences [φ]. If the number of terminal base pairs is nbp and the number of unpaired nucleotides is nnt, the free
energy for a multiloop in a specified stacking state, ω, is modeled as follows:

∆Gmulti([φ], ω) = ∆Gmulti
init + nbp∆Gmulti

bp + nnt∆G
multi
nt

+ ∆Gallterminalbp([φ]) + ∆Gallcoax([φ], ω) + ∆Galldangle([φ], ω) (S32)

where ∆Gmulti
init denotes the penalty for formation of a multiloop, ∆Gmulti

bp denotes the sequence-independent penalty
for a terminal base pair in a multiloop, and ∆Gmulti

nt denotes the penalty per unpaired nucleotide in a multiloop.
Note that in contrast to interior loops and hairpin loops, the free energy of a multiloop is assumed to scale linearly,
not logarithmically, with the number of unpaired nucleotides; the linear simplification facilitates the derivation of
O(N3) multiloop recursions.

• ∆Gmulti
init : empirical values for rna95;3 newly regressed values (Table 1) for rna06;15 unpublished values for

dna04.6

• ∆Gmulti
bp : empirical values for rna95;3 newly regressed values (Table 1) for rna06;15 unpublished values for

dna04.6

• ∆Gmulti
nt : empirical values for rna95;3 newly regressed values (Table 1) for rna06;15 unpublished values for

dna04.6

Note that for rna06, previously published parameter regressions5,7 use a functional form incompatible with the
definition of ∆Gmulti([φ], ω) above.3,6 Using literature source data for multiloops,15 we regressed the values of the
∆Gmulti

init , ∆Gmulti
bp , ∆Gmulti

nt via a least-squares fit of the regressed loop free energies, observing comparable mean
absolute error (Table 1).

∆Gallterminalbp([φ]) is a sum of the sequence-dependent free energy ∆Gterminalbp
φi,φj

for each terminal base pair i · j
in the multiloop (see definition above under hairpin loops).

∆Gallcoax([φ], ω) is a sum over each coaxial stack present in the multiloop stacking state ω. Owing to a lack
of parameters, only coaxial stacks between adjacent terminal base pairs (with no intervening unpaired bases) are
considered. Each coaxial stack between base pairs i · d and d + 1 · j contributes a free energy of ∆Gcoax

φi,φd,φd+1,φj
.

For the recursions with coaxial stacking (Section S2.6), we use ∆Gcoax
i,d,j (φ) to denote ∆Gcoax

φi,φd,φd+1,φj
since only three

indices may vary freely. For the recursions without coaxial stacking (Section S2.3), the term ∆Gallcoax([φ], ω) is
neglected.

Quantity ∆[G/H]initmulti ∆[G/H]bpmulti ∆[G/H]ntmulti MAE MAE15

∆G +12.91 -1.28 -0.0880 1.01 1.01
∆H +81.06 -6.84 +2.22 11.5 12.1

Table 1: Regression of multiloop parameters for rna06 (kcal/mol). MAE denotes the mean absolute error of the least-squares
regression of the loop free energies from Reference 15 using formulation (S32) for ∆Gmulti([φ], ω). MAE15 refers to the mean
absolute error of the regression performed in Reference 15 using a different formulation of ∆Gmulti([φ], ω).
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• ∆Gcoax
φi,φd,φd+1,φj

: rna953 and rna065,7 set ∆Gcoax
φi,φd,φd+1,φj

equal to ∆Gstack
φi,φd,φd+1,φj

. dna04 uses independently
estimated values.10

∆Galldangle([φ], ω) is a sum of the sequence-dependent free energy, ∆Gdangle
i, j (φ), for each terminal base pair i · j

that is not in a coaxial stack in stacking state ω. For a given terminal base pair i · j, ∆Gdangle
i, j (φ) takes one of four

values to match the dangle stacking state for a given ω:

∆Gdangle
i, j (φ) =


0 no dangles
∆G5′dangle

φi,φi+1,φj
5′ dangle

∆G3′dangle
φi,φj−1,φj

3′ dangle
∆Gterminalmm

φi,φi+1,φj−1,φj
terminal mismatch

(S33)

Note that the state where both 5′ and 3′ dangles stack on terminal base pair i · j is classified as a terminal mismatch.
For the recursions without dangle stacking (Section S2.3), the term ∆Galldangle([φ], ω) is neglected.

• ∆G5′dangle
φi,φj ,φk

: 5′ dangle free energy parametrized for rna95,3 rna06,5,7 and dna04.12

• ∆G3′dangle
φi,φj ,φk

: 3′ dangle free energy parametrized for rna95,3 rna06,5,7 and dna04.12

• ∆Gterminalmm
φi,φi+1,φj−1,φj

: rna953 and rna065,7 use empirical parameters for ∆Gterminalmm; dna04 assigns ∆Gterminalmm
φi,φi+1,φj−1,φj

to be the sum of ∆G5′dangle
φi,φi+1,φj

and ∆G3′dangle
φi,φj−1,φj

as empirical values of ∆Gterminalmm
φi,φi+1,φj−1,φj

are not publicly avail-
able.12

S1.7.4 Free energy model for exterior loops

An exterior loop is a loop containing one nick and zero or more terminal base pairs. An exterior loop may be defined
as a series of bounding subsequences [φ] with a given nick location. An unpaired strand is an exterior loop with a
free energy of zero, corresponding to the reference state.2 The free energy of an exterior loop in a specified stacking
state ω is modeled as follows:

∆Gexterior([φ], ω) = 0 + ∆Gallterminalbp([φ]) + ∆Gallcoax([φ], ω) + ∆Galldangle([φ], ω). (S34)

The functions ∆Gallterminalbp([φ]), ∆Gallcoax([φ], ω), and ∆Galldangle([φ], ω) are defined as above for multiloops. For
the recursions without coaxial and dangle stacking (Section S2.3), the terms ∆Gallcoax([φ], ω) and ∆Galldangle([φ], ω)
are neglected.
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S2 Recursions for the complex ensemble with or without coaxial and
dangle stacking

Recursions specify the dependencies between subproblems and incorporate the details of the complex structural
ensemble and the free energy model. The recursions described here can be combined with a quantity-specific evalua-
tion algebra (Section S3) and a quantity-specific operation order (Section S4) to calculate diverse physical quantities.
Each recursion corresponds to an efficient iteration through a conditional ensemble of substructures within a given
subsequence that are compatible with a specified set of constraints. For a given recursion, a conditional ensemble
might include an explicit structural element, which can be considered the base case of the recursion, or a reference
to the result of another recursion.

S2.1 Separate recursions for intrastrand and interstrand blocks
Reference 2 described dynamic programming recursions for the complex ensemble that checked for a nick next to each
nucleotide. This approach enabled treatment of complexes containing an arbitrary number of strands, but caused
unnecessary complications in the program flow and eliminated any possibility of vectorization due to the conditional
checks within each “for” loop. By contrast, here we employ separate sets of recursions for triangular intrastrand
blocks and rectangular interstrand blocks (Figure S1). As a result, each intrastrand and interstrand recursion is kept
as simple as possible and both types of recursions can be efficiently vectorized.

Complex ABC
C

block

B 
block BC

block

ABC
block

AB
block

A 
block

a b Vector operation for element
in intrastrand B block 

c Vector operation for element 
in interstrand BC block

A B C

A

B

C

row 

col
element

j

i

i, j

row i

col
j

element
i, j

Figure S1: Separate recursions for intrastrand and interstrand blocks. (a) Triangular intrastrand blocks (A, B, C) and
rectangular interstrand blocks (AB, BC, ABC) for complex ABC. Element i, j corresponds to a conditional ensemble for
subsequence [i, j] which contains no nicks if i, j is in an intrastrand block and one or more nicks if i, j is in an interstrand
block. (b) Each recursion operation for calculation of element i, j in an intrastrand block (e.g., Qi,j ←

∑
i≤d<j Qi,dQd+1,j) can

be implemented as a vectorized dot product between a subvector of row i (brown) and a subvector of column j (gray) to obtain
element i, j (purple). Note that calculation of an element i, j in an intrastrand block uses elements in the same intrastrand
block (calculated using intrastrand recursions). (c) Each recursion operation for calculation of element i, j in an interstrand
block (e.g., Qi,j ←

∑
i≤d<j, strand(d)=strand(d+1)Qi,dQd+1,j) can be implemented as multiple vectorized dot products between

valid subvectors of row i (brown) and valid subvectors of column j (gray) to obtain element i, j (purple), where valid positions
are those that avoid introducing disconnected structures into the complex ensemble (see Algorithm S2). Note that calculation
of element i, j in an interstrand block uses elements in one or more interstrand blocks (calculated with interstrand recursions)
and two intrastrand blocks (calculated with intrastrand recursions).

S2.2 Conventions for recursion diagrams and equations
In the following sections we will describe recursions corresponding to the complex ensemble without stacking terms
(Section S2.3) and with coaxial and dangle stacking subensembles (Section S2.6). Each recursion iterates over all
conditional ensembles compatible with the constraints defined for a given recursion type. For a complex of N

12



nucleotides, each full set of recursions is O(N3) in time and O(N2) in space. For interior loop recursions, we start
by defining an O(N4) recursion and then describe an exact reduction to O(N3) time complexity (Section S2.4).

Each recursion is represented in two ways: graphically, as a set of recursion diagrams, and algebraically, as
an equation defining the recursion as a specific combination of contributions. The recursion diagrams employ the
following conventions:

• Solid circular arcs depict the nucleic acid backbone. An arrowhead denotes the 3′ end of a strand.

• Dots indicate particular nucleotide positions that define the bounds of recursive contributions. If a dot is
labeled with a nucleotide index, the same index is used in the corresponding recursion. If a dot is adjacent to
a dot labeled i, the implied index of the unlabeled dot is either i− 1 or i+ 1 (indices increase from 5′ to 3′).

• A straight line delimits the boundary for a given contribution. A solid straight line indicates that the connected
nucleotides are base-paired. A dashed straight line indicate that the connected nucleotides may or may not be
base-paired. A half-solid/half-dashed straight line indicates that the nucleotide connected on the solid side is
base-paired to a nucleotide within the demarcated region. A straight line that is solid at both ends and dashed
in the middle indicates that the nucleotides at either end are both base-paired but not to each other. A dotted
straight line indicates that the connected nucleotides are involved in a stacking state (either a coaxial stacking
state or a dangle stacking state).

• Shading indicates that the shaded region in a recursion explicitly incorporates a recursion energy, ∆G, repre-
senting all or part of a loop free energy (e.g., multiloop recursion energies representing different terms in the
multiloop model are incorporated in multiple places in multiple recursions in order to treat the full multiloop
model). The color of the shading corresponds to the loop type (and the stacking type when applicable).

A recursion equation provides a mathematical description of the conditional ensemble depicted graphically in a
recursion diagram. Recursion equations employ the following conventions:

• For each physical quantity, an appropriate evaluation algebra (Section S3) is used to define the generic operators
that appear in the recursion equations: 0, 1, ⊕, ⊗, W , and Q. For example, to calculate the partition function,
we have:

0→ 0, 1→ 1, ⊕ → +, ⊗ → ×, W (g)→ exp(−g/kT ), Qai,j → Qai,j . (S35)

where the last right-hand side indicates that Qai,j is a lookup of the relevant stored matrix element.

• A recursion equation for subsequence [i : j] corresponding to element i, j in a triangular intrastrand block is
denoted RaIntra(i, j, φ) for a recursion of type a (e.g., a ∈ {∅, b,m, . . . }). A recursion equation for subsequence
[i : j] corresponding to element i, j in a rectangular interstrand block is denoted RaInter(i, j, φ) for a recursion of
type a. Here, φ is the sequence of the complex and i and j are nucleotide indices. Note that in the Supporting
Information we use Q∅

i,j to denote Qi,j so that each recursion has an explicit recursion type a.

• If a recursion diagram contains a shaded region denoting a recursion energy, ∆G, the corresponding recursion
equation will incorporate the recursion energy via the term W (∆G).

• After it is evaluated for the first time, Ra(i, j, φ) is used to yield Qai,j in subsequent recursions. In the evaluation
algebras that generate scalars (SumProduct, MinSum, Count), the output of Ra(i, j, φ) is synonymous with
the value Qai,j that is stored in the recursion matrices. However, other evaluation algebras involve different
treatment of the output of Ra(i, j, φ). For instance, a recursion in the SplitExp evaluation algebra (Sec-
tion S3.1.4) yields a function that must be supplied with a reference exponent γ to calculate the mantissa and
exponent values that are stored. The ways in which recursion outputs are utilized for each physical quantity
are described in Section S4.

In our pseudocode, we make clear which operations are vectorized using SIMD operations on contiguous arrays
via the function dot (Algorithm S1), which represents a dot product generalized to any number of arguments, each
of which is a vector of the same length n. The vectors argument to this subroutine is composed of row or column
subvectors (each a vector of contiguous elements) of the recursion matrices storing the result of previous recursion
evaluations (e.g., Q∅, Qb, Qm, . . . ). To denote a vector extracted from a matrix block, we replace a scalar index (e.g.,
d) with a vector index (e.g., d) representing a range of either row or column indices. For example:

d ≡ [i : j − 5] ≡ i, i+ 1, . . . , j − 6, j − 5. (S36)
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dot(vectors)
n← Length(vectors1)
x← 0
for i ∈ [1 : n]

t← 1
for a ∈ vectors

t← t⊗ ai
x← x⊕ t

return x

Algorithm S1: Generalized dot product over multiple vectors of equal length.

represents an ascending range of indices. Any scalar increment is applied to each entry in the range:

d+ 1 ≡ [i+ 1 : j − 4]. (S37)

Q∅
i,d

then denotes a subvector of row i from matrix Q∅, Qs
d+1,j

denotes a subvector of column j from matrix Qs, and

dot
(
Q∅
i,d
, Qs

d+1,j

)
(S38)

denotes a dot product between these two vectors. An index range can also be used to denote a vector of free energy
contributions, for example,

nnt∆G
multi
nt (S39)

with

nnt ≡ [0 : j − i− 4]. (S40)

When there are multiple ranges, the elements match with each other such that

a+ b[i:j] + c[d:e] ≡ a+ bi + cd, a+ bi+1 + cd+1, . . . , a+ bj−1 + ce−1, a+ bj + ce. (S41)

In some cases, two ranges must proceed in opposite directions (one ascending and one descending) to match up the
values in vectors correctly. A descending, or reversed, range is written

[i : j]
r ≡ j, j − 1, . . . , i+ 1, i. (S42)

For calculation of matrix elements in interstrand blocks (which by definition involve 2 or more strands), η is an
array of indices of the nicks between strands within the interstrand block being considered; by convention, each nick
is denoted in η by the index of the nucleotide following the nick.† For example, consider complex ABC of Figure S1a
with strands A, B, and C containing 4, 5, and 6 nucleotides respectively. For the AB block, η = [5]. For the BC
block, η = [10]. For the ABC block, η = [5, 10].

To calculate matrix entry i, j for an interstrand block with nicks η, the function Valid(i, j, η) (Algorithm S2)
returns the set of valid ranges {d1, d2, . . . } for vectorization so as to ensure that all secondary structures are connected
and exterior loops appear only when they are explicitly considered by a recursion. There is at most one valid
vectorization range per strand, and there may be none for a strand that is too short or for the first or last strand
if i or j, respectively, is too close to a nick. The ability to identify valid vectorization ranges for calculating each
matrix element is a key innovation enabled by using dedicated recursions for intrastrand and interstrand blocks,
eliminating the use “if” statements to identify nick locations (cf. Reference 2), and thus enabling vectorization to
achieve dramatic speedups.

Steric requirements require that there be at least three intervening bases between two base-paired nucleotides
on the same strand, placing a lower bound on the length of subsequence [i, j] for different recursion types (e.g., a
minimum subsequence length to contain a hairpin loop, an interior loop, a multiloop, a terminal base pair, a stacking
state, a coaxial stacking state, or a dangle stacking state). Recursions below the minimum subsequence length for a
given recursion type return 0. For efficiency reasons, we often explicitly specify lower bounds on subsequence length
to avoid performing calculations for elements that will evaluate to 0.
†Note that this definition is unrelated to the use of η in Reference 2 to denote the number of nicks in a given subsequence.
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Valid(i, j, η)

D ← {}
m← First(η)
n← Last(η)
if i+ 1 < m and j ≥ n

d = [i : m− 2]

D← D ∪ d
if i < m and j − 1 ≥ n

d = [n : j − 1]

D← D ∪ d
if i < m and j ≥ n

for b ∈ [1 : Length(η)− 1]
if ηb+1 − ηb > 1

d = [ηb : ηb+1 − 2]

D← D ∪ d
return D

Algorithm S2: Enumerate valid positions for vectorization in an interstrand block. η is an array of indices of the nicks
between strands within the interstrand block being considered; by convention, each nick is denoted in η by the index of the
nucleotide following the nick. The algorithm identifies at most one valid range d for each strand in the block, corresponding to
the values of the index d such that d and d+ 1 are on the same strand. This requirement ensures that all secondary structures
are connected and that exterior loops only appear when they are being explicitly considered by a recursion. The algorithm
returns D, the set of valid ranges for the block. For a given i and j, each valid range leads to a dot product between range d
of row i and range d+ 1 of column j (e.g., the recursion of Figure S8 contains one dot product for each valid range d).

For exterior loop and multiloop recursions without coaxial and dangle stacking, the elementary recursion entity
is a terminal base pair (a base pair that terminates a duplex to form a part of the exterior loop or multiloop). For
exterior and multiloop recursions with coaxial and dangle stacking, the elementary recursion entity is the stacking
state, representing either a coaxial stacking state (two adjacent terminal base pairs that are coaxially stacked) or a
dangle stacking state (zero, one, or two unpaired nucleotides dangle stacking on an adjacent terminal base pair).

S2.3 Recursions without coaxial and dangle stacking subensembles
Here, we describe RaIntra(i, j, φ) recursions for calculating the elements of intrastrand blocks and RaInter(i, j, φ)
recursions for calculating the elements of interstrand blocks for the complex ensemble, Γ, without coaxial and
dangle stacking subensembles. To assist with examining these recursions, the intuition behind the name chosen for
each recursion, the nature of the ensemble treated by each recursion, and the dependencies between the different
recursions is summarized in Figure S2. For convenience, it may be helpful to consider the recursions from the
perspective of partition function calculations since there is a natural correspondence between the generic evaluation
algebra nomenclature and the specific operators needed for partition function calculations (see equation (S35)),
but the recursions are generic and can be combined with a quantity-specific evaluation algebra (Section S3) and a
quantity-specific operation order (Section S4) to calculate diverse physical quantities. The present recursions treat
the same structural ensemble Γ and free energy model ∆G(φ, s) as our previous implementation (NUPACK 3.2 with
dangles option “none”).2 For backwards compatibility, we have also implemented the “some” and “all” approximate
dangle treatments supported by NUPACK 3.2 (see Section S2.5).

A recursion Ra(i, j, φ) operates on subsequence [i : j] to calculate element i, j for either the unconstrained ensemble
a = ∅ or for one of several constrained ensembles a ∈ {s, b, x,ms,m}. Briefly, R∅(i, j, φ) treats the unconstrained
ensemble in an exterior loop context where i and j may or may not be paired. Rs(i, j, φ) serves as an efficiency
wrapper over the 3′-most terminal base pair in an exterior loop context to reduce the time complexity from O(N4) to
O(N3). Rb(i, j, φ) treats the constrained ensemble where i and j form base pair i · j in the context of any loop type.
Rx(i, j, φ) treats extensible interior loops to reduce the time complexity from O(N4) to O(N3). Rms(i, j, φ) serves
as an efficiency wrapper over the 3′-most terminal base pair in a multiloop context (analogous to Rs in an exterior
loop context) to reduce the time complexity from O(N4) to O(N3). Rm(i, j, φ) treats the remaining terminal base
pairs in a multiloop context.
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Recursion Naming intuition Constraint Context

∅ unconstrained none exterior loop
s summation efficiency wrapper of 3′-most terminal base pair exterior loop
b base-paired base pair between 5′-most and 3′-most bases of subsequence any loop
x extensible extensible interior loop interior loop

ms multiloop summation efficiency wrapper of 3′-most terminal base pair multiloop
m multiloop one or more remaining terminal base pairs multiloop

s

ms

b

m x

∅

Intrastrand block Interstrand block

s

ms

b

m

∅

x

Figure S2: Nomenclature and connectivity for recursions without coaxial and dangle stacking. Top: Nomenclature. Bottom:
Dependencies between different recursion types for elements within an intrastrand block (left) or an interstrand block (right).

S2.3.1 Intrastrand dynamic programming recursions without coaxial and dangle stacking

Here, we consider recursions for calculating the entries in a triangular intrastrand block without coaxial and dangle
stacking. By definition, there are no nicks between strands in intrastrand recursions since intrastrand blocks involve
base-pairing within a single strand.

R∅
Intra recursion without coaxial and dangle stacking. We begin with the recursion R∅

Intra(i, j, φ) with
the diagram and equation shown in Figure S3. R∅

Intra(i, j, φ) operates on the unconstrained ensemble for subsequence
[i, j] in an exterior loop context where i and j may or may not be paired (depicted with a dashed line between i
and j in the recursion diagram). This recursion distinguishes two cases that are combined using ⊕ in the recursion
equation:

• No terminal base pairs: the empty case in an exterior loop context where there are no terminal base pairs in
subsequence [i, j] (depicted by the absence of a straight solid line in the recursion diagram). The shading in the
recursion diagram represents the recursion energy ∆Gexterior

i,j (φ) = 0 corresponding to the zero reference state
for an exterior loop with no base pairs and no coaxial or dangle stacking. The corresponding contribution to
the recursion equation is W (0) = 1.

• At least one terminal base pair: the non-empty case in an exterior loop context where there is at least one
terminal base pair (i.e., a base pair terminating a duplex) in subsequence [i, j]. The 3′-most terminal base pair

s

s

i

j

i

j

ii

j

d

j

=

exterior loop

∅

∅

R∅
Intra(i, j, φ) ≡ 1⊕


Qsi,j ⊕ dot

(
Q∅
i,d
, Qs

d+1,j

)
, j − i > 4

Qsi,j , j − i = 4

0, otherwise

where d ≡ [i : j − 5].

Figure S3: R∅
Intra recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.
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begins at d+ 1 and ends in the interval [d+ 2, j] (depicted using a half-solid/half-dashed line in the recursion
diagram). The contributions for subsequence [d+ 1, j] are incorporated using a Qsd+1,j element. Contributions
for the remaining subsequence [i, d] are incorporated by a Q∅

i,d element. The shading denotes the recursion
energy 0 corresponding to the zero reference state in an exterior loop context. Note that the recursion energy
∆Gterminalbp(φ) representing one component of the ∆Gexterior

i,j (φ) free energy is not incorporated here because
the full identity of the terminal base pair (i.e., a base pair terminating a duplex) beginning at d + 1 is not
known within the R∅

Intra(i, j, φ) recursion (only within the RsIntra(i, j, φ) recursion). The edge case where the
index d+ 1 = i is displayed explicitly to indicate that no Q∅ element is accessed in this case. The index limits
in the recursion equation reflect the fact that steric effects prevent a hairpin loop with fewer than 3 unpaired
nucleotides (hence, i · j cannot form if j − i < 4).

Note that using the dot notation (Algorithm S1) and index range notation (S36) to denote vector operations, we
have the equivalence:

dot
(
Q∅
i,d
, Qs

d+1,j

)
≡

j−5∑
d=i

Q∅
i,d ⊗Q

s
d+1,j , j − i > 4,

where d ≡ [i : j − 5].

We can also recognize that in terms of matrix elements, the dot product

dot
(
Q∅
i,d
, Qs

d+1,j

)
(S43)

is between the element range d of row i (depicted as brown elements in Figure S1b) and the element range d+1 of
column j (gray elements), yielding element i, j (purple element).
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i

j

i

j

d

b

s

exterior loop

RsIntra(i, j, φ) ≡

{
dot

(
Qb
i,d
,W (∆Gterminalbp

i,d
(φ))

)
, j − i ≥ 4

0, otherwise

where d ≡ [i+ 4 : j].

Figure S4: RsIntra recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RsIntra recursion without coaxial and dangle stacking. The R∅
Intra(i, j, φ) recursion references Qs ele-

ments that are computed using the RsIntra recursion displayed in Figure S4. RsIntra(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] in an exterior loop context containing one terminal base pair starting at i and ending in
the interval [i+1, j] (depicted as a half-solid/half-dashed line between i and j). The contribution for the subsequence
[i, d] enclosed by base pair i · d is incorporated using a Qbi,d element. Shading corresponds to the recursion energy,
∆Gterminalbp

i,d (φ), representing the sequence-dependent penalty for a terminal base pair in an exterior loop context
(dependent on the sequence of base pair i · d). The index limits in the recursion equation reflect the fact that steric
effects prevent a hairpin loop with fewer than 3 unpaired nucleotides (hence, i · j cannot form if j− i < 4). Note that
the Rs recursion serves as an efficiency wrapper of the Rb recursion (here, representing the 3′-most terminal base
pair in an exterior loop context) to reduce the time complexity of the R∅ recursion from O(N4) to O(N3). This
time complexity reduction is achieved by defining the 3′-most base pair using Rb within the Rs efficiency wrapper
rather than directly using the Rb recursion within the R∅ recursion, so as to avoid introducing a fourth independent
index into the R∅ recursion.
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RbIntra recursion without coaxial and dangle stacking. The RsIntra(i, j, φ) recursion references Qb ele-
ments that are computed using the RbIntra recursion displayed in Figure S5. RbIntra(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] with i and j base paired to each other (depicted with a solid line between i and
j). The function Complementary(φi, φj) checks if bases φi and φj are complementary (Watson–Crick or wobble
pair) without regard to whether i and j are sufficiently separated along the strand to be able to pair sterically. The
recursion distinguishes three cases that are combined using ⊕ in the recursion equation:

• Hairpin loop: the hairpin loop closed by the single base pair i · j (depicted by a straight solid line). The
recursion incorporates the recursion energy ∆Ghairpin

i,j (φ). The index limits in the recursion equation reflect the
fact that steric constraints prevent a hairpin loop with fewer than 3 unpaired nucleotides (hence, i · j cannot
form if j − i < 4).

• Interior loop: the interior loop closed by the two terminal base pairs i·j and d·e (depicted by straight solid lines).
We defer discussion of the calculation of the interior loop contributions using the subroutine InteriorIntra
until Section S2.4, where we describe both O(N4) and O(N3) recursions. The index limits in the recursion
equation reflect the fact that steric effects prevent an interior loop with j − i < 6 due to the steric requirement
that there be at least 3 intervening bases between d and e.

• Multiloop: the multiloop closed by three or more terminal base pairs: 1) the terminal base pair i · j depicted
by a straight solid line, 2) a 3′-most terminal base pair starting at d and ending in the interval [d + 1, j − 1]
(depicted by a straight half-solid/half dashed line between d and j−1); the contribution of subsequence [d, j−1]
is incorporated by element Qmsd,j−1, 3) one or more additional terminal base pairs in the interval [i+1, d−1] (the
straight dashed line denotes that i+ 1 and d− 1 may or may not be paired); the contribution of subsequence
[i + 1, d − 1] is incorporated by element Qmi+1,d−1. Shading corresponds to three recursion energies: 1) the
penalty for formation of a multiloop ∆Gmulti

init , 2) the sequence-independent penalty for a terminal base pair in
a multiloop ∆Gmulti

bp (corresponding to the sole base pair i · j that is fully defined in this recursion), 3) the
sequence-dependent penalty for a terminal base pair in a multiloop context, ∆Gterminalbp

j,i (φ) (note that the
indices are ordered j then i to reflect 5′ to 3′ from the perspective of the multiloop). The index limits in the
recursion equation reflect the fact that steric effects prevent a multiloop with j − i < 11 due to the steric
requirement that there be at least 3 intervening bases between i + 1 and d and at least 3 intervening bases
between d+ 1 and j − 1.
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hairpin loop interior loop multiloop

RbIntra(i, j, φ) ≡

{
C1, Complementary(φi, φj)

0, otherwise

where C1 ≡

{
W (∆Ghairpin

i,j (φ)), j − i ≥ 4

0, otherwise

⊕

{
InteriorIntra(i, j, φ), j − 1 ≥ 6

0, otherwise

⊕

{
dot

(
Qm
i+1,d

, Qms
d+1,j−1

)
⊗W (∆Gmulti

init + ∆Gmulti
bp + ∆Gterminalbp

j,i (φ)), j − i ≥ 11

0, otherwise

with d ≡ [i+ 5 : j − 6].

Figure S5: RbIntra recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.
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multiloop

RmsIntra(i, j, φ) ≡

{
dot

(
Qb
i,d
,W (∆Gmulti

bp + nnt∆G
multi
nt + ∆Gterminalbp

i,d
(φ))

)
, j − i ≥ 4

0, otherwise

where d ≡ [i+ 4 : j], nnt ≡ [0 : j − i− 4]
r
.

Figure S6: RmsIntra recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmsIntra recursion without coaxial and dangle stacking. The RbIntra(i, j, φ) recursion references Qms el-
ements that are computed using the RmsIntra(i, j, φ) recursion shown in Figure S6. RmsIntra(i, j, φ) operates on a
conditional ensemble for subsequence [i, j] in a multiloop context containing one terminal base pair starting at i
and ending in the interval [i+ 1, j] (depicted as a half-solid/half-dashed line between i and j). The contribution for
the subsequence [i, d] enclosed by base pair i · d is incorporated using a Qbi,d element. Shading corresponds to three
recursion energies: 1) the sequence-independent penalty for a terminal base pair in a multiloop ∆Gmulti

bp (base pair
i · d), 2) the penalty per unpaired nucleotide in a multiloop, ∆Gmulti

nt (nucleotides d + 1, . . . , j for a total of j − d
unpaired nucleotides; as a result, this term is zeroed out in the edge case where d = j), 3) the sequence-dependent
penalty for a terminal base pair in a multiloop context, ∆Gterminalbp

i,d (φ) (dependent on the sequence of base pair i ·d).
Note that in the dot product the range multiplying ∆Gmulti

nt runs in reverse order because the number of unpaired
nucleotides, j− d, decreases in size as d increases in size. The index limits in the recursion equation reflect the steric
requirement that there be at least 3 intervening bases between i and d. Note that Rms serves as an efficiency wrapper
for Rb in the multiloop context in a completely analogous manner to Rs serving as an efficiency wrapper for Rb in
an exterior loop context, with Rb representing the 3′-most terminal base pair in either context.
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multiloop

RmIntra(i, j, φ) ≡

{
dot

(
Qms
d,j
,W (nnt∆G

multi
nt )

)
, j − i ≥ 4

0, otherwise

⊕

{
dot

(
Qmi,e, Q

ms
e+1,j

)
, j − i ≥ 9

0, otherwise

where d ≡ [i : j − 4], nnt ≡ [0 : j − i− 4], e ≡ [i+ 4 : j − 5].

Figure S7: RmIntra recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmIntra recursion without coaxial and dangle stacking. The RbIntra(i, j, φ) recursion references Qm ele-
ments that are computed using the RmIntra recursion shown in Figure S7. RmIntra(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] in a multiloop context where i and j may or may not be paired (depicted with a
dashed line between i and j in the recursion diagram) and where there is at least one terminal base pair. This
recursion distinguishes two cases that are combined using ⊕ in the recursion equation:
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• One terminal base pair: the case where there is exactly one terminal base pair in subsequence [i, j] in a
multiloop context. This terminal base pair starts at d and ends in the interval [d+ 1, j] (depicted by a straight
half-solid/half dashed line between d and j); the contribution of subsequence [d, j] is incorporated by element
Qmsd,j . Shading corresponds to the recursion energy, ∆Gmulti

nt , representing the penalty per unpaired nucleotide
in a multiloop (nucleotides i, . . . , d− 1 for a total of d− i unpaired nucleotides; as a result, this term is zeroed
out in the edge case where d = i). The index limits in the recursion equation reflect the steric requirement
that there be at least 3 intervening bases between d and j.

• More than one terminal base pair: the case where there are two or more terminal base pairs in subsequence
[i, j] in a multiloop context. The 3′-most terminal base pair starts at e + 1 and ends in the interval [e + 2, j]
(depicted by a straight half-solid/half dashed line between e+1 and j); the contribution of subsequence [e+1, j]
is incorporated by element Qmse+1,j . There are one or more additional terminal base pairs in the interval [i, e]
(the straight dashed line denotes that i and e may or may not be paired); the contribution of subsequence
[i, e] is incorporated by element Qmi,e. The shading does not represent any recursion energies as all multiloop
contributions are handled by other recursions: 1) there are no terminal base pairs in a multiloop context
explicitly defined in this case, 2) there are no unpaired bases in a multiloop context explicitly defined in this
case. The index limits in the recursion equation reflect the steric requirement that there be at least 3 intervening
bases between i and e and at least 3 intervening bases between e+ 1 and j.

S2.3.2 Interstrand dynamic programming recursions without coaxial and dangle stacking

Here, we consider recursions for calculating the entries in a rectangular interstrand block without coaxial and dangle
stacking. By definition, interstrand blocks involve 2 or more strands, and hence one or more nicks between strands.
For a given interstrand block, η stores an array of nick indices between strands within the block, with each nick
denoted by the index of the nucleotide following the nick. If m ≡ First(η) and n ≡ Last(η), then for subsequence
[i, j] corresponding to element i, j in the interstrand block, we have by definition i < m (nucleotide i is on the first
strand in the block) and j ≥ n (nucleotide j is on the last strand in the block).

R∅
Inter recursion without coaxial and dangle stacking. We begin with R∅

Inter(i, j, φ) shown in Figure S8.
R∅

Inter(i, j, φ) operates on the unconstrained ensemble for subsequence [i, j] with i and j on different strands in an
exterior loop context where i and j may or may not be paired (depicted with a dashed line between i and j in the
recursion diagram). Unlike R∅

Intra(i, j, φ), there is no empty case because this would correspond to a disconnected
structure (which is not in the multistranded ensemble) due to the presence of one or more nicks between i and j.
Hence, the only case is at least one terminal base pair: the non-empty case in an exterior loop context where there
is at least one terminal base pair (i.e., a base pair terminating a duplex) in subsequence [i, j]. The 3′-most terminal
base pair begins at d+1 and ends in the interval [d+2, j] (depicted using a half-solid/half-dashed line in the recursion
diagram). The contributions for subsequence [d + 1, j] are incorporated using a Qsd+1,j element. Contributions for
the remaining subsequence [i, d] are incorporated by a Q∅

i,d element. The shading denotes the recursion energy 0

corresponding to the zero reference state in an exterior loop context. Note that the recursion energy ∆Gterminalbp(φ)
representing one component of the ∆Gexterior

i,j (φ) free energy is not incorporated here because the full identity of the
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⊕
d∈Valid(i,max(j−4,n),η)

dot
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Q∅
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, Qs

d+1,j

)

where n = Last(η)

(S44)

Figure S8: R∅
Inter recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.
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terminal base pair (i.e., a base pair terminating a duplex) beginning at d+ 1 is not known within the R∅
Inter(i, j, φ)

recursion (only within the Rs(d+ 1, j, φ) recursion). The edge case where the index d+ 1 = i is displayed explicitly
to indicate that no Q∅ element is accessed in this case.

Because there are nicks involved in calculating the elements of interstrand blocks, care must be taken to ensure
that no disconnected secondary structures are incorporated in the complex ensemble. For a given interstrand block
with nick indices η, the function Valid returns the set of valid vectorization ranges {d1, d2, . . . }, such that for each
valid vectorization range, d and d+ 1 are on the same strand (i.e., such that d and d+ 1 do not take on values that
would place a nick between them). As is evident from the recursion diagram of Figure S8, if d and d + 1 were to
take on values that placed a nick between them, a disconnected structure would result. There is at most one valid
vectorization range per strand, and there may be none for a strand or subsequence that is too short. For each valid
vectorization range d, the resulting dot product

dot
(
Q∅
i,d
, Qs

d+1,j

)
(S45)

is between the range d of row i (depicted as brown elements in Figure S1c) and the range d + 1 of column j
(gray elements), yielding element i, j (purple element). Note that Figure S1c depicts two valid vectorization ranges
(leading to two dot products that are summed to calculate the purple element); the gap of one element between
the two vectorization ranges corresponds to exclusion of the value d = 3 which would have placed a nick between
nucleotides d and d+ 1 (note that η = 4 for this interstrand block).

Note that for calculating element i, j in Figure S8, the subsequence submitted to Valid ranges from i to max(j−
4, n), where n ≡ Last(η). This yields two cases:

• If max(j − 4, n) = j − 4: there is no nick between nucleotide j − 4 and j (since n ≡ Last(η) < j − 4), so there
must be at least 3 intervening bases between d+1 and j because steric effects prevent a hairpin loop with fewer
than 3 unpaired nucleotides. In this case, each incorporated element Qsd+1,j results from an RsIntra(d+ 1, j, φ)
recursion for an intrastrand block.

• If max(j − 4, n) = n: there is a nick between nucleotide j − 4 and j (since n ≥ j − 4), so d+ 1 can be as large
as n − 1 and still pair to any nucleotide in subsequence [n, j]. In this case, each incorporated element Qsd+1,j

results from an RsInter(d+ 1, j, φ) recursion for an interstrand block.
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RsInter(i, j, φ) ≡ dot
(
Qb
i,d
,W (∆Gterminalbp

i,d
(φ))

)
,

where d ≡ [Last(η) : j]

(S46)

Figure S9: RsInter recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RsInter recursion without coaxial and dangle stacking. The R∅
Intra(i, j, φ) recursion references Qsd+1,j

elements that are computed using either the RsIntra recursion of Figure S4 (if d + 1 and j are on the same strand)
or the RsInter recursion of Figure S9 (if d+ 1 and j are on different strands). Recursion RsInter(i, j, φ) operates on a
conditional ensemble for subsequence [i, j] with i and j on different strands in an exterior loop context containing one
terminal base pair starting at i and ending in the interval [i+ 1, j] (depicted as a half-solid/half-dashed line between
i and j). The contribution for the subsequence [i, d] enclosed by base pair i · d is incorporated using a Qbi,d element.
Shading corresponds to the recursion energy, ∆Gterminalbp

i,d (φ), representing the sequence-dependent penalty for a
terminal base pair in an exterior loop context. The index d must always be on the last strand (i.e., d ≥ Last(η)) to
ensure there are no strand breaks in the subsequence [d, j], which would correspond to a disconnected structure. Note
that the Rs recursion serves as an efficiency wrapper of the Rb recursion (here, representing the 3′-most terminal
base pair in an exterior loop context) to reduce the time complexity of the R∅ recursion from O(N4) to O(N3). This

21



time complexity reduction is achieved by defining the 3′-most terminal base pair using Rb within the Rs efficiency
wrapper rather than directly using the Rb recursion within the R∅ recursion, so as to avoid introducing a fourth
independent index into the R∅ recursion.
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⊕
c∈η Q

∅
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∅
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j,i (φ)), i+ 1 6= m and j 6= n
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⊕

d∈Valid(i+1,j−1,η)
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, Qms
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where m = First(η)
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Figure S10: RbInter recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RbInter recursion without coaxial and dangle stacking. The RsIntra(i, j, φ) recursion references Qbi,d el-
ements that are computed using either the RbIntra recursion of Figure S10 (if i and d are on the same strand) or
the RbInter recursion of Figure S10 (if i and d are on different strands). RbInter(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] with i and j on different strands and base paired to each other (depicted with a
solid line between i and j). The function Complementary(φi, φj) checks if bases φi and φj are complementary
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(Watson–Crick or wobble pair) without regard to whether i and j are sufficiently separated along the strand to be
able to pair sterically. The recursion distinguishes three cases that are combined using ⊕ in the recursion equation:

• Exterior loop: the exterior loop closed by one or more terminal base pairs including terminal base pair i · j.

– Base case: The base case corresponds to the recursion diagram in the first row of Figure S10 with a nick
at c. For each nick c ∈ η, the contribution of subsequence [i+ 1, c−1] is incorporated by element Q∅

i+1,c−1

and the contribution of subsequence [c, j − 1] is incorporated by element Q∅
c,j−1. Shading corresponds

to the recursion energy ∆Gterminalbp
j,i (φ) representing the sequence-dependent penalty for a terminal base

pair in an exterior loop context, (note that the indices are ordered j then i to reflect 5′ to 3′ from the
perspective of the exterior loop).

– Edge cases: In the base case, there is a Q∅ element on either side of the nick. In the edge cases treated by
the three diagrams in the second row of Figure S10, one or both of these subsequences is absent because
the nick is adjacent to i (diagram 1), adjacent to j (diagram 2), or adjacent to both i and j (diagram 3).

• Interior loop: the interior loop closed by the two terminal base pairs i · j and d · e (depicted by straight solid
lines). We defer discussion of the calculation of the interior loop contributions using InteriorInter until
Section S2.4, where we describe both O(N4) and O(N3) recursions.

• Multiloop: the multiloop closed by three or more terminal base pairs: 1) the terminal base pair i · j depicted
by a straight solid line, 2) a 3′-most terminal base pair starting at d + 1 and ending in interval [d + 2, j − 1]
(depicted by a straight half-solid/half dashed line between d + 1 and j − 1); the contribution of subsequence
[d+ 1, j − 1] is incorporated by element Qmsd+1,j−1, 3) one or more additional terminal base pairs in the interval
[i + 1, d] (the straight dashed line denotes that i + 1 and d may or may not be paired); the contribution of
subsequence [i + 1, d] is incorporated by element Qmi+1,d. Shading corresponds to three recursion energies: 1)
the penalty for formation of a multiloop ∆Gmulti

init , 2) the sequence-independent penalty for a terminal base pair
in a multiloop ∆Gmulti

bp (corresponding to the sole base pair i · j that is fully defined in this recursion), 3) the
sequence-dependent penalty for a terminal base pair in a multiloop context, ∆Gterminalbp

j,i (φ) (note that the
indices are ordered j then i to reflect 5′ to 3′ from the perspective of the multiloop). To exclude exterior loop
states that are not treated by this multiloop recursion, the function Valid returns the set of valid vectorization
ranges for which nucleotides d and d + 1 are on the same strand (i.e., such that d and d + 1 do not take on
values that would place a nick between them).

Note that unlike the RbIntra recursion of Figure S5, for RbInter there is no hairpin loop case as i and j are on different
strands.

=

i

j

i

j

d

b

ms

multiloop

RmsInter(i, j, φ) ≡ dot
(
Qb
i,d
,W (∆Gmulti

bp + nnt∆G
multi
nt + ∆Gterminalbp

i,d
(φ))

)
where d ≡ [Last(η) : j], nnt ≡ [0 : j − Last(η)]

r

Figure S11: RmsInter recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmsInter recursion without coaxial and dangle stacking. The RbInter(i, j, φ) recursion references Qmsd+1,j−1

elements that are computed using either the RmsIntra recursion shown of Figure S6 (if d+ 1 and j − 1 are on the same
strand) or the RmsInter recursion of Figure S11 (if d+ 1 and j − 1 are on different strands). RmsInter(i, j, φ) operates on
a conditional ensemble for subsequence [i, j] in a multiloop context containing one terminal base pair starting at i
and ending in the interval [i+ 1, j] (depicted as a half-solid/half-dashed line between i and j). The contribution for
the subsequence [i, d] enclosed by base pair i · d is incorporated using a Qbi,d element. Shading corresponds to three
recursion energies: 1) the sequence-independent penalty for a terminal base pair in a multiloop, ∆Gmulti

bp (base pair
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i · d), 2) the penalty per unpaired nucleotide in a multiloop, ∆Gmulti
nt (nucleotides d + 1, . . . , j for a total of j − d

unpaired nucleotides; as a result, this term is zeroed out in the edge case where d = j), 3) the sequence-dependent
penalty for a terminal base pair in a multiloop context, ∆Gterminalbp

i,d (φ) (dependent on the sequence of base pair i ·d).
Note that in the dot product the range multiplying ∆Gmulti

nt runs in reverse order because the number of unpaired
nucleotides, j − d, decreases in size as d increases in size. Nucleotide d must always be on the last strand to ensure
that there are no nicks in the subsequence [d, j], which would lead to either a disconnected structure (which is not
permitted in the complex ensemble) or an exterior loop state (which is not handled by this multiloop recursion).
Note that Rms serves as an efficiency wrapper for Rb in the multiloop context in a completely analogous manner to
Rs serving as an efficiency wrapper for Rb in an exterior loop context, with Rb representing the 3′-most terminal
base pair in either context.

i

j

i

j

i

j

e
d=

msms

m

m

multiloop

RmInter(i, j, φ) ≡ dot
(
Qms
d,j
,W (nnt∆G

multi
nt )

)
⊕

⊕
e∈Valid(i,j,η)

dot
(
Qmi,e, Q

ms
e+1,j

)
where d ≡ [i : First(η)− 1], nnt ≡ [0 : First(η)− i− 1]

Figure S12: RmInter recursion without coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmInter recursion without coaxial and dangle stacking. The RbInter(i, j, φ) recursion references Qmi+1,d

elements that are computed using either the RmIntra recursion of Figure S7 (if i+ 1 and d are on the same strand), or
the RmInter recursion of Figure S12 (if i+ 1 and d are on different strands). RmInter(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] in a multiloop context where i and j may or may not be paired (depicted with a
dashed line between i and j in the recursion diagram) and where there is at least one terminal base pair. This
recursion distinguishes two cases that are combined using ⊕ in the recursion equation:

• One terminal base pair: the case where there is exactly one terminal base pair in subsequence [i, j] in a
multiloop context. This terminal base pair starts at d and ends in the interval [d+ 1, j] (depicted by a straight
half-solid/half dashed line between d and j); the contribution of subsequence [d, j] is incorporated by element
Qmsd,j . Shading corresponds to the recursion energy, ∆Gmulti

nt , representing the penalty per unpaired nucleotide
in a multiloop (nucleotides i, . . . , d− 1 for a total of d− i unpaired nucleotides; as a result, this term is zeroed
out in the edge case where d = i). Nucleotide d must always be on the first strand to ensure that there are no
nicks in the subsequence [i, d], which would lead to either a disconnected structure (which is not permitted in
the complex ensemble) or an exterior loop state (which is not handled by this multiloop recursion).

• More than one terminal base pair: the case where there are two or more terminal base pairs in subsequence
[i, j] in a multiloop context. The 3′-most terminal base pair starts at e + 1 and ends in the interval [e + 2, j]
(depicted by a straight half-solid/half dashed line between e+1 and j); the contribution of subsequence [e+1, j]
is incorporated by element Qmse+1,j . There are one or more additional terminal base pairs in the interval [i, e]
(the straight dashed line denotes that i and e may or may not be paired); the contribution of subsequence
[i, e] is incorporated by element Qmi,e. The shading does not represent any recursion energies as all multiloop
contributions are handled by other recursions: 1) there are no terminal base pairs in a multiloop context
explicitly defined in this case, 2) there are no unpaired bases in a multiloop context explicitly defined in this
case. To exclude exterior loop states that are not treated by this multiloop recursion, the function Valid
returns the set of valid vectorization ranges for which nucleotides e and e+ 1 are on the same strand (i.e., such
that e and e+ 1 do not take on values that would place a nick between them).
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S2.4 Recursions for interior loop contributions

Interior loop contributions to the recursions RbIntra(i, j, φ) and RbInter(i, j, φ) run naively in O(N4) time, as is evident
from the four indices i, d, e, j in the interior loop recursion diagrams in Figures S5 and S10.

O(N4) intrastrand interior loop recursion. The intrastrand O(N4) interior loop contribution:

O(N4) InteriorIntra(i, j, φ) ≡

{⊕j−5
d=i+1

⊕j−1
e=d+4{Qbd,e ⊗W (∆Ginterior

i,d,e,j (φ))}, j − i ≥ 6

0, otherwise
(S47)

considers interior loops through a nested iteration, first over d in a 5′ to 3′ direction and for each d over e in a 5′

to 3′ direction. The index limits in the recursion equation reflect the fact that steric effects prevent an interior loop
with j− i < 6 due to the steric requirement that there be at least 3 intervening bases between d and e. The function
∆Ginterior

i,d,e,j (φ) accounts for the free energy of the loop with bounding base pairs i · j and d · e, substituting in the
correct functional form for any of the various interior loop types (stacked pair, bulge, etc; see Section S1.7.2).

O(N4) interstrand interior loop recursion. The interstrand O(N4) interior loop contribution:

O(N4) InteriorInter(i, j, φ) ≡

{⊕m−1
d=i+1

⊕j−1
e=n{Qbd,e ⊗W (∆Ginterior

i,d,e,j (φ))}, i < m− 1 and n < j

0, otherwise

where m = First(η)

n = Last(η)

(S48)

proceeds in the same general manner, considering interior loops in order of ascending d then e indices. However, d
is restricted to be on the first strand (d < m) and e is restricted to be on the last strand (e ≥ n), as reflected in the
upper summation limit for d and the lower summation limit for e. These two requirements ensure that there are no
nicks between i and d and between e and j, preventing exterior loop states (that are not treated in this interior loop
recursion) and disconnected states (that are not part of the complex ensemble).

O(N3) intrastrand interior loop recursion. To reduce the complexity of computing interior loop contri-
butions from O(N4) to O(N3), we must exploit the functional form of the free energy model for large interior loops
(Section S1.7.2).16 In References 17 and 18, this optimization was referred to as the “fastiloops” or “fast interior loops”
function, and we take a similar approach here. The following optimizations assume the use of a forward operation
order (not a backtracking operation order). Interior loops, defined by two bounding base pairs i · j and d · e, can be
classified by the distances L1 = d − i − 1 and L2 = j − e − 1; L1 and L2 are the numbers of unpaired nucleotides
on each side of the interior loop. In cases where L1 < 4 or L2 < 4, the energy functions generally depend on terms
that are nonlinear with respect to L1 and L2. Examples include the special-case energy functions for stacked pairs
and bulge loops, as well as length-dependent asymmetry and size penalties for other interior loops. We term these
interior loops inextensible because the free energy for a larger loop cannot in general be calculated using the value
from a smaller loop. For a given subsequence [i, j], there are only O(N) inextensible interior loops (because of the
constant upper bound on L1 or L2) so they do not contribute to the O(N4) complexity.

The remaining interior loops in which L1 ≥ 4 and L2 ≥ 4 are referred to as extensible interior loops because the
free energy of a larger loop can be calculated by extending the calculation from a smaller interior loop. For a given
subsequence [i, j], there are O(N2) extensible interior loops so these are the cases we must deal with efficiently to
reduce the time complexity from O(N4) to O(N4). For extensible interior loops, (S28) gives:

∆Ginterior
i,d,e,j (φ) = ∆Ginteriorsize

L1+L2
+ ∆Ginteriorasymm

|L1−L2| + ∆Ginteriormm
j−1,j,i,i+1(φ) + ∆Ginteriormm

d−1,d,e,e+1(φ). (S49)

Here, the quantity ∆Ginteriorsize
L1+L2

is a sequence-independent free energy contribution due to the size of the interior
loop, s ≡ L1 + L2 (the sum of the two side lengths). The quantity ∆Ginteriorasymm

|L1−L2| is a sequence-independent free
energy contribution due to the asymmetry of the loop, |L1−L2| (the difference of the two side lengths). Finally, the
two terms ∆Ginteriormm

j−1,j,i,i+1(φ) and ∆Ginteriormm
d−1,d,e,e+1(φ) are sequence-dependent free energy contributions due to mismatch

stacking on the base pairs i · j and d · e, respectively.
Two key insights from (S49) allow us to use this functional form to reduce complexity.16 First, for every base pair

i · j, the mismatch term for that base pair is independent of the other quantities and can be factored out. Second,
for a given base pair d · e, an extensible loop bounded by i · j can be converted to an extensible loop bounded by
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i − 1 · j + 1 by updating ∆Ginteriorsize
s to ∆Ginteriorsize

s+2 and replacing ∆Ginteriormm
j−1,j,i,i+1(φ) with ∆Ginteriormm

j,j+1,i−1,i(φ). Thus,
we can cache the information specific to the base pair d · e for each given asymmetry the first time it is encountered
in an extensible interior loop and then modify only the size information each time it is encountered.

Equation S50 combines the above ideas into a subroutine for computing the interior loop contributions to
RbIntra(i, j, φ).

O(N3) InteriorIntra(i, j, φ) ≡

{⊕min(i+4,j−5)
d=i+1

⊕j−1
e=max(d+4,j−4)Q

b
d,e ⊗W (∆Ginterior

i,d,e,j (φ)), i+ 6 ≤ j
0, otherwise

⊕

{⊕min(i+4,j−9)
d=i+1

⊕j−5
e=d+4Q

b
d,e ⊗W (∆Ginterior

i,d,e,j (φ)), i+ 10 ≤ j
0, otherwise

⊕

{⊕j−5
d=i+5

⊕j−1
e=max(d+4,j−4)Q

b
d,e ⊗W (∆Ginterior

i,d,e,j (φ)), i+ 10 ≤ j
0, otherwise

⊕

{⊕j−i−6
s=8 Qxi,j,s ⊗W (∆Ginteriormm

j−1,j,i,i+1(φ)), i+ 14 ≤ j
0, otherwise

(S50)

The first three rows handle inextensible interior loops for three cases: 1) L1 < 4 and L2 < 4, 2) L1 < 4 and L2 ≥ 4,
3) L1 ≥ 4 and L2 < 4. In each case, the contribution of subsequence [d, e] is incorporated using a Qbd,e element
and the interior loop free energy, ∆Ginterior

i,d,e,j (φ), is evaluated as for the O(N4) intrastrand recursion. The fourth row
handles extensible interior loops (L1 ≥ 4 and L2 ≥ 4), by combining a previously computed Qxi,j,s element for each
loop size s with the terminal mismatch free energy, ∆Ginteriormm

j−1,j,i,i+1(φ), corresponding to closing base pair i · j. For all
four cases, the index limits reflect there steric requirement that there be at least 3 intervening bases between d and
e.

The RxIntra(i, j, s, φ) recursion fills in the three-dimensional tensor Qxi,j,s:

RxIntra(i, j, s, φ) ≡



C1 ⊕ C2 ⊕ C3, j − i > 15 and 10 ≤ s ≤ j − i− 6

C2 ⊕ C3, j − i > 14 and s = 9

C2, j − i > 13 and s = 8

C3, j − i = 14 and s = 9

0, otherwise

where C1 ≡ Qxi+1,j−1,s−2 ⊗W (∆Ginteriorsize
s −∆Ginteriorsize

s−2 )

C2 ≡ Qbi+5,j+3−s ⊗W (∆Ginteriorsize
s + ∆Ginteriorasymm

s−8 + ∆Ginteriormm
i+4,i+5,j+3−s,j+4−s(φ))

C3 ≡ Qbs+i−3,j−5 ⊗W (∆Ginteriorsize
s + ∆Ginteriorasymm

s−8 + ∆Ginteriormm
s+i−4,s+i−3,j−5,j−4(φ))

(S51)

The indices i and j refer to the closing base pair i · j while the index s refers to the size of the extensible loops
collected in Qxi,j,s. The contributions can be divided into two classes: previously encountered loops and new loops.
The previously encountered loops are incorporated by accessing the previously computed element Qxi+1,j−1,s−2 and
replacing ∆Ginteriorsize

s−2 with ∆Ginteriorsize
s (see term C1). This is the key operation that reduces the complexity

of the interior loop recursion to O(N) by capturing all previous loops in O(1). Note that the terminal mismatch
contribution of the closing base pair i · j is not incorporated in the Qx element, but is combined with Qx in (S50),
so there is never a need to replace one terminal mismatch contribution for another as the loop is extended. New
extensible loops that are first encountered for the indices i, j, s (elements that have exactly L1 = 4 or L2 = 4 or
both) are handled by C2 and C3. Note that the subexpressions C2 and C3 are coincident for L1 = L2 = 4 (s = 8).

Note that to calculate a new value Qxi,j,s for a subsequence of length l = j − i + 1, only elements of the form
Qxi+1,j−1,s−2 are accessed (for O(N) values of s; each value of l corresponds to a diagonal of the intrastrand block).
Therefore, we only need to store elements of Qx for subsequences of length l, l − 1, and l − 2 (corresponding to the
current diagonal and the two previous diagonals). In other words, only Qx values corresponding to 3 diagonals need
to exist in memory during the forward pass. In moving to the next diagonal l + 1, we can simply delete all Qxi,j,s
values for diagonal l−2 as they will not be accessed again. Hence, only O(N2) space is necessary to store the needed
elements of Qx. Naively storing all of Qxi,j,s would have needlessly increased the space complexity to O(N3).
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O(N3) interstrand interior loop recursion. Interior loop contributions for elements in interstrand blocks
are computed with O(N3) time complexity using the subroutine:

O(N3) InteriorInter(i, j, φ) ≡

{⊕min(i+4,m−1)
d=i+1

⊕j−1
e=max(n,j−4)Q

b
d,e ⊗W (∆Ginterior

i,d,e,j (φ)), i+ 1 < m and n < j

0, otherwise

⊕

{⊕min(i+4,m−1)
d=i+1

⊕j−5
e=nQ

b
d,e ⊗W (∆Ginterior

i,d,e,j (φ)), i+ 1 < m and n+ 4 < j

0, otherwise

⊕

{⊕m−1
d=i+5

⊕j−1
e=max(n,j−4)Q

b
d,e ⊗W (∆Ginterior

i,d,e,j (φ)), i+ 5 < m and n < j

0, otherwise

⊕

{⊕j−n+m−i−3
s=8 Qxi,j,s ⊗W (∆Ginteriormm

j−1,j,i,i+1(φ)), i+ 5 < m and n+ 4 < j

0, otherwise

where m = First(η)

n = Last(η)
(S52)

The approach is analogous to that of equation S50. Index limits are modified to ensure that d is on the same strand
as i and e is on the same strand as j, preventing exterior loop states (that are not treated in this interior loop
recursion) and disconnected states (that are not part of the complex ensemble).

The recursion RxInter(i, j, s, φ) is also closely related to equation S51:

RxInter(i, j, s, φ) ≡



C1 + C2 + C3, i+ 6 < m and n+ 5 < j and 10 ≤ s ≤ j − i+m− n− 3

C2 + C3, i+ 6 < m and n+ 5 < j and s = 9

C3, i+ 6 < m and n+ 5 = j and s = 9

C2, i+ 6 = m and n+ 5 ≤ j and s = 9

C2, i+ 6 ≤ m and n+ 5 ≤ j and s = 8

0, otherwise

where m = First(η)

n = Last(η)

C1 ≡ Qxi+1,j−1,s−2 ⊗W (∆Ginteriorsize
s −∆Ginteriorsize

s−2 )

C2 ≡ Qbi+5,j+3−s ⊗W (∆Ginteriorsize
s + ∆Ginteriorasymm

s−8 + ∆Ginteriormm
i+4,i+5,j+3−s,j+4−s(φ))

C3 ≡ Qbs+i−3,j−5 ⊗W (∆Ginteriorsize
s + ∆Ginteriorasymm

s−8 + ∆Ginteriormm
s+i−4,s+i−3,j−5,j−4(φ))

(S53)

The recursive component that extends previously encountered extensible loops is shown in C1. Newly encountered
extensible loops (elements that have exactly L1 = 4 or L2 = 4 or both) are handled by C2 and C3. Note that C2 and
C3 are coincident for L1 = L2 = 4 (s = 8). The conditional checks using m and n prevent exterior loop states (that
are not treated in this interior loop recursion) and disconnected states (that are not part of the complex ensemble).

The above recursions enable calculation of interior loop contributions for forward algorithms with O(N3) time
complexity and O(N2) space complexity. However, this approach is incompatible with backtracking algorithms as
the optimization of throwing away Qx values that are no longer needed during the forward sweep, implies that they
are also no longer available for backtracking after the forward sweep is complete. One option is to reconstruct the
Qx values during backtracking, but this incurs O(N3) time complexity and can lead to loss of precision for large
complex ensembles.18 Another option that we pursue here is to use a different iteration pattern through the O(N4)
interior loop recursions during backtracking. With this option, we exploit the fact that unlike forward algorithms
that evaluate recursive elements for all i and j in a forward sweep, backtracking algorithms evaluate only a subset
of all possible recursive elements. Hence, as discussed in Section S4.4, the worst-case time complexity can be kept
at O(N2) per structure for our backtracking algorithms.
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S2.5 Approximate dangle stacking without coaxial stacking (for backwards compati-
bility with NUPACK 3)

Previous versions of NUPACK algorithms did not support coaxial stacking and offered two approximate treatments
of dangle stacking (some-nupack3 and all-nupack3).2 For backwards compatibility, NUPACK 4.0 supports these
two options. A nucleotide in a multiloop or an exterior loop is eligible to dangle stack on an adjacent base pair that
is either 5′ or 3′ of the nucleotide. The NUPACK 4.0 model appropriately Boltzmann-weights these two competing
dangle stacking states. The NUPACK 3.2 model either: (1) took the MFE of these two dangle stacking states –
as if only the MFE dangle stack occurs at equilibrium (some-nupack3 option), or (2) summed the free energies of
the two dangle stacking states – as if both dangle stacking states were occurring at once (all-nupack3 option).
These approximate dangle treatments are implemented in the NUPACK 4.0 code base using modified versions of
RaIntra(i, j, φ) and RaInter(i, j, φ) for a ∈ {∅, s,m,ms}. In these approximate dangle treatments (some-nupack3 or
all-nupack3), if dangles stack on an adjacent base pair from both the 5′ and 3′ sides at once, both dangle free
energies are incorporated in lieu of incorporating a terminal mismatch free energy (equation (S55)).

S2.6 Recursions with coaxial and dangle stacking subensembles
Here, we describe RaIntra(i, j, φ) recursions for calculating the elements of intrastrand blocks and RaInter(i, j, φ)

recursions for calculating the elements of interstrand blocks for the complex ensemble, Γ
q
, including coaxial and

dangle stacking subensembles. For the previously defined exterior loop and multiloop recursions without coaxial
and dangle stacking (see Section S2.3), the elementary recursion entity was a terminal base pair (a base pair that
terminates a duplex to form a part of the exterior loop or multiloop). For example, a recursion might contain exactly
one terminal base pair, a 3′-most terminal base pair, or one or more terminal base pairs. Here, for exterior loop and
multiloop recursions with coaxial and dangle stacking, we make use of three new elementary recursion entities:

• Coaxial stacking state: two adjacent terminal base pairs that are coaxially stacked. Hence, a coaxial stacking
state involves exactly two terminal base pairs.

• Dangle stacking state: zero, one, or two unpaired nucleotides dangle stacking on an adjacent terminal base
pair. Hence, a dangle stacking state involves exactly one terminal base pair.

• Stacking state: a coaxial stacking state or a dangle stacking state (two adjacent terminal base pairs that are
coaxially stacked or zero, one, or two unpaired nucleotides dangle stacking on an adjacent terminal base pair).
Hence, a stacking state involves either two or one terminal base pairs.

For example, a recursion might contain exactly one stacking state, a 3′-most stacking state, or one or more stacking
states. Note that a terminal base pair without coaxial and dangle stacking corresponds to the subset of a dangle
stacking state where there are zero nucleotides dangle stacking, so the complex ensemble without coaxial and dangle
stacking is a subset of the complex ensemble with coaxial and dangle stacking.

To assist with examining the recursions with coaxial and dangle stacking, the intuition behind the name chosen
for each recursion, the nature of the ensemble treated by each recursion, and the dependencies between the different
recursions is summarized in Figure S13. To limit proliferation of new names and facilitate comparison to the non-
stacking recursions of Section S2.3 (that treat complex ensemble Γ without coaxial and dangle stacking), we re-use
the names of the non-stacking recursions but with updated recursion diagrams and recursion equations. Additionally,
we introduce new recursions as needed to treat the coaxial and dangle stacking states in ensemble Γ

q
.

A recursion Ra(i, j, φ) operates on subsequence [i : j] to calculate element i, j for either the unconstrained ensemble
a = ∅ or for one of several constrained ensembles a ∈ {s, cd, b, n, x,ms,mcs,mc,md,m}. Briefly, R∅(i, j, φ) treats
the unconstrained ensemble in an exterior loop context where i and j may or may not be paired. Rs(i, j, φ) serves
as an efficiency wrapper over the 3′-most stacking state in an exterior loop context to reduce the time complexity
from O(N4) to O(N3). Rcd(i, j, φ) treats a single stacking state (a coaxial stacking state or a dangle stacking state)
in an exterior loop context. Rb(i, j, φ) treats the constrained ensemble where i and j form base pair i · j in the
context of any loop type. Rx(i, j, φ) treats extensible interior loops to achieve O(N3) time complexity. Rms(i, j, φ)
serves as an efficiency wrapper over the 3′-most stacking state in a multiloop context (analogous to Rs in an exterior
loop context) to reduce the time complexity from O(N4) to O(N3). Rmcs(i, j, φ) serves as an efficiency wrapper
over the 3′-most coaxial stacking state in a multiloop context to reduce the time complexity from O(N4) to O(N3).
Rmc(i, j, φ) treats a single coaxial stacking state in a multiloop context. Rmd(i, j, φ) treats a single dangle stacking
state in a multiloop context. Rm(i, j, φ) treats one or more remaining stacking states in a multiloop context.

When combined, Rmc and Rmd constitute the multiloop equivalent to Rcd in an exterior loop context; they are
kept separate to allow proper treatment of a multiloop edge case. In the exterior loop context, the efficiency wrapper

28



Recursion Naming intuition Constraint Context

∅ unconstrained none exterior loop
s sum efficiency wrapper for 3′-most stacking state exterior loop
cd coaxial and dangle one stacking state (coaxial or dangle stacking state) exterior loop
b base-paired base pair between 5′-most and 3′-most bases of subsequence any loop
n nick nick between strands exterior loop
x extensible extensible interior loop interior loop

ms multiloop sum efficiency wrapper for 3′-most stacking state multiloop
mcs multiloop coaxial sum efficiency wrapper for 3′-most coaxial stacking state multiloop
mc multiloop coaxial one coaxial stacking state multiloop
md multiloop dangle one dangle stacking state multiloop
m multiloop one or more remaining stacking states multiloop

s

ms

md

b

m

x

∅

cd

mcs

mc

s

ms

md

b

m

∅

cd

mcs

mc

n

x

Intrastrand block Interstrand block

Figure S13: Nomenclature and connectivity for recursions with coaxial and dangle stacking. Top: Nomenclature. Bottom:
Dependencies between different recursion types for elements within an intrastrand block (left) or an interstrand block (right).

Rs wraps Rcd to treat coaxial and dangle stacking simultaneously. In the multiloop context, because of the edge
case, the efficiency wrapper Rmcs wraps Rmc (to treat coaxial stacking alone) and then the efficiency wrapper Rms
incorporates Rmcs in addition to wrapping Rmd (to treat dangle stacking alone). Hence, the efficiency wrapper Rms
(treating both coaxial and dangle stacking) is the multiloop equivalent to Rs in an exterior loop context.

S2.6.1 Summation over dangle stacking states

Recursions that incorporate dangle stacking use a standardized approach to sum (using the ⊕ operator) over the
subensemble of dangle stacking states on an adjacent terminal base pair. An example sum is depicted in the recursion
diagram of Figure S14a by the dotted line between unpaired bases adjacent to a solid line denoting paired bases. The
shading indicates explicit incorporation of a dangle free energy ∆Gdangle

i,i+k,j−l,j(φ) (different for each dangle stacking
state in the subensemble) and a terminal base pair free energy ∆Gterminalbp

i+k,j−l (φ) (dependent on the sequence of base
pair i+ k · j − l). The corresponding recursion equation of Figure S14b uses the indices k ∈ {0, 1} and l ∈ {0, 1} to
sum over the four dangle stacking states, which are illustrated in Figure S14c. For k = l = 0, there are no unpaired
bases dangle stacking on terminal base pair i ·j. For k = 1, l = 0, there is a 5′ dangle stack on terminal base pair i ·j.
For k = 0, l = 1, there is a 3′ dangle stack on terminal base pair i · j. For k = l = 1, there are both 5′ and 3′ dangle
stacks on terminal base pair i · j; this stacking state is referred to as a terminal mismatch. For clarity, recursion
equations incorporate the generic dangle free energy function ∆Gdangle

i,i+k,j−l,j(φ) which returns the appropriate free
energy for each of the four stacking states:

∆Gdangle
i,i+k,j−l,j(φ) =



0 k = 0, l = 0, no dangles

∆G5′dangle
i,i+1,j (φ) k = 1, l = 0, 5′ dangle

∆G3′dangle
i j−1,j (φ) k = 0, l = 1, 3′ dangle

∆Gterminalmm
i,i+1,j−1,j (φ) k = 1, l = 1, terminal mismatch

(S54)

29



i

j

i+k

j-l

b

exterior dangle

a

c

b Recursion equationRecursion diagram

Four possible dangle stacking states

i

i

i

i

i+1

i+1

j

j

j-1

j-1

j

j

Figure S14: (a) Example recursion diagram taken from the definition of Rcd
Intra(i, j, φ). Note that the considered base pair

is always between bases i+ k and j − l. (b) Equivalent recursion expression which specifies the specific free energy parameter
contributions. (c) Decomposition of the sum in (b) into terms from each of 4 specific dangle states.

Terminal mismatch free energies ∆Gterminalmm
i,i+1,j−1,j (φ) have been published for RNA3,5 and are included in the rna95

and rna06 parameter sets. However, terminal mismatch parameters for DNA are not public.12 As a result, the
dna04 parameter set assigns the terminal mismatch free energy to be the sum of the published 5′ and 3′ dangle free
energies:9,12

∆Gterminalmm
i,i+1,j−1,j (φ) ≡ ∆G5′ dangle

i,i+1,j (φ) + ∆G3′ dangle
i j−1,j (φ). (S55)

S2.6.2 Intrastrand dynamic programming recursions with coaxial and dangle stacking

Here, we consider recursions for calculating the entries in a triangular intrastrand block with coaxial and dangle
stacking. By definition, there are no nicks between strands in intrastrand recursions since intrastrand blocks involve
base-pairing within a single strand.

R∅
Intra recursion with coaxial and dangle stacking. We begin with the recursion R∅

Intra(i, j, φ) with the
diagram and equation shown in Figure S24. R∅

Intra(i, j, φ) operates on the unconstrained ensemble for subsequence
[i, j] in an exterior loop context where i and j may or may not be paired (depicted with a dashed line between i
and j in the recursion diagram). This recursion distinguishes two cases that are combined using ⊕ in the recursion
equation:

• No stacking states: the empty case in an exterior loop context where there are no stacking states in subsequence
[i, j] (depicted by the absence of a straight solid line in the recursion diagram). The exterior loop shading in
the recursion diagram represents the recursion energy ∆Gexterior

i,j (φ) = 0 corresponding to the zero reference
state for an exterior loop with no coaxial stacking states or dangle stacking states (and hence, no terminal base
pairs). The corresponding contribution to the recursion equation is W (0) = 1.

• At least one stacking state: the non-empty case in an exterior loop context where there is at least one stacking
state (i.e., two adjacent terminal base pairs coaxially stacking, or zero, one, or two unpaired nucleotides dangle
stacking on an adjacent terminal base pair) in subsequence [i, j]. The 3′-most stacking state begins at d + 1
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j

exterior loop

∅

s

i
d

j

∅

R∅
Intra(i, j, φ) ≡ 1⊕


Qsi,j ⊕ dot

(
Q∅
i,d
, Qs

d+1,j

)
, j − i > 4

Qsi,j , j − i = 4

0, otherwise

where d ≡ [i : j − 5].

(S56)

Figure S15: R∅
Intra recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

and ends in the interval [d+2, j] (depicted using a dashed line in the recursion diagram). The contributions for
subsequence [d + 1, j] are incorporated using a Qsd+1,j element. Contributions for the remaining subsequence
[i, d] are incorporated by a Q∅

i,d element. The shading denotes the recursion energy 0 corresponding to the zero
reference state in an exterior loop context. The edge case where the index d + 1 = i is displayed explicitly to
indicate that no Q∅ element is accessed in this case. The index limits in the recursion equation reflect the fact
that steric effects prevent a hairpin loop with fewer than 3 unpaired nucleotides (hence, i · j cannot form if
j − i < 4).

Note that using the dot notation (Algorithm S1) and index range notation (S36) to denote vector operations, we
have the equivalence:

dot
(
Q∅
i,d
, Qs

d+1,j

)
≡

j−5∑
d=i

Q∅
i,d ⊗Q

s
d+1,j , j − i > 4.

where d ≡ [i : j − 5].

We can also recognize that in terms of matrix elements, the dot product

dot
(
Q∅
i,d
, Qs

d+1,j

)
(S57)

is between the element range d of row i (depicted as brown elements in Figure S1b) and the element range d+1 of
column j (gray elements), yielding element i, j (purple element).

=

i

j

i

j

d

cd

s

exterior loop

RsIntra(i, j, φ) ≡

{
dot

(
Qcd
i,d

)
, j − i ≥ 4

0, otherwise

where d ≡ [i+ 4 : j].

Figure S16: RsIntra recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.
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RsIntra recursion with coaxial and dangle stacking. The R∅
Intra(i, j, φ) recursion references Qs elements

that are computed using the RsIntra recursion displayed in Figure S16. RsIntra(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] in an exterior loop context containing one stacking state starting at i and ending
in the interval [i + 1, j] (depicted as a dashed line between i and j). The contribution for the stacking state in
subsequence [i, d] is incorporated using a Qcdi,d element. Shading denotes no recursion energy as stacking energies
and terminal base pair penalties are handled in Rcd. The index limits in the recursion equation reflect the steric
requirement that there be at least 3 intervening bases between i and d (because the Rcd recursion incorporates a
minimum of one terminal base pair in subsequence [i : d]). Note that the Rs recursion serves as an efficiency wrapper
of the Rcd recursion (here, representing the 3′-most stacking state in an exterior loop context) to reduce the time
complexity of the R∅ recursion from O(N4) to O(N3). This time complexity reduction is achieved by defining the
3′-most stacking state using Rcd within the Rs efficiency wrapper rather than directly using the Rcd recursion within
the R∅ recursion, so as to avoid introducing a fourth independent index into the R∅ recursion.

=

i

j

i

j

i+k

j-l

i

j

dcd b

b

b

exterior coax exterior dangle

RcdIntra(i, j, φ) ≡

{
dot

(
Qb
i,d
, Qb

d+1,j
,W (∆Gcoax

i,d,j
(φ) + ∆Gterminalbp

i,d
(φ) + ∆Gterminalbp

d+1,j
(φ))

)
, j − i ≥ 9

0, otherwise

⊕
⊕

k∈{0,1}
l∈{0,1}

{
Qbi+k,j−l ⊗W (∆Gdangle

i,i+k,j−l,j(φ) + ∆Gterminalbp
i+k,j−l (φ)), (j − l)− (i+ k) ≥ 4

0, otherwise

where d ≡ [i+ 4 : j − 5]

Figure S17: RcdIntra recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RcdIntra recursion with coaxial and dangle stacking. The RsIntra(i, j, φ) recursion references Qcd elements
that are computed using the RcdIntra recursion displayed in Figure S17. RcdIntra(i, j, φ) treats a single stacking state in
an exterior loop context, corresponding to either of two cases that are combined using ⊕ in the recursion equation:

• Coaxial stacking state: two adjacent terminal base pairs (i · d and d+ 1 · j) coaxially stack on each other. The
contributions of subsequences [i, d] and [d + 1, j] are incorporated using Qbi,d and Qbd+1,j elements. Shading
corresponds to two kinds of recursion energy: 1) the sequence-dependent penalties for two terminal base pairs
in an exterior loop context, ∆Gterminalbp

i,d (φ) and ∆Gterminalbp
d+1,j (φ) (dependent on the sequence of base pairs i · d

and d+ 1 · j), 2) the sequence-dependent coaxial stacking free energy ∆Gcoax
i,d,j (φ) (dependent on the sequences

of base pairs i · d and d+ 1 · j). Note that ∆Gcoax
i,d,j (φ) requires only 3 indices because d+ 1 is implied by d. The

index limits in the recursion equation reflect the steric requirement that there be at least 3 intervening bases
between i and d and at least 3 intervening bases between d+ 1 and j.

• Dangle stacking state: zero, one, or two unpaired nucleotides dangle stack on an adjacent terminal base pair
(i+k · j− l). The recursion diagram summarizes four dangle stacking states (depicted as a dotted line between
i and j) corresponding to no dangles, 5′ dangle, 3′ dangle, or terminal mismatch (see Figure S14 for details).
The contribution of subsequence [i + k, j − l] is incorporated using Qbi+k,j−l element. Shading corresponds to
two recursion energies: 1) the sequence-dependent penalty for a terminal base pair in an exterior loop context,
∆Gterminalbp

i+k,j−l (φ) (dependent on the sequence of base pair i+k ·j− l), 2) the sequence-dependent dangle stacking
free energy ∆Gdangle

i,i+k,j−l,j(φ) which takes on one of four values corresponding to the four dangle stacking states
(see Figure S14). The index limits in the recursion equation reflect the steric requirement that there be at least
3 intervening bases between i+ k and j − l.
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RbIntra recursion with coaxial and dangle stacking. The RcdIntra(i, j, φ) recursion references Qb elements
that are computed using the RbIntra recursion displayed in Figure S18. RbIntra(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] with i and j base paired to each other (depicted with a solid line between i and j).
The recursion distinguishes four cases that are combined using ⊕ in the recursion equation:

• Hairpin loop: the hairpin loop closed by the single base pair i · j (depicted by a straight solid line). The
recursion incorporates the recursion energy ∆Ghairpin

i,j (φ). This treatment of hairpin loops is the same as for
the non-stacking recursions. The index limits in the recursion equation reflect the fact that steric constraints
prevent a hairpin loop with fewer than 3 unpaired nucleotides (hence, i · j cannot form if j − i < 4).

• Interior loop: the interior loop closed by the two terminal base pairs i · j and d · e (depicted by straight solid
lines). Calculation of the interior loop contributions using an O(N4) or O(N3) version of the InteriorIntra
recursion is described in Section S2.4. This treatment of interior loops is the same as for the non-stacking
recursions. The index limits in the recursion equation reflect the fact that steric effects prevent an interior loop
with j − i < 6 due to the steric requirement that there be at least 3 intervening bases between d and e.

• Multiloop with coaxial stacking on terminal base pair j · i: the multiloop closed by three or more terminal
base pairs with coaxial stacking on base pair j · i. This case corresponds to the two recursion diagrams on
the second row of Figure S18 and is treated by the subroutine MultiCoaxIntra (recursion equation S58).
The recursion on the left treats the case where terminal base pair j · i forms a coaxial stack with adjacent
terminal base pair d + 1 · j − 1, depicted as a dotted straight line between i and d + 1. The contribution of

=
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RbIntra(i, j, φ) ≡

{
C1, Complementary(φi, φj)

0, otherwise

where C1 ≡

{
W (∆Ghairpin

i,j (φ)), j − i ≥ 4

0, otherwise

⊕

{
InteriorIntra(i, j, φ), j − 1 ≥ 6

0, otherwise

⊕

{
MultiCoaxIntra(i, j, φ)⊕MultiDangleIntra(i, j, φ), j − i ≥ 11

0, otherwise

Figure S18: RbIntra recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.
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subsequence [i+ 1, d] is incorporated by element Qbi+1,d. The contributions of one or more remaining stacking
states in subsequence [i+1, d] are incorporated by element Qmi+1,d. The pale green shading corresponds to three
multiloop recursion energies: 1) the penalty for formation of a multiloop ∆Gmulti

init , 2) the sequence-independent
penalties for two terminal base pairs in a multiloop, ∆Gmulti

bp (corresponding to base pairs d + 1 · j − 1 and
j · i), 3) the sequence-dependent penalties for two terminal base pairs in a multiloop context, ∆Gterminalbp

d+1,j−1 (φ)

and ∆Gterminalbp
j,i (φ) (note that the indices are ordered j then i to reflect 5′ to 3′ from the perspective of the

multiloop). The dark green shading corresponds to the sequence-dependent coaxial stacking recursion energy
∆Gcoax

d+1,j−1,i(φ) (dependent on the sequences of base pairs d + 1 · j − 1 and j · i). Note that ∆Gcoax
d+1,j−1,i(φ)

requires only 3 indices because j is implied by j−1. The recursion on the right treats the analogous case where
terminal base pair j · i forms a coaxial stack with adjacent terminal base pair i + 1 · d. The index limits in
the recursion equation reflect the fact that steric effects prevent a multiloop with j − i < 11 due to the steric
requirement that there be at least 3 intervening bases between i + 1 and d (which must contain one or more
stacking states and hence one or more terminal base pairs) and at least 3 intervening bases between d+ 1 and
j − 1.

• Multiloop with dangle stacking on terminal base pair j · i: the multiloop closed by three or more terminal base
pairs with dangle stacking on terminal base pair j · i. This case corresponds to the two recursion diagrams on
the third row of Figure S18 and is treated by the subroutine MultiDangleIntra (recursion equation S59).

– Base case with two or more additional stacking states. The recursion on the left treats the case where
there is a dangle stacking state involving the terminal base pair j · i (depicted as a dotted straight line
between i + k and j − l) and a 3′-most coaxial stacking state in subsequence [d + 1, j − l − 1] (depicted
as a dashed line between d + 1 and j − l − 1). The contributions for subsequence [d + 1, j − l − 1] are
incorporated using a Qmsd+1,j−l−1 element. The pale green shading corresponds to four multiloop recursion
energies: 1) the penalty for formation of a multiloop ∆Gmulti

init , 2) the sequence-independent penalty for one
terminal base pair in a multiloop, ∆Gmulti

bp (corresponding to base pair j · i), 3) the penalty per unpaired
nucleotide in a multiloop ∆Gmulti

nt (a total of k + l dangling nucleotides; as a result this term is zeroed
out when k = l = 0). 4) the sequence-dependent penalty for a terminal base pair in a multiloop context,
∆Gterminalbp

j,i (φ) (note that the indices are ordered j then i to reflect 5′ to 3′ from the perspective of the
multiloop). The medium green shading corresponds to the sequence-dependent dangle stacking recursion
energy ∆Gdangle

j−l,j,i,i+k(φ). Note that k, l ∈ {0, 1} determine whether unpaired nucleotides dangle stack on
the adjacent terminal base pair j · i in a multiloop context. The situation is analogous to that in an
exterior loop context with RcdIntra(i, j, φ) (as detailed in Figure S14) with the only difference being that
in the exterior loop context, i + k and j − l index the paired bases and in the multiloop context i + k
and j − l index the unpaired bases. The index limits in the recursion equation reflect the fact that steric
effects prevent a multiloop with (j − l)− (i+ k) < 11 due to the steric requirement that there be at least
3 intervening bases between i + k + 1 and d (which must contain one or more stacking states and hence
one or more terminal base pairs) and at least 3 intervening bases between d+ 1 and j− l− 1 (which must
contain a 3′-most stacking state and hence one or two terminal base pairs).

– Edge case with one additional coaxial stacking state. The recursion on the right treats the case where
there is a dangle stacking state involving the terminal base pair j · i (depicted as a dotted straight line
between i + k and j − l) and a single coaxial stacking state in subsequence [e, j − l − 1] (depicted as a
dashed line between e and j − l − 1). The contributions for subsequence [e, j − l − 1] are incorporated
using a Qmcse,j−l−1 element. The pale green shading corresponds to four multiloop recursion energies: 1)
the penalty for formation of a multiloop ∆Gmulti

init , 2) the sequence-independent penalty for one terminal
base pair in a multiloop, ∆Gmulti

bp (corresponding to base pair j · i), 3) the penalty per unpaired nucleotide
in a multiloop ∆Gmulti

nt (k + l dangling nucleotides plus the unpaired nucleotides k + l + 1, . . . , e − 1; as
a result this term is zeroed out when k = l = 0 and e = i + 1). 4) the sequence-dependent penalty for
a terminal base pair in a multiloop context, ∆Gterminalbp

j,i (φ) (note that the indices are ordered j then i
to reflect 5′ to 3′ from the perspective of the multiloop). The medium green shading corresponds to the
sequence-dependent dangle stacking recursion energy ∆Gdangle

j−l,j,i,i+k(φ). The index limits in the recursion
equation reflect the fact that steric effects prevent a multiloop with (j − l) − (i + k) < 11 due to the
steric requirement that there be at least 8 intervening bases between e and j − l− 1 (which must contain
a coaxial stacking state and hence two adjacent terminal base pairs). Note that this edge case covers
the scenario where there are exactly three terminal base pairs and the two terminal base pairs that are
not j · i are coaxially stacked. That situation is not covered by the base case because for that recursion,
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a multiloop with 3 terminal base pairs would have one terminal base pair in the Qms element, and one
terminal base pair in the Qm element (hence, those two terminal base pairs cannot coaxially stack since
they are in different recursions).

MultiCoaxIntra(i, j, φ) ≡ C1 ⊗W (∆Gmulti
init + 2∆Gmulti

bp + ∆Gterminalbp
j,i (φ))

where C1 ≡ dot
(
Qb
i+1,d

, Qm
d+1,j−1

,W (∆Gcoax
j,i,d

(φ) + ∆Gterminalbp
i+1,d

(φ))
)

⊕ dot
(
Qm
i+1,d

, Qb
d+1,j−1

,W (∆Gcoax
d+1,j−1,i

(φ) + ∆Gterminalbp
d+1,j−1

(φ))
)

d ≡ [i+ 5 : j − 6]

(S58)

MultiDangleIntra(i, j, φ) ≡
⊕

k∈{0,1}
l∈{0,1}

{
C1 ⊕ C2, (j − l)− (i+ k) ≥ 11

0, otherwise

where C1 ≡ dot
(
Qm
i+k+1,d

, Qms
d+1,j−l−1

)
⊗W (∆Gdangle

j−l,j,i,i+k(φ) + ∆Gmulti
init + ∆Gmulti

bp + (k + l)∆Gmulti
nt + ∆Gterminalbp

j,i (φ))

C2 ≡ dot
(
Qmcse,j−l−1

)
⊗W (∆Gdangle

j−l,j,i,i+k(φ) + ∆Gmulti
init + ∆Gmulti

bp + nnt∆G
multi
nt + ∆Gterminalbp

j,i (φ))

d ≡ [i+ k + 5 : j − l − 6], e ≡ [i+ k + 1 : j − l − 10], nnt ≡ [k + l : j − i− 11]

(S59)

RmsIntra recursion with coaxial and dangle stacking. The RbIntra(i, j, φ) recursion references Qms elements
that are computed using the RmsIntra recursion shown in Figure S19. RmsIntra(i, j, φ) operates on a conditional ensemble
for subsequence [i, j] in a multiloop context containing one stacking state starting at i and ending in the interval
[i+ 1, j] (depicted as a dashed line between i and j). There are two cases that are combined using ⊕ in the recursion
equation:

• Coaxial stacking state: The contribution for the coaxial stacking state in subsequence [i, j] is calculated using
a Qmcsi,j element.

• Dangle stacking state: The contribution for the dangle stacking state in subsequence [i, d] is incorporated using
a Qmdi,d element. Shading corresponds to the recursion energy penalty per unpaired nucleotide in a multiloop,

i

j

= mcs

md

ms

i i

j

d

j

multiloop

RmsIntra(i, j, φ) ≡ Qmcsi,j ⊕

{
dot

(
Qmd
i,d
,W (nnt∆G

multi
nt )

)
, j − i ≥ 4

0, otherwise

where d ≡ [i+ 4 : j], nnt ≡ [0 : j − i− 4]
r

Figure S19: RmsIntra recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.
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∆Gmulti
nt (nucleotides d+ 1, . . . , j for a total of j− d unpaired nucleotides; as a result, this term is zeroed out in

the edge case where d = j). Note that in the dot product the range multiplying ∆Gmulti
nt runs in reverse order

because the number of unpaired nucleotides, j − d, decreases in size as d increases in size.

Note that Rms directly incorporates the Rmcs recursion which serves as an efficiency wrapper of the Rmc recursion,
and hence, Rms is an efficiency wrapper of Rmc (the 3′-most coaxial stacking state in a multiloop context). Note
also that Rms is an efficiency wrapper of the Rmd recursion (the 3′-most dangle stacking state in a multiloop
context). Taken together Rmc and Rmd represent the 3′-most stacking state in a multiloop context, analogous to
Rcd representing the 3′-most stacking state (coaxial or dangle) in an exterior loop context. The reason that Rmc
(coaxial stacking states) and Rmd (dangle stacking states) are calculated and stored separately in a multiloop context
is that coaxial-only information (stored in element Qmcs) is needed for the previously described multiloop edge case
(right recursion diagram in the third row of Figure S18). As a result, coaxial-only information is calculated using the
efficiency wrapper Rmcs for use in that edge case, and then coaxial-only and dangle-only information are combined
by the Rms efficiency wrapper (which is fully analogous to the Rs efficiency wrapper in the exterior loop context).
With this approach, the operations spent calculating coaxial stacking information for Qmcs elements are not repeated
when calculating both coaxial and dangle stacking for Qms elements.

mcs

mc

=

i

j

i

j

d

multiloop

RmcsIntra(i, j, φ) ≡

{
dot

(
Qmc
i,d
,W (nnt∆G

multi
nt )

)
, j − i ≥ 9

0, otherwise

where d ≡ [i+ 9 : j], nnt ≡ [0 : j − i− 9]
r

Figure S20: RmcsIntra recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmcsIntra recursion with coaxial and dangle stacking. The RmsIntra(i, j, φ) recursion references Qmcs elements
that are computed using the RmcsIntra recursion displayed in Figure S20. RmcsIntra(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] in a multiloop context containing one coaxial stacking state starting at i and ending
in the interval [i+ 1, j] (depicted as a dashed line between i and j). The contribution for the coaxial stacking state
in subsequence [i, d] is incorporated using a Qmci,d element. Shading denotes the penalty per unpaired nucleotide in a
multiloop ∆Gmulti

nt (the unpaired nucleotides d+ 1, . . . , j; as a result this term is zeroed out when d = j). Note that
in the dot product the range multiplying ∆Gmulti

nt runs in reverse order because the number of unpaired nucleotides,
j − d, decreases in size as d increases in size. Note that the Rmcs recursion serves as an efficiency wrapper of the
Rmc recursion (here, representing the 3′-most coaxial stacking state in a multiloop context). The index limits in the
recursion equation reflect the steric requirement that there be at least 8 intervening bases between i and d (because
the Rmc recursion incorporates a coaxial stack involving two adjacent terminal base pairs such that i and d are paired
to intervening adjacent bases).

RmcIntra recursion with coaxial and dangle stacking. The RmcsIntra(i, j, φ) recursion references Qmc elements
that are computed using the RmcIntra recursion displayed in Figure S21. This recursion treats a single coaxial stacking
state in a multiloop context (depicted as a straight line between i and j that is solid at both ends and dashed in the
middle to indicate that i and j are both base-paired but not to each other). Two adjacent terminal base pairs (i · d
and d + 1 · j) coaxially stack on each other. The contributions of subsequences [i, d] and [d + 1, j] are incorporated
using Qbi,d and Q

b
d+1,j elements. Shading corresponds to three kinds of recursion energy: 1) the sequence-independent

penalties for two terminal base pairs in a multiloop, ∆Gmulti
bp (corresponding to base pairs i · d and d+ 1 · j), 2) the

sequence-dependent penalties for two terminal base pairs in a multiloop context, ∆Gterminalbp
i,d (φ) and ∆Gterminalbp

d+1,j (φ)
(dependent on the sequence of base pairs i · d and d+ 1 · j), 3) the sequence-dependent coaxial stacking free energy
∆Gcoax

i,d,j (φ) (dependent on the sequences of base pairs i · d and d+ 1 · j). Note that ∆Gcoax
i,d,j (φ) requires only 3 indices
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RmcIntra(i, j, φ) ≡

{
C1 ⊗W (2∆Gmulti

bp ), j − i ≥ 9

0, otherwise

where C1 ≡ dot
(
Qb
i,d
, Qb

d+1,j
,W (∆Gcoax

i,d,j
(φ) + ∆Gterminalbp

i,d
(φ) + ∆Gterminalbp

d+1,j
(φ))

)
d ≡ [i+ 4 : j − 5]

Figure S21: RmcIntra recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

because d+ 1 is implied by d. The index limits in the recursion equation reflect the steric requirement that there be
at least 3 intervening bases between i and d and at least 3 intervening bases between d+ 1 and j.

RmdIntra recursion with coaxial and dangle stacking. The RmsIntra(i, j, φ) recursion references Qmd elements
that are computed using the RmdIntra recursion displayed in Figure S22. This recursion treats a single dangle stacking
state (depicted as a dashed line between i and j) in a multiloop context with either zero, one, or two unpaired
nucleotides dangle stacking on an adjacent terminal base pair (i+ k · j − l). The recursion diagram represents these
four alternative dangle stacking states corresponding to no dangles, 5′ dangle, 3′ dangle, or terminal mismatch (see
Figure S14 for details). The contribution of subsequence [i+k, j−l] is incorporated using a Qbi+k,j−l element. Shading
corresponds to four recursion energies: 1) the sequence-independent penalty for one terminal base pair in a multiloop,
∆Gmulti

bp (corresponding to base pair j − l · i+ k), 2) the penalty per unpaired nucleotide in a multiloop ∆Gmulti
nt (a

total of k + l dangling nucleotides; as a result this term is zeroed out when k = l = 0). 3) the sequence-dependent
penalty for a terminal base pair in a multiloop loop context, ∆Gterminalbp

i+k,j−l (φ) (dependent on the sequence of base
pair i+ k · j − l), 4) the sequence-dependent dangle stacking free energy ∆Gdangle

i,i+k,j−l,j(φ) which takes on one of four
values corresponding to the four dangle stacking states (see Figure S14). The index limits in the recursion equation
reflect the steric requirement that there be at least 3 intervening bases between i+ k and j − l.
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j

i+k

j-l

bmd

multi dangle

RmdIntra(i, j, φ) ≡
⊕

k∈{0,1}
l∈{0,1}

{
C1 (j − l)− (i+ k) ≥ 4

0, otherwise

where C1 ≡ Qbi+k,j−l ⊗W (∆Gdangle
i,i+k,j−l,j(φ) + ∆Gmulti

bp + (k + l)∆Gmulti
nt + ∆Gterminalbp

i+k,j−l (φ))

Figure S22: RmdIntra recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmIntra recursion with coaxial and dangle stacking. The RbIntra(i, j, φ) recursion also references Qm
elements that are computed using the RmIntra recursion shown in Figure S23. RmIntra(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] in a multiloop context where i and j may or may not be paired (depicted with a
dashed line between i and j in the recursion diagram) and where there is at least one stacking state. This recursion
distinguishes two cases that are combined using ⊕ in the recursion equation:
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RmIntra(i, j, φ) ≡

{
dot

(
Qms
d,j

),W (nnt∆G
multi
nt )

)
, j − i ≥ 4

0, otherwise

⊕

{
dot

(
Qmi,e, Q

ms
e+1,j

)
, j − i ≥ 9

0, otherwise

where d ≡ [i : j − 4], nnt ≡ [0 : j − i− 4], e ≡ [i+ 4 : j − 5]

Figure S23: RmIntra recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

• One stacking state: the case where there is exactly one stacking state in subsequence [i, j] in a multiloop
context. This stacking state starts at d and ends in the interval [d + 1, j] (depicted by a straight dashed line
between d and j); the contribution of subsequence [d, j] is incorporated by element Qmsd,j . Shading corresponds
to the recursion energy, ∆Gmulti

nt , representing the penalty per unpaired nucleotide in a multiloop (nucleotides
i, . . . , d − 1 for a total of d − i unpaired nucleotides; as a result, this term is zeroed out in the edge case
where d = i). The index limits in the recursion equation reflect the steric requirement that there be at least
3 intervening bases between d and j (because the Rms incorporates a minimum of one terminal base pair in
subsequence [d : j]).

• More than one stacking state: the case where there are two or more stacking states in subsequence [i, j] in
a multiloop context. The 3′-most stacking state starts at e + 1 and ends in the interval [e + 2, j] (depicted
by a straight dashed line between e + 1 and j); the contribution of subsequence [e + 1, j] is incorporated by
element Qmse+1,j . There are one or more additional stacking states in the interval [i, e] (the straight dashed
line denotes that i and e may or may not be paired); the contribution of subsequence [i, e] is incorporated by
element Qmi,e. The shading does not represent any recursion energies as all multiloop contributions are handled
by other recursions: 1) there are no terminal base pairs in a multiloop context explicitly defined in this case,
2) there are no unpaired bases in a multiloop context explicitly defined in this case. The index limits in the
recursion equation reflect the steric requirement that there be at least 3 intervening bases between i and e and
at least 3 intervening bases between e+ 1 and j.

S2.6.3 Interstrand dynamic programming recursions with coaxial and dangle stacking

Here, we consider recursions for calculating the entries in a rectangular interstrand block with coaxial and dangle
stacking. By definition, interstrand blocks involve 2 or more strands, and hence one or more nicks between strands.
For a given interstrand block, η stores an array of nick indices between strands within the block, with each nick
denoted by the index of the nucleotide following the nick. If m ≡ First(η) and n ≡ Last(η), then for subsequence
[i, j] corresponding to element i, j in the interstrand block, we have by definition i < m (nucleotide i is on the first
strand in the block) and j ≥ n (nucleotide j is on the last strand in the block).

R∅
Inter recursion with coaxial and dangle stacking. We begin with R∅

Inter(i, j, φ) shown in Figure S24.
R∅

Inter(i, j, φ) operates on the unconstrained ensemble for subsequence [i, j] with i and j on different strands in an
exterior loop context where i and j may or may not be paired (depicted with a dashed line between i and j in the
recursion diagram). Unlike R∅

Intra(i, j, φ), there is no empty case because this would correspond to a disconnected
structure (which is not in the ensemble) due to the presence of one or more nicks between i and j. Hence, the only
case is at least one stacking state: the non-empty case in an exterior loop context where there is at least one stacking
state (i.e., two adjacent terminal base pairs coaxially stacked or zero, one, or two unpaired nucleotides dangle stacking
on an adjacent terminal base pair) in subsequence [i, j]. The 3′-most stacking state begins at d+ 1 and ends in the
interval [d+2, j] (depicted using a dashed line in the recursion diagram). The contributions for subsequence [d+1, j]
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R∅
Inter(i, j, φ) ≡ Qsi,j ⊕

⊕
d∈Valid(i,max(j−4,n),η)

dot
(
Q∅
i,d
, Qs

d+1,j

)

where n = Last(η)

Figure S24: R∅
Inter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

are incorporated using a Qsd+1,j element. Contributions for the remaining subsequence [i, d] are incorporated by a
Q∅
i,d element. The shading denotes the recursion energy 0 corresponding to the zero reference state in an exterior

loop context. The edge case where the index d + 1 = i is displayed explicitly to indicate that no Q∅ element is
accessed in this case.

Because there are nicks involved in calculating the elements of interstrand blocks, care must be taken to ensure
that no disconnected secondary structures are incorporated in the complex ensemble. For a given interstrand block
with nick indices η, the function Valid returns the set of valid vectorization ranges {d1, d2, . . . }, such that for each
valid vectorization range, d and d+ 1 are on the same strand (i.e., such that d and d+ 1 do not take on values that
would place a nick between them). As is evident from the recursion diagram of Figure S8, if d and d + 1 were to
take on values that placed a nick between them, a disconnected structure would result. There is at most one valid
vectorization range per strand, and there may be none for a strand or subsequence that is too short. For each valid
vectorization range d, the resulting dot product

dot
(
Q∅
i,d
, Qs

d+1,j

)
(S60)

is between the range d of row i (depicted as brown elements in Figure S1c) and the range d + 1 of column j
(gray elements), yielding element i, j (purple element). Note that Figure S1c depicts two valid vectorization ranges
(leading to two dot products that are summed to calculate the purple element); the gap of one element between
the two vectorization ranges corresponds to exclusion of the value d = 3 which would have placed a nick between
nucleotides d and d+ 1 (note that η = 4 for this interstrand block).

Note that for calculating element i, j, the subsequence submitted to Valid ranges from i to max(j− 4, n), where
n ≡ Last(η). This yields two cases:

• If max(j − 4, n) = j − 4: there is no nick between nucleotide j − 4 and j (since n ≡ Last(η) < j − 4), so there
must be at least 3 intervening bases between d+1 and j because steric effects prevent a hairpin loop with fewer
than 3 unpaired nucleotides. In this case, each incorporated element Qsd+1,j results from an RsIntra(d+ 1, j, φ)
recursion for an intrastrand block.

• If max(j − 4, n) = n: there is a nick between nucleotide j − 4 and j (since n ≥ j − 4), so d+ 1 can be as large
as n − 1 and still pair to any nucleotide in subsequence [n, j]. In this case, each incorporated element Qsd+1,j

results from an RsInter(d+ 1, j, φ) recursion for an interstrand block.

RsInter recursion with coaxial and dangle stacking. The R∅
Intra(i, j, φ) recursion references Qsd+1,j ele-

ments that are computed using either the RsIntra recursion of Figure S16 (if d+ 1 and j are on the same strand) or
the RsInter recursion of Figure S25 (if d + 1 and j are on different strands). Recursion RsInter(i, j, φ) operates on a
conditional ensemble for subsequence [i, j] with i and j on different strands in an exterior loop context containing
one stacking state starting at i and ending in the interval [i + 1, j] (depicted as a dashed line between i and j).
The contribution for the stacking state in subsequence [i, d] is incorporated using a Qcdi,d element. Shading denotes
no recursion energy as stacking energies and terminal base pair penalties are handled in Rcd. The index d must
always be on the last strand (i.e., d ≥ Last(η)) to ensure there are no strand breaks in the subsequence [d, j], which
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where d ≡ [Last(η) : j]

Figure S25: RsInter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

would correspond to a disconnected structure. Note that the Rs recursion serves as an efficiency wrapper of the Rcd
recursion (here, representing the 3′-most stacking state in an exterior loop context) to reduce the time complexity
of the R∅ recursion from O(N4) to O(N3). This time complexity reduction is achieved by defining the 3′-most
stacking state using Rcd within the Rs efficiency wrapper rather than directly using the Rcd recursion within the R∅

recursion, so as to avoid introducing a fourth independent index into the R∅ recursion.

RcdInter recursion with coaxial and dangle stacking. The RsInter(i, j, φ) recursion references Qcd elements
that are computed using either the RcdIntra recursion of Figure S17 (if i and d are on the same strand) or the RcdInter
recursion of Figure S26 (if i and d are on different strands). Recursion RcdInter(i, j, φ) treats a single stacking state in
an exterior loop context, corresponding to either of two cases that are combined using ⊕ in the recursion equation:

• Coaxial stacking state: two adjacent terminal base pairs (i · d and d+ 1 · j) coaxially stack on each other. The
contributions of subsequences [i, d] and [d + 1, j] are incorporated using Qbi,d and Qbd+1,j elements. Shading
corresponds to two kinds of recursion energy: 1) the sequence-dependent penalties for two terminal base pairs
in an exterior loop context, ∆Gterminalbp

i,d (φ) and ∆Gterminalbp
d+1,j (φ) (dependent on the sequence of base pairs i · d

and d+ 1 · j), 2) the sequence-dependent coaxial stacking free energy ∆Gcoax
i,d,j (φ) (dependent on the sequences

of base pairs i · d and d + 1 · j). Note that ∆Gcoax
i,d,j (φ) requires only 3 indices because d + 1 is implied by d.

To ensure that disconnected structures are excluded from the ensemble, the function Valid returns the set of
valid vectorization ranges for which nucleotides d and d+ 1 are on the same strand (i.e., such that d and d+ 1
do not take on values that would place a nick between them).
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RcdInter(i, j, φ) ≡
⊕

d∈Valid(i,j,η)

dot
(
Qb
i,d
, Qb

d+1,j
,W (∆Gcoax

i,d,j
(φ) + ∆Gterminalbp

i,d
(φ) + ∆Gterminalbp

d+1,j
(φ))

)

⊕
⊕

k∈{0,1}
l∈{0,1}

{
Qbi+k,j−l ⊗W (∆Gdangle

i,i+k,j−l,j(φ) + ∆Gterminalbp
i+k,j−l (φ)), i+ k < m and j − l ≥ n

0, otherwise

where m = First(η)

n = Last(η)

Figure S26: RcdInter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.
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• Dangle stacking state: zero, one, or two unpaired nucleotides dangle stack on an adjacent terminal base pair
(i+k · j− l). The recursion diagram summarizes four dangle stacking states (depicted as a dotted line between
i and j) corresponding to no dangles, 5′ dangle, 3′ dangle, or terminal mismatch (see Figure S14 for details).
The contribution of subsequence [i + k, j − l] is incorporated using Qbi+k,j−l element. Shading corresponds to
two recursion energies: 1) the sequence-dependent penalty for a terminal base pair in an exterior loop context,
∆Gterminalbp

i+k,j−l (φ) (dependent on the sequence of base pair i+k ·j− l), 2) the sequence-dependent dangle stacking
free energy ∆Gdangle

i,i+k,j−l,j(φ) which takes on one of four values corresponding to the four dangle stacking states
(see Figure S14). To ensure that disconnected structures are excluded from the ensemble, the index limits in
the recursion equation prevent a nick between a dangling nucleotide and the base pair on which it stacks (i.e.,
no nick between i and i+ k, and no nick between j and j − l).

RbInter recursion with coaxial and dangle stacking. The RcdInter(i, j, φ) recursion references Qbi,d elements
that are computed using either the RbIntra recursion of Figure S18 (if i and d are on the same strand) or the RsInter
recursion of Figure S27 (if i and d are on different strands). RbInter(i, j, φ) operates on a conditional ensemble for
subsequence [i, j] with i and j on different strands and base paired to each other (depicted with a solid line between
i and j). The function Complementary(φi, φj) checks if bases φi and φj are complementary (Watson–Crick or
wobble pair) without regard to whether i and j are sufficiently separated along the strand to be able to pair sterically.
The recursion distinguishes five cases that are combined using ⊕ in the recursion equation:

• Exterior loop with coaxial stacking on terminal base pair j · i: the exterior loop with two or more terminal base
pairs and coaxial stacking on terminal base pair j · i.

– Base cases. The base cases correspond to the recursion diagrams on the first row of Figure S27 and are
treated using term C1 in the subroutine MultiCoaxInter (recursion equation S58). The diagram on the
left treats the case where terminal base pair j · i forms a coaxial stack with adjacent terminal base pair
d+1 ·j−1, depicted as a dotted straight line between i and d+1. The contribution of subsequence [i+1, d]
is incorporated by element Qni+1,d. The pale pink shading corresponds to the sequence-dependent penalties
for two terminal base pairs in an exterior loop context, ∆Gterminalbp

d+1,j−1 (φ) and ∆Gterminalbp
j,i (φ) (note that

the indices are ordered j then i to reflect 5′ to 3′ from the perspective of the exterior loop). The dark
pink shading corresponds to the sequence-dependent coaxial stacking recursion energy ∆Gcoax

d+1,j−1,i(φ)
(dependent on the sequences of base pairs d+ 1 · j− 1 and j · i). Note that ∆Gcoax

d+1,j−1,i(φ) requires only 3
indices because j is implied by j− 1. The recursion on the right treats the analogous case where terminal
base pair j · i forms a coaxial stack with adjacent terminal base pair i+ 1 · d. To ensure that disconnected
structures are excluded from the ensemble, the function Valid returns the set of valid vectorization ranges
for which nucleotides d and d+ 1 are on the same strand (i.e., such that d and d+ 1 do not take on values
that would place a nick between them).

– Edge cases. In the base case, the Qn element incorporates a nick with a neighboring Q∅ element on either
side. The edge cases diagrammed in rows 2 to 4 of Figure S27 correspond to states where either: one of
the neighboring Q∅ elements is omitted because the nick is adjacent to one of the two coaxially-stacking
base pairs (row 2 corresponding to term C2 and row 3 corresponding to terms C3 and C4), or where both
of the neighboring Q∅ elements are omitted because the nick is adjacent to both of the coaxially stacking
base pairs (row 4 corresponding to terms C5 and C6). To ensure that disconnected structures are excluded
from the ensemble for terms C3 and C4, the function Valid returns the set of valid vectorization ranges
for which nucleotides d and d+ 1 are on the same strand (i.e., such that d and d+ 1 do not take on values
that would place a nick between them).

• Exterior loop with a dangle stacking state involving terminal base pair j · i: the exterior loop with one or more
terminal base pairs and a dangle stacking state involving terminal base pair i · j.

– Base case. The base case corresponds to the leftmost recursion diagram in row 5 of Figure S27 and is
treated by term C1 in the subroutine MultiDangleInter (recursion equation S58). The contribution of
subsequence [i+k+1, j−l−1] is incorporated by element Qni+k+1,j−l−1. The pale pink shading corresponds
to the sequence-dependent penalty for a terminal base pair in an exterior loop context, ∆Gterminalbp

j,i (φ)
(note that the indices are ordered j then i to reflect 5′ to 3′ from the perspective of the multiloop). The
medium pink shading corresponds to the sequence-dependent dangle stacking energy ∆Gdangle

j−l,j,i,i+k(φ).
Note that k, l ∈ {0, 1} determine whether unpaired nucleotides dangle stack on the adjacent base pair j · i.
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RbInter(i, j, φ) ≡

{
C1, Complementary(φi, φj)

0, otherwise

C1 ≡ ExteriorCoaxInter(i, j, φ, η)⊕ExteriorDangleInter(i, j, φ, η)

⊕ InteriorInter(i, j, φ, η)

⊕MultiCoaxInter(i, j, φ, η)⊕MultiDangleInter(i, j, φ, η)

Figure S27: RbInter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.
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ExteriorCoaxInter(i, j, φ, η) ≡ C1 ⊗W (∆Gterminalbp
j,i (φ))

⊕


C2 ⊗W (∆Gterminalbp

j,i (φ)), i+ 1 < m and j − 1 ≥ n
(C3 ⊕ C5)⊗W (∆Gterminalbp

j,i (φ)), i+ 1 = m and j − 1 ≥ n
(C4 ⊕ C6)⊗W (∆Gterminalbp

j,i (φ)), i+ 1 < m and j = n

0, otherwise

where m = First(η)

n = Last(η)

C1 ≡
⊕

d∈Valid(i+1,j−1,η)

[
dot

(
Qn
i+1,d

, Qb
d+1,j−1

,W (∆Gcoax
d+1,j−1,i

(φ) + ∆Gterminalbp
d+1,j−1

(φ))
)

⊕ dot
(
Qb
i+1,d

, Qn
d+1,j−1

,W (∆Gcoax
j,i,d

(φ) + ∆Gterminalbp
i+1,d

(φ))
)]

C2 ≡
⊕
c∈η

[
Q∅
i+1,c−1 ⊗Q

b
c,j−1 ⊗W (∆Gcoax

c,j−1,i(φ) + ∆Gterminalbp
c,j−1 (φ))

⊕ Qbi+1,c−1 ⊗Q∅
c,j−1 ⊗W (∆Gcoax

j,i,c−1(φ) + ∆Gterminalbp
i+1,c−1 (φ))

]

C3 ≡
⊕

d∈Valid(i,j−1,η)

dot
(
Q∅
i+1,d

, Qb
d+1,j−1

,W (∆Gcoax
d+1,j−1,i

(φ) + ∆Gterminalbp
d+1,j−1

(φ))
)

C4 ≡
⊕

d∈Valid(i+1,j,η)

dot
(
Qb
i+1,d

, Q∅
d+1,j−1

,W (∆Gcoax
j,i,d

(φ) + ∆Gterminalbp
i+1,d

(φ))
)

C5 ≡ Qbi+1,j−1 ⊗W (∆Gcoax
i+1,j−1,i(φ) + ∆Gterminalbp

i+1,j−1 (φ))

C6 ≡ Qbi+1,j−1 ⊗W (∆Gcoax
j,i,j−1(φ) + ∆Gterminalbp

i+1,j−1 (φ))

(S61)

ExteriorDangleInter(i, j, φ, η) ≡
⊕

k∈{0,1}
l∈{0,1}



C1, i+ k + 1 < m and j − l − 1 ≥ n
C2, i+ k + 1 = m and j − l − 1 ≥ n
C2, i+ k + 1 < m and j − l = n

C3, i+ k + 1 = m and j − l = n and m = n

0, otherwise

where m = First(η)

n = Last(η)

C1 ≡ Qni+k+1,j−l−1 ⊗ C3

C2 ≡ Q∅
i+k+1,j−l−1 ⊗ C3

C3 ≡W (∆Gdangle
j−l,j,i,i+k(φ) + ∆Gterminalbp

j,i (φ))

(S62)
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The situation is analogous to that in RcdInter (as detailed in Figure S14) with the only difference being that
in RcdInter, i+ k and j − l index the paired bases and here i+ k and j − l index the unpaired bases.

– Edge cases. In the base case, the Qn element incorporates a nick with a neighboring Q∅ element on either
side. The edge cases in diagrams 2 to 4 of row 5 of Figure S27 correspond to states where either: one
of the neighboring Q∅ elements is omitted because the nick is adjacent to the dangle stacking state on
one side (diagrams 2 and 3 corresponding to term C2), or where both of the neighboring Q∅ elements are
omitted because the nick is adjacent to the dangle stacking state on both sides (diagram 4 corresponding
to term C3).

• Interior loop: the interior loop closed by the two terminal base pairs i · j and d · e (depicted by straight solid
lines). Calculation of the interior loop contributions using an O(N4) or O(N3) version of the InteriorInter
recursion is described in Section S2.4. This treatment of interior loops is the same as for the non-stacking
recursions.

• Multiloop with coaxial stacking on terminal base pair j · i: the multiloop closed by three or more terminal base
pairs with coaxial stacking on base pair j · i. This case corresponds to the two recursion diagrams on the
seventh row of Figure S27 and is treated by the subroutine MultiCoaxInter (recursion equation S63). The
recursion on the left treats the case where terminal base pair j · i forms a coaxial stack with adjacent terminal
base pair d+ 1 · j − 1, depicted as a dotted straight line between i and d+ 1. The contribution of subsequence
[d+ 1, j − 1] is incorporated by element Qbd+1,j−1. The contributions of one or more remaining stacking states
in subsequence [i + 1, d] are incorporated by element Qmi+1,d. The pale green shading corresponds to three
multiloop recursion energies: 1) the penalty for formation of a multiloop ∆Gmulti

init , 2) the sequence-independent
penalties for two terminal base pairs in a multiloop, ∆Gmulti

bp (corresponding to base pairs d + 1 · j − 1 and
j · i), 3) the sequence-dependent penalties for two terminal base pairs in a multiloop context, ∆Gterminalbp

d+1,j−1 (φ)

and ∆Gterminalbp
j,i (φ) (note that the indices are ordered j then i to reflect 5′ to 3′ from the perspective of the

multiloop). The dark green shading corresponds to the sequence-dependent coaxial stacking recursion energy
∆Gcoax

d+1,j−1,i(φ) (dependent on the sequences of base pairs d + 1 · j − 1 and j · i). Note that ∆Gcoax
d+1,j−1,i(φ)

requires only 3 indices because j is implied by j − 1. To exclude exterior loop states that are not treated by
this multiloop recursion, the function Valid returns the set of valid vectorization ranges for which nucleotides
d and d+ 1 are on the same strand (i.e., such that d and d+ 1 do not take on values that would place a nick
between them). The recursion on the right treats the analogous case where terminal base pair j · i forms a
coaxial stack with adjacent terminal base pair i+ 1 · d.

• Multiloop with dangle stacking on terminal base pair j · i: the multiloop closed by three or more terminal base
pairs with a dangle stacking state involving base pair j · i. This case corresponds to the two recursion diagrams
on the eighth row of Figure S18 and is treated by the subroutine MultiDangleInter (recursion equation
S64).

– Base case with two or more additional stacking states. The recursion on the left treats the case where
there is a dangle stacking state involving the terminal base pair j · i (depicted as a dotted straight line
between i+k and j− l) and a 3′-most stacking state in subsequence [d+ 1, j− l−1] (depicted as a dashed
line between d+1 and j− l−1). The contributions for subsequence [d+1, j− l−1] are incorporated using
a Qmsd+1,j−l−1 element. The pale green shading corresponds to four multiloop recursion energies: 1) the
penalty for formation of a multiloop ∆Gmulti

init , 2) the sequence-independent penalty for one terminal base
pair in a multiloop, ∆Gmulti

bp (corresponding to base pair j · i), 3) the penalty per unpaired nucleotide in a
multiloop ∆Gmulti

nt (a total of k+l dangling nucleotides; as a result this term is zeroed out when k = l = 0).
4) the sequence-dependent penalty for a terminal base pair in a multiloop context, ∆Gterminalbp

j,i (φ) (note
that the indices are ordered j then i to reflect 5′ to 3′ from the perspective of the multiloop). The medium
green shading corresponds to the sequence-dependent dangle stacking recursion energy ∆Gdangle

j−l,j,i,i+k(φ).
To exclude exterior loop states that are not treated by this multiloop recursion, the function Valid returns
the set of valid vectorization ranges for which nucleotides d and d + 1 are on the same strand (i.e., such
that d and d + 1 do not take on values that would place a nick between them). Note that k, l ∈ {0, 1}
determine whether unpaired nucleotides dangle stack on the adjacent base pair j · i in a multiloop context.
The situation is analogous to that in RcdInter (as detailed in Figure S14) with the only difference being that
in RcdInter, i+ k and j − l index the paired bases and here i+ k and j − l index the unpaired bases.

– Edge case with one additional coaxial stacking state. The recursion on the right treats the case where
there is a dangle stacking state involving the terminal base pair j · i (depicted as a dotted straight line
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between i+ k and j − l) and one coaxial stacking state in subsequence [e, j − l− 1] (depicted as a dashed
line between e and j − l − 1). The contributions for subsequence [e, j − l − 1] are incorporated using a
Qmcse,j−l−1 element. The pale green shading corresponds to four multiloop recursion energies: 1) the penalty
for formation of a multiloop ∆Gmulti

init , 2) the sequence-independent penalty for one terminal base pair in a
multiloop, ∆Gmulti

bp (corresponding to base pair j · i), 3) the penalty per unpaired nucleotide in a multiloop
∆Gmulti

nt (k+ l dangling nucleotides plus the unpaired nucleotides i+ k+ 1, . . . , e− 1; as a result this term
is zeroed out when k = l = 0 and e = i+1). 4) the sequence-dependent penalty for a terminal base pair in
a multiloop context, ∆Gterminalbp

j,i (φ) (note that the indices are ordered j then i to reflect 5′ to 3′ from the
perspective of the multiloop). The medium green shading corresponds to the sequence-dependent dangle
stacking recursion energy ∆Gdangle

j−l,j,i,i+k(φ). Note that this edge case covers the scenario where there are
exactly three terminal base pairs and the two pairs that are not j · i are coaxially stacked. That situation
is not covered by the base case because for that recursion, a multiloop with 3 terminal base pairs would
have one terminal base pair in the Qms element, and one terminal base pair in the Qm element (hence,
those two terminal base pairs cannot coaxially stack since they are in different recursions).

Note that unlike the RbIntra recursion of Figure S18, for RbInter there is no hairpin loop case as i and j are on different
strands.

MultiCoaxInter(i, j, φ, η) ≡ C1 ⊗W (∆Gmulti
init + 2∆Gmulti

bp + ∆Gterminalbp
j,i (φ))

where m = First(η)

n = Last(η)

C1 ≡
⊕

d∈Valid(i+1,j−1,η)

[
dot

(
Qb
i+1,d

, Qm
d+1,j−1

,W (∆Gcoax
j,i,d

(φ) + ∆Gterminalbp
i+1,d

(φ))
)

⊕ dot
(
Qm
i+1,d

, Qb
d+1,j−1

,W (∆Gcoax
d+1,j−1,i

(φ) + ∆Gterminalbp
d+1,j−1

(φ))
)]

(S63)

MultiDangleInter(i, j, φ, η) ≡
⊕

k∈{0,1}
l∈{0,1}

{
C1 ⊕ C2, i+ k + 1 < m and j − l − 1 ≥ n
0, otherwise

where m = First(η)

n = Last(η)

C1 ≡
⊕

d∈Valid(i+k+1,j−l−1,η)

[
dot

(
Qm
i+k+1,d

, Qms
d+1,j−l−1

)
⊗ W (∆Gdangle

j−l,j,i,i+k(φ) + ∆Gmulti
init + ∆Gmulti

bp + (k + l)∆Gmulti
nt + ∆Gterminalbp

j,i (φ))
]

C2 ≡ dot
(
Qmcse,j−l−1

)
⊗W (∆Gdangle

j−l,j,i,i+k(φ) + ∆Gmulti
init + ∆Gmulti

bp + nnt∆G
multi
nt + ∆Gterminalbp

j,i (φ))

e ≡ [i+ k + 1 : m− 1], nnt ≡ [k + l : m− i+ l − 2]

(S64)
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RnInter(i, j, φ) ≡
⊕
c∈η

Q∅
i,c−1 ⊗Q

∅
c,j

Figure S28: RnInter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RnInter recursion with coaxial and dangle stacking. The RbInter(i, j, φ) recursion references Qn elements
that are computed using the RnInter recursion displayed in Figure S28. RnInter(i, j, φ) operates on a conditional
ensemble in an exterior loop context with a nick at c. For each nick c ∈ η, the contribution of subsequence [i, c−1] is
incorporated by element Q∅

i,c−1 and the contribution of subsequence [c, j] is incorporated by element Q∅
c,j . Shading

denotes no recursion energies. Note that while the subsequence [i, j] is disonnected within the RnInter(i, j, φ) recursion
due to the nick at c, these states are connected when used in the context of the RbInter recursion.

i

j

= mcs

md

ms

i i

j

d

j

multiloop

RmsInter(i, j, φ) ≡ Qmcsi,j ⊕ dot
(
Qmd
i,d
,W (nnt∆G

multi
nt )

)
where d ≡ [Last(η) : j], nnt ≡ [0 : j − Last(η)]

r

Figure S29: RmsInter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmsInter recursion with coaxial and dangle stacking. The RbInter(i, j, φ) recursion references Qmsd+1,j−l−1

elements that are computed using either the RmsIntra recursion shown of Figure S19 (if d+ 1 and j − l− 1 are on the
same strand) or the RmsInter recursion of Figure S29 (if d + 1 and j − l − 1 are on different strands). RmsInter(i, j, φ)
operates on a conditional ensemble for subsequence [i, j] in a multiloop context containing one stacking state starting
at i and ending in the interval [i + 1, j] (depicted as a dashed line between i and j). There are two cases that are
combined using ⊕ in the recursion equation:

• Coaxial stacking state: The contribution for the coaxial stacking state in subsequence [i, j] is calculated using
a Qmcsi,j element.

• Dangle stacking state: The contribution for the dangle stacking state in subsequence [i, d] is incorporated using
a Qmdi,d element. Shading corresponds to the recursion energy penalty per unpaired nucleotide in a multiloop,
∆Gmulti

nt (nucleotides d+ 1, . . . , j for a total of j− d unpaired nucleotides; as a result, this term is zeroed out in
the edge case where d = j). Note that in the dot product the range multiplying ∆Gmulti

nt runs in reverse order
because the number of unpaired nucleotides, j − d, decreases in size as d increases in size. Nucleotide d must
always be on the last strand (d ≥ Last(η)) to ensure that there are no nicks in the subsequence [d, j], which
would lead to either a disconnected structure (which is not permitted in the complex ensemble) or an exterior
loop state (which is not handled by this recursion).

Note that Rms directly incorporates the Rmcs recursion which serves as an efficiency wrapper of the Rmc recursion,
and hence, Rms is an efficiency wrapper of Rmc (the 3′-most coaxial stacking state in a multiloop context). Note
also that Rms is an efficiency wrapper of the Rmd recursion (the 3′-most dangle stacking state in a multiloop
context). Taken together Rmc and Rmd represent the 3′-most stacking state in a multiloop context, analogous to Rcd
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representing the 3′-most stacking state (coaxial or dangle) in an exterior loop context. The reason that Rmc (coaxial
stacking states) and Rmd (dangle stacking states) are calculated and stored separately in a multiloop context, is
that coaxial-only information (stored in element Qmcs) is needed for the edge case previously described for the right
recursion diagram in the bottom row of Figure S27. As a result, coaxial-only information is calculated using the
efficiency wrapper Rmcs for use in that edge case, and then coaxial-only and dangle-only information are combined
by the Rms efficiency wrapper (which is fully analogous to the Rs efficiency wrapper in the exterior loop context).
With this approach, the operations spent calculating coaxial stacking information for Qmcs elements are not repeated
when calculating both coaxial and dangle stacking for Qms elements.

mcs

mc

=

i

j

i

j

d

multiloop

RmcsInter(i, j, φ) ≡ dot
(
Qmc
i,d
,W (∆Gmulti

nt nnt

)
where d ≡ [Last(η) : j], nnt ≡ [0 : j − Last(η)]

r

Figure S30: RmcsInter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmcsInter recursion with coaxial and dangle stacking. The RmsInter(i, j, φ) recursion references Qmcs elements
that are computed using the RmcsInter(i, j, φ) recursion displayed in Figure S30. RmcsInter(i, j, φ) operates on a conditional
ensemble for subsequence [i, j] in a multiloop context containing one coaxial stacking state starting at i and ending
in the interval [i+ 1, j] (depicted as a dashed line between i and j). The contribution for the coaxial stacking state
in subsequence [i, d] is incorporated using a Qmci,d element. Shading denotes the penalty per unpaired nucleotide in a
multiloop ∆Gmulti

nt (the unpaired nucleotides d+ 1, . . . , j; as a result this term is zeroed out when d = j). Note that
in the dot product the range multiplying ∆Gmulti

nt runs in reverse order because the number of unpaired nucleotides,
j − d, decreases in size as d increases in size. Nucleotide d must always be on the last strand to ensure that there
are no nicks in the subsequence [d, j], which would lead to either a disconnected structure (which is not permitted
in the complex ensemble) or an exterior loop state (which is not handled by this multiloop recursion). Note that the
Rmcs recursion serves as an efficiency wrapper of the Rmc recursion (here, representing the 3′-most coaxial stacking
state in a multiloop context).

=

i

j

i

j

d

b

b

mc

multi coax

RmcInter(i, j, φ) ≡
⊕

d∈Valid(i,j,η)

dot
(
Qb
i,d
, Qb

d+1,j
, C1

)
⊗W (2∆Gmulti

bp )

where C1 ≡W (∆Gcoax
i,d,j

(φ) + ∆Gterminalbp
i,d

(φ) + ∆Gterminalbp
d+1,j

(φ))

Figure S31: RmcInter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmcInter recursion with coaxial and dangle stacking. The RmcsInter(i, j, φ) recursion references Qmc elements
that are computed using the RmcInter(i, j, φ) recursion displayed in Figure S31. This recursion treats a single coaxial
stacking state in a multiloop context (depicted as a straight line between i and j that is solid at both ends and
dashed in the middle to indicate that i and j are both base-paired but not to each other). Two adjacent terminal
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base pairs (i · d and d + 1 · j) coaxially stack on each other. The contributions of subsequences [i, d] and [d + 1, j]
are incorporated using Qbi,d and Qbd+1,j elements. Shading corresponds to three kinds of recursion energy: 1) the
sequence-independent penalties for two terminal base pairs in a multiloop, ∆Gmulti

bp (corresponding to base pairs i · d
and d+1 ·j), 2) the sequence-dependent penalties for two terminal base pairs in a multiloop context, ∆Gterminalbp

i,d (φ)

and ∆Gterminalbp
d+1,j (φ) (dependent on the sequence of base pairs i · d and d+ 1 · j), 3) the sequence-dependent coaxial

stacking free energy ∆Gcoax
i,d,j (φ) (dependent on the sequences of base pairs i · d and d + 1 · j). Note that ∆Gcoax

i,d,j (φ)
requires only 3 indices because d+1 is implied by d. The function Valid returns the set of valid vectorization ranges
for which nucleotides d and d+ 1 are on the same strand (i.e., such that d and d+ 1 do not take on values that would
place a nick between them) to avoid an exterior loop state (which is not handled by this multiloop recursion).

=

i

j

i

j

i+k

j-l

bmd

multi dangle

RmdInter(i, j, φ) ≡
⊕

k∈{0,1}
l∈{0,1}

{
C1, i+ k < m and j − l ≥ n
0, otherwise

where m = First(η)

n = Last(η)

C1 ≡ Qbi+k,j−l ⊗W (∆Gdangle
i,i+k,j−l,j(φ) + ∆Gmulti

bp + (k + l)∆Gmulti
nt + ∆Gterminalbp

i+k,j−l (φ))

Figure S32: RmdInter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

RmdInter recursion with coaxial and dangle stacking. The RmsInter(i, j, φ) recursion references Qmd elements
that are computed using the RmdInter recursion displayed in Figure S32. RmdInter(i, j, φ) treats a single dangle stacking
state (depicted as a dotted line between i and j) in a multiloop context with either zero, one, or two unpaired
nucleotides dangle stacking on an adjacent terminal base pair (i+ k · j − l). The recursion diagram represents these
four alternative dangle stacking states corresponding to no dangles, 5′ dangle, 3′ dangle, or terminal mismatch (see
Figure S14 for details). The contribution of subsequence [i+k, j−l] is incorporated using a Qbi+k,j−l element. Shading
corresponds to four recursion energies: 1) the sequence-independent penalty for one terminal base pair in a multiloop,
∆Gmulti

bp (corresponding to base pair i+ k · j − l), 2) the penalty per unpaired nucleotide in a multiloop ∆Gmulti
nt (a

total of k + l dangling nucleotides; as a result this term is zeroed out when k = l = 0). 3) the sequence-dependent
penalty for a terminal base pair in a multiloop loop context, ∆Gterminalbp

i+k,j−l (φ) (dependent on the sequence of base
pair i+ k · j − l), 4) the sequence-dependent dangle stacking free energy ∆Gdangle

i,i+k,j−l,j(φ) which takes on one of four
values corresponding to the four dangle stacking states (see Figure S14). The index limits in the recursion equation
prevent a nick between a dangling nucleotide and the base pair on which it stacks (i.e., no nick between i and i+ k,
and no nick between j and j − l) to avoid an exterior loop state (which is not handled by this multiloop recursion).

RmInter recursion with coaxial and dangle stacking. The RbInter(i, j, φ) recursion references Qm elements
that are computed using either the RmIntra recursion of Figure S23 (if the end points of the referenced subsequence
are on the same strand), or the RmInter recursion of Figure S33 (if the end points of the referenced subsequence are
on different strands). RmInter(i, j, φ) operates on a conditional ensemble for subsequence [i, j] in a multiloop context
where i and j may or may not be paired (depicted with a dashed line between i and j in the recursion diagram)
and where there is at least one stacking state in the subsequence. This recursion distinguishes two cases that are
combined using ⊕ in the recursion equation:

• One stacking state: the case where there is exactly one stacking state in subsequence [i, j] in a multiloop
context. This stacking state starts at d and ends in the interval [d + 1, j] (depicted by a straight dashed line
between d and j); the contribution of subsequence [d, j] is incorporated by element Qmsd,j . Shading corresponds
to the recursion energy, ∆Gmulti

nt , representing the penalty per unpaired nucleotide in a multiloop (nucleotides
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RmInter(i, j, φ) ≡
⊕

d∈Valid(i,j,η)

dot
(
Qm
i,d
, Qms

d+1,j

)
⊕ dot

(
Qmse,j ,W (nnt∆G

multi
nt )

)
where e ≡ [i : First(η)], nnt ≡ [0 : First(η)− i− 1]

(S65)

Figure S33: RmInter recursion with coaxial and dangle stacking. Top: recursion diagram. Bottom: recursion equation.

i, . . . , d− 1 for a total of d− i unpaired nucleotides; as a result, this term is zeroed out in the edge case where
d = i). Nucleotide d must always be on the first strand to ensure that there are no nicks in the subsequence
[i, d], which would lead to either a disconnected structure (which is not permitted in the complex ensemble) or
an exterior loop state (which is not handled by this multiloop recursion).

• More than one stacking state: the case where there are two or more stacking states in subsequence [i, j] in
a multiloop context. The 3′-most stacking state starts at e + 1 and ends in the interval [e + 2, j] (depicted
by a straight dashed line between e + 1 and j); the contribution of subsequence [e + 1, j] is incorporated by
element Qmse+1,j . There are one or more additional stacking states in the interval [i, e] (the straight dashed
line denotes that i and e may or may not be paired); the contribution of subsequence [i, e] is incorporated by
element Qmi,e. The shading does not represent any recursion energies as all multiloop contributions are handled
by other recursions: 1) there are no terminal base pairs in a multiloop context explicitly defined in this case,
2) there are no unpaired bases in a multiloop context explicitly defined in this case. To exclude exterior loop
states that are not treated by this multiloop recursion, the function Valid returns the set of valid vectorization
ranges for which nucleotides e and e + 1 are on the same strand (i.e., such that e and e + 1 do not take on
values that would place a nick between them).
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S3 Evaluation algebras for each physical quantity

To calculate each physical quantity, the generic recursions of Section S2 are combined with a quantity-specific
evaluation algebra (summarized in Table 2). Here, we provide additional details on the evaluation algebra abstraction,
and on the definition of evaluation algebras for different physical quantities.

An evaluation algebra defines the mathematical form of the generic operators that appear in recursion equations.
We define an evaluation algebra A to have the following properties:

1. DA is the domain of values in the evaluation algebra.

2. ⊕A is an operation yielding a combination of alternative conditional ensembles. Thus, c = a⊕A b reflects the
notion of “c contains either conditional ensemble a or conditional ensemble b”.

3. ⊗A is an operation that yields a composition of conditional ensembles. Thus, c = a⊗A b reflects the notion of
“c contains both conditional ensemble a and conditional ensemble b”.

4. 0A is a value in DA that satisfies the concept of additive identity. Physically, 0A represents an impossible
substructure (i.e., a structural element that is not in the complex ensemble).

5. 1A is a value in DA that satisfies the concept of multiplicative identity. Physically, 1A represents a structure
in the free energy reference state.

6. WA is an operation that takes a free energy to a value in DA. Physically, WA represents the weight on an
individual substructure.

7. QA is an operation that yields a value in DA from an recursion element in the set of all recursion elements Λ.
QA is used to give the prior-calculated result over a given conditional ensemble.

As such, an evaluation algebra may be classified as an algebraic semiring equipped with two additional unary operators
W and Q. We typically elide the dependence on A below to simplify the notation. We now describe the definitions
of these properties for evaluation algebras corresponding to different physical quantities, treating the calculation of
scalar quantities in Section S3.1 and the calculation of quantities requiring structure generation in Section S3.2.

S3.1 Evaluation algebras for scalar outputs

S3.1.1 SumProduct: sum product evaluation algebra

Within evaluation algebra A = SumProduct, the partition function of an ensemble, Q(φ), is computed by taking
the sum over products of Boltzmann factors.

D = R≥0

a⊕ b = a+ b

a⊗ b = a · b
0 = 0

1 = 1

W (g) = exp

(
−g
kBT

)
Q(λ) = Ai,j where λ = (A, i, j) and A is the stored recursion matrix

(S66)

Each expression in the algebra represents a Boltzmann factor, which is necessarily a non-negative real number. An
impossible structure maps to a Boltzmann factor of 0, whereas a structure with a zero reference free energy maps to
a Boltzmann factor of 1.

S3.1.2 Count: structure count evaluation algebra

Within evaluation algebra A = Count, the size of an ensemble, Γ or Γ
q
, is computed by taking the sum over products

of subensemble sizes.
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D = Z≥0

a⊕ b = a+ b

a⊗ b = a · b
0 = 0

1 = 1

W (g) = 1

Q(λ) = Ai,j where λ = (A, i, j) and A is the stored recursion matrix

(S67)

The only difference between Count and SumProduct is the definition of W . While the domain of Count is
theoretically non-negative integers, it is still implemented using floating point types to avoid integer overflow.

S3.1.3 MinSum: minimum sum evaluation algebra

Within evaluation algebra A = MinSum, the free energy of the minimum free energy (MFE) stacking state,
∆G(φ, sqMFE), is the minimum over sums of conditional ensemble free energies.

D = R ∪ {∞}
a⊕ b = min(a, b)

a⊗ b = a+ b

0 =∞
1 = 0

W (g) = g

Q(λ) = Ai,j where λ = (A, i, j) and A is the stored recursion matrix

(S68)

An impossible structure is assigned a free energy of ∞.

S3.1.4 SplitExp: overflow-safe evaluation algebra

Here, we expand our description in Table 2 of the overflow-safe evaluation algebra A = SplitExp. For exposition,
that description was a simplification of the production evaluation algebra, which must be implemented somewhat
differently as we now discuss. The main text description includes a free parameter γ representing the negative
exponent of the output variable. Each Boltzmann factor is then evaluated relative to γ. Here, to factor out γ, we lift
our evaluation algebra into a set of higher order functions. Thus, instead of each expression being a pair of numbers,
each expression is itself a function returning its associated mantissa value and its offset exponent relative to the input
γ. We use the anonymous form of function notation x 7→ y to notate a function taking x and returning y.

D = Z 7→ R≥0 × Z

a⊕ b = γ 7→
(
am(γ) · 2ae(γ) + bm(γ) · 2be(γ), 0

)
a⊗ b = γ 7→ (am(be(γ)) · bm(γ), ae(be(γ)))

0 = γ 7→ (0, 0)

1 = γ 7→ (1, γ)

W (g) = γ 7→
(

exp

(
−g
kBT

)
, γ

)
Q(λ) = γ 7→ (Mi,j , Ei,j + γ) where λ = (A, i, j) and M,E are the

stored recursion matrices for A of mantissas and exponents, respectively

(S69)

An element a returns, as a function of γ, the mantissa and exponent values expressed respectively as am(γ) and
ae(γ). An element a may be converted to the domain of SumProduct using the transformation am(γ)2ae(γ)−γ .
With infinite-precision arithmetic, we can plug in any value γ ≡ γ0 to perform a calculation. Using finite-precision
arithmetic, however, γ must be chosen judiciously to avoid floating point overflow. We describe our method of
choosing γ0 below.

Addition works by aligning both expressions to the output exponent γ and then adding the resultant mantissas.
As the output mantissa has been aligned to γ, the output shift exponent is 0. For example, take a = 1, b = W (g0).
Then
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a⊕ b = (am(γ) · 2ae(γ) + bm(γ) · 2be(γ), 0),

=

(
1 · 2γ + exp

(
−g0

kBT

)
· 2γ , 0

)
,

=

(
2γ
(

1 + exp

(
−g0

kBT

))
, 0

)
.

(S70)

Multiplication works by multiplying the mantissas and adding the exponents. The exponent shift is applied to
only one quantity; therefore, the shift is applied directly to b, the result of which is propagated to a. (This choice of
ordering could be inverted without changing the output result.) For example, take a = Qbp,q, b = Qmr,s. Then

a⊗ b = (am(γ) · bm(γ) ·Mm
r,s, ae(Emr,s + γ)),

= (M b
p,q ·Mm

r,s, E
b
p,q + Emr,s + γ).

(S71)

In our implementation, mantissa and exponent values of the same bit width are held in separate arrays M and
E for each recursion matrix. Single-precision floating point and signed integers are used, such that the total storage
cost of this method is identical to running SumProduct in double precision. From the output expression of a given
recursion R in SplitExp, the following output numbers are calculated:

mλ = Rm(λ, φ)(γ0(λ))

eλ = Re(λ, φ)(γ0(λ))− γ0(λ, φ)
(S72)

Now, using the function frexp canonically defined such that frexpm(x)2frexpe(x) = x and either 1
2 ≤ frexpm(x) < 1 or

frexpm(x) = frexpe(x) = 0, the respective entry in the recursion matrix is set via the following convention:

M(λ)← frexpm(mλ)

E(λ)← frexpe(mλ) + eλ
(S73)

To prevent overflow from occurring, if an expression has a theoretical partition function of q, γ0 should be
relatively close to − log2 q. Specifically, |γ0 + log2 q| should be less than the maximum floating point exponent in the
given arithmetic (128 for 32-bit precision, 1024 for 64-bit precision). For recursion element λ = (A, i, j), we choose
γ0 as follows from the matrix E containing the exponents of A:

γ0(λ) ≡ min
i≤d≤e≤j

(d,e)6=(i,j)

−Ed,e

=

{
min (−Ei+1,j ,−Ei,j−1) i < j

0 otherwise

(S74)

In other words, γ0 is based on the exponents of the two known adjacent elements in the matrix. Although it possible
to try multiple choices of γ0 as a failsafe, in practice, the single definition of γ0 above is sufficient to avoid overflow
from occurring for all test cases in our validate suite (Section S7).

S3.1.5 LogSum: log semiring evaluation algebra as alternative overflow-safe approach

For completeness, we outline the possibility of using the log semiring LogSum to avoid overflow in partition function
computation. In this evaluation algebra, each quantity a corresponds to quantity 2a in SumProduct (the base-2
logarithm is used for computational convenience.)

DLogSum = R ∪ {−∞}
⊕LogSum(a, b) = log2(2a + 2b) = max(a, b) + log2(2a−max(a,b) + 2b−max(a,b))

⊗LogSum(a, b) = a+ b

0LogSum(a, b) = −∞
1LogSum = 0

WLogSum(g) = −(kT log 2)−1g

Q(λ) = Ai,j where λ = (A, i, j) and A is the stored recursion matrix

(S75)
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In practice, this evaluation algebra proved to be simpler but less efficient than SplitExp. Within a given dot product
of many contributions, first the maximum contribution must be computed beforehand across all contributions, then
the adjusted exponentiations of each contribution must be calculated, and finally the exponentiations must be
summed. Even after optimization and vectorization, we found that LogSum was>2×more expensive than SplitExp
in partition function computations due to the need for floating point exponentiation and two separate scans through
the arrays of contributions.

S3.2 Evaluation algebras for structure generation

Structure generation conceptually yields specific secondary structures from a given weighting on the ensemble Γ

or Γ
q
. In this case, because any given structure depends on only a sparse subset of recursion matrix elements, a

backtracking operation order is in general more efficient than a forward pass iteration. Such an operation order jumps
between recursion elements in an opposite direction to that in the forward pass. To enable such an approach, the
recursion matrices in the forward pass must be computed beforehand (e.g., calculating the MFE before generating
an ensemble of suboptimal structures or calculating the partition function before Boltzmann sampling structures).

Here, we correspondingly distinguish between a forward evaluation algebra and a backtracking evaluation alge-
bra. Whereas a forward evaluation algebra like SumProduct operates on a subset of R, we define a backtracking
evaluation algebra to operate on a domain of conditional ensembles which may be queried for a set of dependent
recursion elements. This ordering may be viewed as equivalent to the topological ordering of the directed acyclic
graph of computed quantities in a forward dynamic program (e.g., in Figure 8). In all cases, any conditional ensemble
s containing a recursion element (b, i, j) indicates that i · j is a base pair in s, a feature which is used to output final
structures from the algorithm. We next illustrate how a backtracking evaluation algebra may be defined with respect
to the associated forward evaluation algebra.

S3.2.1 Generic approach to structure generation

We start with a consideration of the simplest structure generation evaluation algebras. To simplify the exposition,
in Table 2 we defined evaluation algebras ArgRand to calculate a single randomly sampled structure and ArgMin
to determine the MFE stacking state, sqMFE, assuming it was unique. For a given element a, each evaluation algebra
was defined such that a was a pair of scalar value av and recursion element set aλ.

In Table 2, the operations on av and bv in ArgRand duplicate the operations of SumProduct, whereas the
operations on av and bv in ArgMin duplicate the operations of MinSum. For ArgRand and ArgMin, the
operations on aλ and bλ are the same for ⊗, which represents the set union ∪ of recursion elements that occur in
the same conditional ensemble. However, the operations on aλ and bλ are different in the definition of ⊕, which
is responsible for attributing the scalar contribution av ⊕ bv to an individual conditional ensemble aλ or bλ. In
ArgRand, ⊕ yields a random weighted choice via

arg rand(a, b) ≡ (aλ if U(0, av + bv) < av else bλ) (S76)

where U is the random uniform distribution function. In contrast, in ArgMin, ⊕ yields the conditional ensemble
which is lower in free energy via

arg min(a,b) ≡ (aλ if av < bv else bλ) . (S77)

Thus we can see that an intuitive approach for constructing a backtracking evaluation algebra is to augment a
corresponding forward evaluation algebra with customized operations for structure attribution. We next describe
the resulting definitions of ArgRand and ArgMin.

S3.2.2 ArgRand: single Boltzmann sample evaluation algebra

Within evaluation algebra A = ArgRand, each element a is a pair of partition function value av and set of recursion
elements aλ.
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D = R≥0 × P (Λ)

a⊕ b = (av + bv, arg rand(a, b))

a⊗ b = (av · bv, aλ ∪ bλ)

0 = (0,∅)

1 = (1,∅)

W (g) =

(
exp

(
−g
kBT

)
,∅
)

Q(λ) = (QSumProduct(λ), {λ})

(S78)

Operations on the first element, av, are defined using SumProduct. The second element, aλ, is a set of recursion
elements defining a restricted ensemble of conditional ensemble compositions. The set of all possible sets of recursion
elements λ is denoted as P (Λ). Any quantity that does not depend on the output of another recursion is thus
assigned aλ = ∅.

S3.2.3 ArgMin: unique MFE structure evaluation algebra

Within evaluation algebra A = ArgMin, each element a is a pair of value av and set of recursion elements aλ.

D = R ∪ {∞} × P (Λ)

a⊕ b = (min(av, bv), arg min(a,b))

a⊗ b = (av + bv, aλ ∪ bλ)

0 = (∞,∅)

1 = (0,∅)

W (g) = (g,∅)

Q(λ) = (QMinSum(λ), {λ})

(S79)

Operations on the first element, av, are defined using MinSum. The second element, aλ, is a set of recursion elements
defining a restricted ensemble of conditional ensemble compositions. The set of all possible sets of recursion elements
λ is denoted as P (Λ). Any quantity that does not depend on the output of another recursion is thus assigned aλ = ∅.

S3.2.4 Efficient structure generation via lazy evaluation

We derived more programmatically efficient evaluation algebras for generating and ensemble of J Boltzmann-sampled
structures, Γsample(φ, J), or for generating a ensemble of suboptimal structures, Γsubopt(φ,∆Ggap). Note that MFE
proxy structure(s) can be generated by setting ∆Ggap = 0. Here, we describe efficient evaluation algebras for
ArgRandJ and ArgMinGap that build upon ArgRand and ArgMin.

The simpler but less efficient algebras ArgRand and ArgMin yield full representations of the chosen conditional
ensembles, which are then enqueued by the respective operation order algorithms. Our more efficient algorithms
work by backtracking through a given recursion element and enqueueing any combinations of recursion elements in
conditional ensembles that match a given criterion. The matching evaluation algebras incorporate the enqueueing
operation κ directly such that each piece of a conditional ensemble is enqueued immediately as it is encountered. These
evaluation algebras are similarly generic but operate lazily on recursion elements (obviating storage of intermediate
structures which might not affect the final results).

We describe the ArgRandJ and ArgMinGap evaluations using a generic framework defined with respect to
a given forward algebra (SumProduct and MinSum, respectively). As in Section S3.1.4, we make use of the
anonymous form of function notation x 7→ y to notate a function taking x and returning y. Formally, we define
the enqueueing operation κ recursively as a function in Dκ ≡ (R,P (Λ)) 7→ Dκ; effectively, it may be viewed as
an iterator across each alternative conditional ensemble. Let B be the backtracking evaluation algebra and A the
forward algebra. Then we classify each expression in B as a closure within DB ≡ Dκ 7→ Dκ and denote a set of
recursion elements as Λi ∈ P (Λ) below.

Within the evaluation algebra, addition of a and b intuitively represents the successive iteration through multiple
alternative structures a and b. It may be defined formally as a higher-order function that accomplishes functional
composition:

⊕B(a, b) = κ 7→ b(a(κ)) (S80)
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Multiplication of a and b represents the independent combinations of conditional ensembles from a and b being
composed together – in effect, a lazily evaluated outer product of conditional ensembles within a and b. It may be
defined formally as the higher-order function:

⊗B(a, b) = κ 7→ a
(
(x1,Λ1) 7→ b

(
(x2,Λ2) 7→ κ

(
x1 ⊗A x2,Λ1 ∪ Λ2

)))
(S81)

The properties of commutativity and associativity are preserved for ⊕B and ⊗B so long as κ is independent of the
order of evaluation (i.e., κ(x1,Λ1)(x2,Λ2) = κ(x2,Λ2)(x1,Λ1)), a property that is satisfied by all algorithms discussed
here. The multiplicative identity corresponds to a zero free energy structure, which is not dependent on any recursion
elements:

1B = κ 7→ κ(1A,∅). (S82)

The additive identity is defined as the identity function, reflecting an impossible structure by returning the enqueueing
function unchanged:

0B = κ 7→ κ. (S83)

WB brings a free energy parameter into the evaluation algebra domain, and is not dependent on any recursion
elements:

WB(g) = κ 7→ κ (WA(g),∅) (S84)

Finally, the recursion matrix operator yields the forward algebra value and a singleton of its associated recursion
element:

QB(λ) = κ 7→ κ (QA(λ), {λ}) (S85)

See Sections S4.4 and S4.6 for specifications of the enqueing function κ used in Boltzmann sampling and suboptimal
structure generation, respectively.

S3.2.5 ArgRandJ: simultaneous Boltzmann sample evaluation algebra

The implemented evaluation algebra A = ArgRandJ that uses higher order functions to accomplish lazy evaluation
is a specialization of the generic structure generation algebra (Section S3.2.4) for the associated forward evaluation
algebra SumProduct. See Section S4.4 for the definition of κ.

D = Dκ 7→ Dκ

a⊕ b = κ 7→ b(a(κ))

a⊗ b = κ 7→ a
(
(x1,Λ1) 7→ b

(
(x2,Λ2) 7→ κ

(
x1 · x2,Λ1 ∪ Λ2

)))
0 = κ 7→ κ

1 = κ 7→ κ(1,∅)

W (g) = κ 7→ κ

(
exp

(
−g
kBT

)
,∅
)

Q(λ) = κ 7→ κ(QSumProduct(λ), {λ})

(S86)

To avoid overflow issues for large complexes, we extended the above evaluation algebra in a similar fashion to that
described in Section S3.1.4.

S3.2.6 ArgMinGap: suboptimal structure evaluation algebra

The implemented evaluation algebraA = ArgMinGap that uses higher order functions to accomplish lazy evaluation
is a specialization of the generic structure generation algebra (Section S3.2.4) for the associated forward evaluation
algebra MinSum. See Section S4.6 for the definition of κ.
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D = Dκ 7→ Dκ

a⊕ b = κ 7→ b(a(κ))

a⊗ b = κ 7→ a
(
(x1,Λ1) 7→ b

(
(x2,Λ2) 7→ κ

(
x1 + x2,Λ1 ∪ Λ2

)))
0 = κ 7→ κ

1 = κ 7→ κ(0,∅)

W (g) = κ 7→ κ(g,∅)

Q(λ) = κ 7→ κ(QMinSum(λ), {λ})

(S87)
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S4 Operation orders for each physical quantity

S4.1 A partial order on recursion elements
Here, we describe novel operation orders that take advantage of the blockwise approach to calculations in the
multistranded ensemble (Figure S34). The resultant dependency graph of recursion elements provides the main
constraints in correctly handling calculations for a given physical quantity. Let λ denote a recursion element such
that it holds all of the non-global information needed to address a recursion (e.g., λ could be represented as (m, 2, 5)
for element Qm

2,5). We define a partial order on any two recursion elements λ1, λ2 such that if (and only) if the
definition of recursion λ2 is dependent on that for λ1, then λ1 < λ2. We define this partial order as a lexicographical
order on (1) the strand indices of the recursions, (2) the subsequence indices of the recursions, and (3) the recursion
types. In other words, two recursions are to be compared based on their associated strand indices, then their
subsequence indices, then their recursion types.

Complex ABC
C

block

B 
block BC

block

ABC
block

AB
block

A 
block

B C

AB
BC

ABC

A 

a b
Caching

Caching

Caching

Caching
Caching

Caching

Figure S34: Blockwise operation order. (a) Depiction of the blockwise approach. Strand indices a and b are used in the
pseudocode of Sections S4.2 and S4.3. (b) Dependency graph for block evaluation: bottom to top for forward algorithms, top
to bottom for backtracking algorithms. Black circles denote locations in the forward algorithms where block results may be
cached to avoid recomputation. Analogous to a single stranded dynamic program, which uses subproblems on subsequences
of nucleotides, the multistranded dynamic program uses subproblems on subsequences of strands.

Ordering on strand indices. We developed dynamic programming algorithms working over subsequences of
strands within a multistranded complex. Let ax and bx be the sorted strand indices of a given recursion element λx.
Then we implement a partial order on two recursion elements λ1 and λ2 by defining that λ1 < λ2 if (a2 < a1 and
b1 ≤ b2) or (a2 = a1 and b1 < b2). For instance, if a1 = 2, b1 = 3, a2 = 1, and b2 = 3, then λ1 < λ2 because the
strand range [a1 : b1] is nested within [a2 : b2].

Ordering on subsequence indices. Next we incorporate an analogous partial order on the subsequence
indices of different recursion elements. We define the subsequence index of a nucleotide as the index of its position
within its strand. Let ix and jx be the sorted subsequence indices of a given recursion λx. Then, if the strand indices
of λ1, λ2 are equal, we define that λ1 < λ2 if (i2 < i1 and j1 ≤ j2) or (i2 = i1 and j1 < j2). For instance, if (1) the
strand indices of λ1 and λ2 are equal, and (2) if i1 = 10, j1 = 30, i2 = 5, and j2 = 40, then λ1 < λ2 because the
nucleotide range [i1 : j1] is nested within [i2 : j2]. This ordering mirrors the structure encountered with strand indices
and is the historical order implicit in dynamic programming algorithms working within a single-stranded ensemble.

Ordering on recursion types. Finally, we define an ordering on the recursion types of different recursion
elements. Let i and j be any fixed sequence indices. Then we define T to be an ordered sequence of recursion types
such that for any indices p < q, the output of recursion (Tp, i, j) is not dependent on that of (Tq, i, j). Next, if T1

and T2 are two recursion types, then we define that T1 < T2 if and only if T1 appears before T2 in T. There are
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multiple logically consistent sequences T which could be defined for a given set of recursions. We implemented the
following ones for the recursions of Section S2:

Tnostacking ≡ [x, b,ms,m, s,∅]

Tstacking ≡ [x, b,md,mc,mcs,ms, cd, s,m,∅, n]
(S88)

For example, consider the two recursion elements λ1 ≡ (b, 1, 5) (corresponding to Qb1,5) and λ2 ≡ (m, 1, 5) (corre-
sponding to Qm1,5). Then λ1 < λ2 because b appears before m in T, no matter which set of recursions is used.

S4.2 Operation order for partition function, structure count, and MFE
Here, we describe the operation order for a block-based dynamic program over subcomplexes used for partition
function, structure count, and MFE. It relies on separate subroutines to calculate triangular intrastrand blocks and
rectangular interstrand blocks.

ComplexDynamicProgram takes parameters A, the evaluation algebra, φ, the sequence of the complex for
which to compute the partition function, and C, a map from sequences to blocks in which to store and retrieve
computed blocks. A may be one of SumProduct, Count, MinSum, or SplitExp. The subroutine returns the
complete block of dynamic program results FullQ.

ComplexDynamicProgram(A, φ, C)

L = Number of Sequences(φ)
FullQ← EmptyBlock(Length(φ)) // Initialize all matrix storage

for l ∈ [0 : L]
for a ∈ [1 : L− l]

b← a+ l
if φa,b ∈ C

// Take result for block from cache
FullQa,b ← C[φa,b]

else
if a = b

// Calculate intrastrand block
FullQa,a ← IntraStrandDynamicProgram(A, φa,a)

else
// Calculate interstrand block
InterStrandDynamicProgram(A, φa,b,FullQ[a:b],[a:b])

// Put result for block into cache
C[φa,b]← FullQa,b

return FullQ

Algorithm S3: Blockwise operation order over subcomplexes.

The outermost element of FullQ corresponding to Q1,N may be post-processed into the target physical quantity as
described in Section S5.
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Operation order for intrastrand blocks. We define the subsidiary operation order as follows for a single-
stranded subcomplex to return a fresh block Q. No prior information from other blocks is necessary. Iteration
proceeds in a forward sweep as illustrated in Figure 4.

IntraStrandDynamicProgram(A, φ)

N ← Length(φ)
for l ∈ [1 : N ]

for i ∈ [1 : N − l]
j ← i+ l − 1
for T ∈ T

// Calculate and store recursion output for QTi,j
λ← (T, i, j)
Q(λ)← RIntra(λ, φ)

return Q

Algorithm S4: Operation order for a triangular intrastrand block.

Operation order for interstrand blocks. We define the subsidiary operation order for a multistranded subcom-
plex to update the parameter Q with the outermost block, given that all subsidiary blocks are already calculated.
For instance, in Figure S34a, InterStrandDynamicProgram would calculate the top-right block ABC using the
prior calculations of blocks A, B, C, AB, and BC.

InterStrandDynamicProgram(A, φ,Q)

N ← Length(φ)
b← Nicks(φ)
m← First(b) // index of first base on second strand
n← Last(b) // index of first base on last strand

// Iteration proceeds from lowest to highest l ≡ j − i+ 1
for l ∈ [n−m+ 1 : N ]

for i ∈ [max(l, n)− l + 1 : min(m,N − l)]
j ← i+ l − 1
for T ∈ T

// Calculate and store recursion output for QTi,j
λ← (T, i, j)
Q(λ)← RInter(λ, φ)

Algorithm S5: Operation order for a rectangular interstrand block.
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S4.3 Operation order for equilibrium pair probability matrix
Here, we present the operation order for a block-based backtrack-free equilibrium pair probability algorithm (see
Figure 14b). Symbols have the same meanings as in Section S4.2, except FullQ is the block for the doubled
sequence φ′ instead of the input φ. Similarly, the Q and Qb matrices in line 0 refer to the recursion matrices for
φ′. After the dynamic programming algorithm the resultant Q and Qb entries are post-processed into the pair
probabilities matrix as in equation (17). The output of the algorithm is the matrix P (φ), such the P i,j(φ) is the
equilibrium probability of base pair i · j in the distinguishable ensemble Γ. It is interesting to note that the same
operation order coupled with the MinSum evaluation algebra can be used to calculate a matrix G(φ) such that
Gi,j(φ) is the lowest free energy of a stacking state containing base pair i · j.

The subroutine PartialInterStrandDynamicProgram behaves identically to InterStrandDynamicPro-
gram but stops once l in its outer recursion reaches N ≡ Length(φ). This savings can take place because the
backtrack-free pair probabilities methodology (Figure 14) only requires results from element indices (i, j) such that
i ≤ j ≤ i+N .

PairProbabilities(A, φ,FullQ, C)

L = Number of Sequences(φ)
φ′ = φ+ φ // Concatenated sequence of φ with itself
FullQ← EmptyBlock(Length(φ′)) // Initialize all matrix storage

for l ∈ [0 : L]
for a ∈ [1 : 2L− l]

b← a+ l

if φ′a,b ∈ C
// Take result from cache
FullQa,b ← C[φ′

a,b
]

else
if a = b

// Calculate intrastrand block
FullQa,a ← IntraStrandDynamicProgram(A, φ′a)

elseif l < L
// Calculate interstrand block
InterStrandDynamicProgram(A, φ′a,b,FullQ[a:b],[a:b])

else
// Calculate lower triangle of interstrand block
PartialInterStrandDynamicProgram(A, φ′a,b,FullQ[a:b],[a:b], N)

// Put results in cache
C[φ′

a,b
]← FullQa,b

Initialize N ×N matrix P
for i ∈ [1 : N ]

for j ∈ [1 : N ] and j 6= i
Pi,j = Qbi,jQ

b
j,N+iQ

−1
1,N // same as Equation 17

Pi,i = 1−
∑

1≤j≤N,j 6=i Pi,j
return P

Algorithm S6: Operation order for backtrack-free pair probabilities.
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S4.4 Operation order for sampled structure generation
Here, we describe a new operation order for simultaneously Boltzmann sampling J structures with a worst-case
time complexity O(JN2) using the full interior loop model. Algorithm illustrated in Figure S35 eliminates any
recomputation of the same recursion element. A priority queue is defined via the partial order on recursion element
λ from Section S4.1 via the recursion type, strand indices, and sequence indices of λ. The queue is initialized with
the single recursion element Q1,N and the indices of the associated sampled structures 1, . . . , J (i.e., all J sampled
structures that are to be generated). When an element is popped from the priority queue, if Jλ of the sampled
structures include this element, Jλ random numbers are drawn and sorted. Next, each of Nλ conditional ensembles
is traversed exactly once, and each matching contribution is enqueued along with every index of a matched structure.
This procedure yields a subproblem complexity of O(Nλ + Jλ log Jλ) compared to O(JλNλ) for the same algorithm
run J times for a single sample (i.e., a sequential approach).

...

...

...

...

c

a

d

b

Figure S35: Illustration of simultaneous sampling operation order. (a) The top recursion element λ is popped off the priority
queue along with its associated structures 1,2,3. (b) If the popped element λ is of type Qb

d,e, a base pair between d and e is
added to each associated structure 1,2,3. (c) The evaluation algebra is invoked with Jλ = 3, randomly assigning conditional
ensembles to structures 1,2,3. (d) The recursion elements corresponding to each conditional ensemble are added to the priority
queue along with their associated structures.

Algorithm S7 details the operation order for simultaneously generating J secondary structures Boltzmann sampled
from the ensemble of a complex of N nucleotides with sequence φ. The ArgRandJ evaluation algebra is used to
backtrack through each contribution to a given recursion element. We achieve an O(Nλ+Jλ log Jλ) in the subproblem
of backtracking through a given recursion element λ (neglecting logarithmic factors; see the complexity annotations
in Step 4). The worst-case time complexity of the simultaneous sampling algorithm is O(JN2). Actual performance
depends on the sequence of the complex. The speedup from simultaneous sampling is expected to be greatest when
the Boltzmann ensemble is dominated by fewer conditional ensembles (e.g., when there is a deep well in the free
energy landscape, as for designed ensembles), so that a simultaneous sampling approach avoids repeatedly sampling
the same recursive elements, as would happen with a sequential sampling approach. Empirical measurements of the
complete algorithm complexity are given in Section S6.6.3.
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1. Initialize an array L of J secondary structures with no base pairs.

2. Initialize an empty priority queue P of pairs of recursion element λ and vector of ordered structure indices ~v.

3. Enqueue a pair of λ = (∅, 1, N) and ~v = [1 : J ] into P.

4. While P is not empty:

(a) O(1) cost: Dequeue the highest priority element λ and its respective indices ~v from P (Figure S35a).

(b) Let Jλ be the length of ~v.

(c) O(Jλ) cost: If λ denotes any element Qbi,j , add a base pair i·j in each structure sl for l ∈ ~v (Figure S35b).
(d) O(Jλ) cost: Initialize an array ~w of Jλ random numbers uniformly distributed between 0 and

QSumProduct(λ). QSumProduct(λ) is the matrix element value obtained from the forward pass partition
function calculation.

(e) O(Jλ logJλ) cost: Sort ~w and reorder ~v by the same permutation.

(f) Initialize q = 0 as the running sum of contributions and k = 1 as the running index.

(g) Calculate the generator G = RArgRandJ(λ)(κ) in order to attribute conditional ensemble contributions
to the output structure indices ~v (Figure S35c). Essentially, the generator achieves iteration over each
possible conditional ensemble contribution to λ. For exposition, this may be achieved with the coroutine
κ(x,Λ) which yields (x,Λ) and returns κ. In practice, the loop below was programmatically implemented
via a callback function.

(h) For each of Nλ contributions (x,Λ) in G until k > Jλ:

i. Increment the accumulator q ← q + x.
ii. O(Jλ + Nλ) cost over all contributions: Find the remaining weights below q by calculating

k′ ← UpperBound(~w[k : j], q). This may be done via binary search.
iii. O(Jλ log min(J,N2)) cost over all contributions: For each element λ in Λ, enqueue (λ,~v[k :

k′ − 1]) into P (Figure S35d). If λ was already present in P, concatenate the indices ~v of the two
items.

iv. Update the running index k ← k′.

5. Return L.

Algorithm S7: Operation order for simultaneous structure sampling.
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S4.5 Operation order for interior loops in backtracking algorithms
We sample from the structural ensemble containing all interior loop states while achieving an asymptotic upper bound
of O(N2) for a single sample. The same argument may be applied to determination of a unique MFE proxy structure,
sMFE′ (see Section S4.6). As we explain below, this complexity reduction is made possible by iterating through the
interior loop states in order from fewest to most unpaired nucleotides. The operation orders for intrastrand recursions:

InteriorBacktrackIntra(i, j, φ) ≡

{⊕j−i−4
z=10

⊕z−5
s=5 Q

b
d,e ⊗W (∆Ginterior

i,d,e,j (φ)), j − i ≥ 6

0, otherwise

where d = i+ z − s
e = j − s

(S89)

and interstrand recursions:

InteriorBacktrackInter(i, j, φ) ≡

{⊕j−n+m−i
z=10

⊕min(z−5,m−i−1)
r=max(5,z−j+n) Q

b
d,e ⊗W (∆Ginterior

i,d,e,j (φ)), i < m− 1, n < j

0, otherwise

where d = i+ r

e = j + r − z
m = First(η)

n = Last(η)
(S90)

contrast with the historical operation orders for interior loops, which consider all 5′ inner bases d in ascending order
and then all 3′ inner bases e compatible with each d, again in ascending order (see equations (S47) and (S48)).

Note that like (S47) and (S48), the operation orders (S89) and (S90) result in O(N4) forward-pass algorithms
(see Section S2.4). This follows because for each closing pair i · j, we consider all O(n2) possible closing pairs d · e,
where n = j − i+ 1. However, the new operation order nonetheless enables O(N2) single-sample performance, as we
now show.

In the recursions for sampling the contributions to an element Qbi,j , hairpin loops, exterior loops, multiloops, and
inextensible interior loops (including all bulge loops and stack loops) are all sampled first. From the Rb recursions
in Figures S5, S10, S18, S27, one can see there are either O(1) or O(n) of these contribution types for a subsequence
of length n. There is only one hairpin loop, one stack loop, and O(n) bulge and inextensible interior loops. While
there are potentially more than O(n) multiloops consistent with i · j, they are handled recursively and there are only
O(n) contributions coming through Qm elements. Therefore, if only these states are sampled, the algorithm will
only recurse into at most O(N) Qb elements each costing at most O(N) for an over all complexity of O(N2) and we
would already have our bound.

So we limit ourselves to cases where at least one extensible interior loop is sampled. If iteration proceeds through
these interior loops in ascending order of number of unpaired bases, each inner base pair d · e will be encountered
at most once. To see this, assume the extensible interior loop with base pair d · e is sampled. Then every previous
base pair d′ · e′ iterated through in order to reach d · e will meet one of the following conditions: e′ − d′ > e − d or
d′ < d < e′ < e. The first case occurs for all interior loops with fewer unpaired nucleotides than the loop bounded by
base pair d ·e. The second case occurs for all interior loops with the same number of unpaired nucleotides as the loop
bounded by base pair d · e. In both cases, φd′,e′ is not a subsequence of φd,e and the base pair d′ · e′ cannot appear in
φd,e. Therefore, because (1) extensible interior loop contributions are only considered after contributions that lead
to an overall asymptotic upper bound of O(N2), (2) base pairs bounding extensible loops are not considered more
than once, and (3) there are a total of O(N2) possible base pairs bounding extensible loops in a sequence of length
N , the overall sampling algorithm scales as O(N2). This matches the asymptotic scaling of Ding and Lawrence,19
while including the complete class of large interior loops, some of which they exclude.
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S4.6 Operation order for suboptimal structure generation
In many cases, the core features of a complex ensemble may be summarized by its MFE proxy structure(s) (10), sMFE′ ,
or the set of all stacking states below a given free energy gap Γsubopt(φ,∆Ggap) (11). The set Γsubopt(φ,∆Ggap) can be
equivalently viewed as the set of structures corresponding to stacking states sq whose equilibrium probability p(φ, sq)
is at least pgap ≡ exp{−[∆G(φ, sqMFE) + ∆Ggap]/kT}/Q(φ). Γsubopt(φ,∆Ggap) is just the MFE proxy structure(s),
sMFE′ , when ∆Ggap = 0, and algorithmically we therefore focus on calculation of Γsubopt(φ,∆Ggap).

The program flow for determining suboptimal structures is controlled by a stack data structure containing partial
structures {s}. Each partial structure s represents all structures consistent with a given set of elements that have
energies below a free energy gap. It is defined as a tuple of (1) a priority queue of recursion elements, (2) a free
energy, and (3) a list of base pairs.

Using Algorithm S8, structure generation proceeds by popping the highest priority element λ from the top
partial structure s on the stack. The appropriate recursion for the element is used to iterate through the set of
all alternate conditional ensemble contributions via the ArgMinGap evaluation algebra. As for sampling, the
InteriorBacktrackIntra and InteriorBacktrackInter subroutines (Section S4.5) are used for the interior
loop recursions. For each alternate contribution falling below the given free energy gap, a new partial structure s′ is
generated from s. If a given contribution contained no elements and the priority queue of s′ is empty, s′ is output
as a complete structure; otherwise, s′ is pushed on the stack. The algorithm begins by pushing a partial structure
corresponding to Q1,N onto the stack and proceeds until the stack is empty.

Using a stack data structure, the algorithm runs in a depth first manner to discover completed structures as
early as possible. This allows emitting completed structures in a streaming fashion while additional structures
are determined. The algorithm yields Γsubopt(φ,∆Ggap) from sequence φ of length N ≡ |φ| with time complexity
O(|L|N2) for |L| suboptimal structures within the specified energy gap. This bound reflects the worst-case of a set of
|L| structures that contain no common recursion elements. Each structure must then be independently backtracked,
incurring the worst-case O(N2) complexity bound of Section S4.5. Because the number of structures returned, |L|,
is sequence- and parameter-dependent and potentially exponential in N , we did not attempt to bound the time
complexity further.

1. Initialize empty stack S of partial structures and empty multiset L of complete structures.

2. Create parent partial structure s containing just the element λ = (∅, 1, N) and push it onto S.

3. While S is not empty:

(a) Pop the first partial structure s off of the stack S.
(b) If there are no elements in s, it is complete, so add it to L and continue the while loop.

(c) Otherwise, dequeue the first element λ from s.

(d) Update the free energy of s via senergy ← senergy −QMinSum(λ). QMinSum(λ) is the matrix element value
obtained from the forward pass MFE calculation.

(e) If λ denotes any element Qbi,j , add a base pair i · j in structure s.

(f) Calculate the generator G = RArgMinGap(λ)(κ). Essentially, the generator achieves iteration over each
possible conditional ensemble contribution to λ. For exposition, this may be achieved with the coroutine
κ(x,Λ) which yields (x,Λ) and returns κ. In practice, the loop below was programmatically implemented
via a callback function.

(g) For each contribution (x,Λ) in G where senergy + x ≤ ∆Ggap + ∆G(φ, sqMFE):

i. Initialize a new partial structure s′ from s by copying the priority queue and list of base pairs from s
and setting its free energy to s′energy = senergy + x.

ii. For each element λ′ ∈ Λ, enqueue λ′ into the priority queue of partial structure s′.
iii. Push s′ onto the stack S.

4. Return L.

Algorithm S8: Operation order for suboptimal structure generation.
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S5 Distinguishability issues

For a complex of L strands, the ensemble Γ treats each strand as distinct while the ensemble Γ treats strands with
the same sequence as indistinguishable. Both ensembles have conceptual utility as they provide different perspectives
when examining the physical properties of a complex. In laboratory experiments, strands with the same sequence
are typically indistinguishable, so calculations over ensemble Γ are crucial for comparison to experimental data
(e.g., equilibrium secondary structure probabilities and equilibrium complex concentrations). On the other hand,
calculations over ensemble Γ can sometimes provide information that is valuable precisely because it cannot be
measured experimentally (e.g., equilibrium base-pairing probability matrix).

All of the dynamic programs described in the present work operate on ensemble Γ using free energy model (1)
where each strand is treated as distinct. This is a matter of algorithmic necessity, as the free energy model (4)
used for ensemble Γ contains a symmetry correction that depends on the global rotational symmetry R of each
secondary structure s ∈ Γ. For efficiency reasons, the dynamic programs avoid explicitly enumerating each structure,
instead operating on local loop free energies to incorporating information for multiple structures simultaneously while
operating only on local loop free energies. As a result, the dynamic programs cannot incorporate a different global
rotational symmetry correction for each structure because they never have access to global structural information.
However, to facilitate comparisons to experimental data, physical quantities calculated using a dynamic program
over ensemble Γ using physical model (1) can be post-processed to obtain the corresponding physical quantities over
ensemble Γ using physical model (4). In the following sections, we outline the situation for each physical quantity
treated in the present work.

S5.1 Partition function

The partition function dynamic program calculates Q(φ) = Q1,N (for a complex with N nucleotides) over ensemble
Γ using free energy model (1) treating all strands as distinct. The Distinguishability Correction Theorem of Dirks
et al.2 shows that this quantity can be used to calculate the partition function Q(φ) over ensemble Γ using physical
model (4) treating strands with the same sequence as indistinguishable. For convenience, we include the associated
definitions and proof2 here to enable extension of this analysis to other physical quantities.

Consider a complex of L strands with ordering π, where some of the strands may be indistinguishable. Let G be
the group of v(π) cyclic permutations mapping each strand to a strand of the same species. For example, v(π) = 4
for π = AAAA, v(π) = 3 for π = ABABAB, and v(π) = 2 for π = ABAABA, v(π) = 1 for π = AAB, where the
elements of G correspond to all rotations of a polymer graph that map strands of type A→A and strands of type
B→B. We term v(π) the periodic strand repeat of the complex with ordering π.

For complexes in which all strands are distinct, v(π) = 1. Complexes containing multiple copies of the same
strand species may have v(π) > 1, in which case the calculated partition function will be incorrect for ensemble Γ
and free energy model (4) due to symmetry and redundancy errors that are different for different structures in the
ensemble. For example, consider a complex with strand ordering π = AAAA (Figure S36), that contains structures
with either a 1-fold (i.e., no symmetry), 2-fold, or 4-fold rotational symmetry. Each of these cases will be treated
incorrectly from the perspective of ensemble Γ and physical model (4). Dirks et al.2 show that the symmetry and
redundancy errors interact in such a way that they can be exactly and simultaneously corrected.

Consider an arbitrary secondary structure s ∈ Γ. A permutation g ∈ G acts on a secondary structure s by
relabeling strand identifiers: g(s) = {ig(m) · jg(n) : im · jn ∈ s}. The stabilizer of s, Gs = {g ∈ G : g(s) = s}, is the
set of cyclic permutations of strand identifiers (rotations of the polymer graph) that map s onto itself. The order of
the rotational symmetry of the physical complex with secondary structure s is given by |Gs|, requiring a correction
of +kT log |Gs| to the standard loop-based free energy.

The orbit of s in G, G(s) = {g(s) ∈ Γ : g ∈ G}, is the subset of Γ corresponding to the images of s under the
permutations of the group G. Note that the members of G(s) represent secondary structures within Γ that would be
indistinguishable if the unique identifiers were removed from strands of the same species. Consequently, the partition
function contribution of secondary structure s ∈ Γ will be overcounted by a factor of |G(s)| because the dynamic
program treats elements of the orbit as algorithmically distinct even though they are physically indistinguishable.

The orbit-stabilizer theorem of group theory20 provides the useful relationship

|Gs||G(s)| = |G| = v(π), ∀ s ∈ Γ

linking the symmetry and redundancy effects. Crucially, the product |Gs||G(s)| depends only on the strand ordering
π and is independent of the specific secondary structure s ∈ Γ.
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a b c

Figure S36: Example secondary structures and polymer graphs for a complex with strand ordering π =AAAA. The four
strands have the same sequence and are distinct in ensemble Γ (each with a unique identifier in {1,2,3,4}) but indistinguishable
in ensemble Γ. The partition function dynamic program operates on ensemble Γ. After completing a calculation, if the strand
identifiers are conceptually removed with the goal of converting the partition function Q(φ) from ensemble Γ to the partition
function Q(φ) in ensemble Γ, different structures in Γ have different rotational symmetries and different redundancies in Γ.
Structures with an R-fold rotational symmetry are missing a penalty of +kT logR to the free energy model and hence are
overweighted in the partition function by a factor of R. Structures with an S-fold redundancy are overcounted in the partition
function by a factor of S. (a) 1-fold (i.e., no) rotational symmetry; 4-fold redundancy (4 indistinguishable structures as each
stem plays the role of having 2 base pairs). (b) 2-fold rotational symmetry; 2-fold redundancy (2 indistinguishable structures as
each opposing pair of stems plays the role of having 2 base pairs). (c) 4-fold rotational symmetry; 1-fold (i.e., no) redundancy.

Theorem 1 (Partition Function Distinguishability Correction) For a complex with strand ordering π, if the
partition function dynamic program yields Q(φ) for ensemble Γ, then the partition function for ensemble Γ accounting
for both symmetry and redundancy corrections is Q(φ) = Q(φ)/v(π).

Proof. The partition function algorithm applied to ensemble Γ yields

Q(φ) =
∑
s∈Γ

exp{−∆G(φ, s)/kT}. (S91)

The partition function for ensemble Γ is then

Q(φ) =
∑
s∈Γ

exp{−∆G(φ, s)/kT}

=
∑
s∈Γ

exp{−(∆G(φ, s) + kT log |Gs|)/kT} (S92)

=
∑
s∈Γ

∑
σ∈G(s)

1

|G(σ)|
exp{−(∆G(φ, σ) + kT log |Gσ|)/kT} (S93)

=
∑
s∈Γ

1

|G(s)|
exp{−(∆G(φ, s) + kT log |Gs|)/kT} (S94)

=
1

v(π)

∑
s∈Γ

exp{−∆G(φ, s)/kT} (S95)

=
Q(φ)

v(π)
. (S96)

Thus, the symmetry and redundancy corrections combine to give a uniform factor v(π)−1 that is independent of the
structure s ∈ Γ, enabling exact conversion of Q(φ) into Q(φ).

The partition function Q(φ) for ensemble Γ is suitable for calculating physical quantities that will be compared to
experimental measurements in which strands of the same species are indistinguishable (e.g., equilibrium secondary
structure probabilities p(φ, s) or equilibrium complex concentrations x). The corresponding complex free energy is

∆G(φ) = −kT logQ(φ), (S97)
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which should not be confused with ∆G(φ, s), the free energy of a single secondary structure s ∈ Γ.

S5.2 Equilibrium secondary structure probability

In ensemble Γ treating all strands as distinct, the equilibrium probability of any secondary structure s ∈ Γ is:

p(φ, s) =
1

Q(φ)
exp{−∆G(φ, s)/kT} (S98)

where Q(φ) is the partition function over ensemble Γ treating all strands as distinct and ∆G(φ, s) is calculated using
(1).

In ensemble Γ treating strands with the same sequence as indistinguishable, the equilibrium probability of any
secondary structure s ∈ Γ is:

p(φ, s) =
1

Q(φ)
exp{−∆G(φ, s)/kT} (S99)

where Q(φ) is calculated using (S96) and ∆G(φ, s) is calculated using (4).
The relationship between the probabilities in the two ensembles is given by:

p(φ, s) =
1

Q(φ)
exp{−∆G(φ, s)/kT} (S100)

=
v(π)

Q(φ)
exp{−[∆G(φ, s) + kT log |Gs|]/kT} (S101)

=
v(π)

Q(φ)

∑
σ∈G(s)

1

|G(σ)|
exp{−[∆G(φ, σ) + kT log |Gσ|]/kT} (S102)

=
1

Q(φ)

∑
σ∈G(s)

exp{−∆G(φ, σ)/kT} (S103)

=
∑

σ∈G(s)

p(φ, σ) (S104)

(S105)

where the structures in the set G(s) for s ∈ Γ become redundant if the distinct identifiers are removed from strands
of the same species. Hence, p(φ, s) is the sum of the (identical) probabilities p(φ, s) of these redundant structures.

S5.3 Equilibrium base-pairing probabilities
Using a bactrack-free dynamic program, the matrix of equilibrium base-pairing probabilities P (φ) is calculated over
ensemble Γ using free energy model (1) treating all strands as distinct. One may visualize a thought experiment in
which all strands, all nucleotides, and all base-pairs are distinct, with equilibrium base-pairing probabilities available
for each of these distinct base pairs. The probabilities in this matrix are not directly comparable to experimental
measurements in which strands of the same sequence are indistinguishable, but nonetheless provide a valuable and
detailed window into the complex ensemble.

Let

p(i1 · j2) (S106)

denote the equilibrium probability for base-pair (i1 · j2) with nucleotide i of a strand with identifier 1 pairing to
nucleotide j of a strand with identifier 2. Let

p(i1) (S107)

denote the equilibrium probability that base i of a strand with identifier 1 is unpaired.
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S5.4 Structure sampling
The simultaneous sampling algorithm Boltzmann samples a set of J secondary structures

Γsample(φ, J) (S108)

from ensemble Γ using free energy model (1) treating all strands as distinct. Unlike the equilibrium base-pairing
probability matrix P (φ), by averaging or clustering the sampled structures, it is possible to examine correlations
between base pairs. As the number of sampled structures increases, the average structural properties over the sampled
set recover the equilibrium base-pairing probability matrix:

P (φ) = lim
J→∞

1

J

∑
s∈Γsample

S(s) (S109)

A set of J structures Γsample(φ, J) sampled from ensemble Γ where all strands are distinct can be post-processed
to generate a set of structures Γsample(φ, J) sampled from ensemble Γ where strands with the same sequence are
indistinguishable.

For ensemble Γ with free energy model (1), a structure s ∈ Γ is Boltzmann sampled with probability p(φ, s) by
the sampling dynamic program, yielding an integer number of samples nsample(φ, s) ∈ {0, . . . , J}. Conceptually, for
ensemble Γ with free energy model (4), a structure s ∈ Γ would be Boltzmann sampled with probability p(φ, s). We
have previously derived the relationship (S104) between the equilibrium probabilities in the two ensembles:

p(φ, s) =
∑

σ∈G(s)

p(φ, σ) (S110)

The equilibrium probability of a structure s ∈ Γ is simply the sum of the equilibrium probabilities of the structures
σ ∈ G(s) that are indistinguishable in ensemble Γ upon removal of their unique identifiers. Hence, the sample count
for Boltzmann sampling from ensemble Γ with free energy model (1) is obtained by summing the sample counts for
the structures σ ∈ G(s) that are indistinguishable in ensemble Γ upon removal of their unique identifiers:

nsample(φ, s) =
∑

σ∈G(s)

nsample(φ, σ). (S111)

S5.5 Equilibrium complex concentrations

Consider a test tube ensemble containing a set of strand species Ψ0 interacting to form the set of complex species Ψ.
To calculate the set of equilibrium concentrations xΨ ≡ xc ∀c ∈ Ψ, we first calculate the set of partition functions
QΨ using (S96). The complex concentrations xΨ (specified as mole fractions) are then the unique solution to the
strictly convex optimization problem:2

min
xΨ

∑
c∈Ψ

xc(log xc − logQc − 1) (S112a)

subject to
∑
c∈Ψ

Ai,cxc = x0
i ∀i ∈ Ψ0. (S112b)

Here, A is the stoichiometry matrix such that Ai,c is the number of strands of type i in complex c and x0
i denotes the

total concentration of strand species i in the test tube. Following Dirks et al.,,2 this problem is solved efficiently in
the dual form as an unconstrained convex optimization problem using a trust-region method with a Newton dog-leg
step21 using Cholesky decomposition for the Newton matrix inversions.

S5.6 Ensemble pair fractions
If a complex contains some indistinguishable strands, distinguishability effects arise at the secondary structure
level in the form of rotational symmetry corrections and algorithmic overcounting corrections (Section S5.1). New
distinguishability issues arise when examining individual base pairs within these secondary structures.2 For example,
consider a complex π = AAB involving two indistinguishable copies of strand A (with identifiers 1 and 2) and one
copy of strand B (with identifier 3). Periodic strand repeat v(π) = 1 so no symmetry and overcounting corrections
are required for any structure s ∈ Γ. However, base pairs (i1 · j3) and (i2 · j3) are indistinguishable since strands
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1 and 2 are both of type A. Likewise, without the global structural context, the inter- and intra-strand base pairs
(i1 · j2) and (i1 · j1) are also indistinguishable. Fortunately, the equilibrium base-pairing probabilities calculated over
ensemble Γ (Section S5.3) can be used to calculate base-pairing observables that account for this indistinguishability.

First, consider a complex in which strands with the same sequence are indistinguishable. Let Θ be the set of
strand species in the complex and {θ} be the set of all strand identifiers corresponding to strands of type θ ∈ Θ
(hence L =

∑
θ∈Θ |{θ}|). We define the expected number of base pairs between base i on strands of type A ∈ Θ and

base j on strands of type B ∈ Θ to be E(i{A} · j{B}) ∈ [0,min(|{A}|, |{B}|)]. For a given complex,

E(i{A} · j{B}) =
∑

lA∈{A}

∑
lB∈{B}

p(ilA · jlB )

represents a sum over the contributions of each type of distinct base pair, where each term p(ilA ·jlB ) is an equilibrium
base-pairing probability (S106).

Now consider a test tube in which strands with the same sequence are indistinguishable. Let Ψ0 denote the set
of strand species that interact to form the set of complex species Ψ. For a complex k ∈ Ψ, let Ek(i{A} · j{B}) denote
the expectation value that base i of strand species A ∈ Θk pairs to base j of strand species B ∈ Θk, where Θk ⊆ Ψ0

denotes the set of strand species that appear in complex k. For a test tube ensemble at equilibrium, the expected
concentration of base pairs between base i of strands of type A and base j of strands of type B is

x(iA · jB) =
∑
k∈Ψ

xkEk(i{A} · j{B}).

For experimental studies, it is usually more convenient to measure the expected fraction of A strands or B strands
that form this base pair:

fA(iA · jB) = x(iA · jB)/x0
A (S113)

fB(iA · jB) = x(iA · jB)/x0
B , (S114)

respectively. These ensemble pair fractions are conceptually suitable for comparison to a FRET experiment designed
to measure formation of a base-pair between base i of strands of type A with base j of strands of type B.

Similarly, the concentration x(iA) of strand species A ∈ Ψ0 with base i unpaired is

x(iA) = x0
A −

∑
B∈Ψ0

NB∑
j=1

x(iA · jB),

and the fraction of A strands that have base i unpaired is

fA(iA) = x(iA)/x0
A. (S115)

The total concentration of unpaired bases in solution is

xunpaired =
∑
A∈Ψ0

x(iA) =
∑
k∈Ψ

xk

Nk∑
j=1

P j,j(φk) (S116)

and the total fraction of unpaired bases in solution is

funpaired = xunpaired/
∑
A∈Ψ0

x0
ANA (S117)

The total fraction unpaired is conceptually suitable for comparison to an absorbance measurement.

S5.7 MFE free energy and secondary structure

The MFE dynamic program returns the free energy of the MFE stacking state in ensemble Γ using free energy model
(1):

∆G(φ, sqMFE). (S118)
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Note that the MFE algorithm does not return the free energy of the MFE secondary structure sMFE but rather the
free energy of the MFE stacking state sqMFE. This is a consequence of the recursions operating on stacking state as
the elementary state. The backtracking dynamic program then returns the secondary structure

sMFE′ = {s ∈ Γ|sqMFE∈s, s
q
MFE(φ) = arg min

sq∈Γ
q
∆G(φ, sq)}. (S119)

that contains sqMFE within its subensemble. Thus, this structure is not the MFE secondary structure, sMFE, but
rather a proxy sMFE′ that contains sqMFE within its subensemble. The free energy of this secondary structure can be
cheaply evaluated in ensemble Γ using (1) to yield ∆G(φ, sMFE′) or in ensemble Γ using (4) to yield ∆G(φ, sMFE′).

Because the recursions operate on stacking states as the elementary state, it is not clear how to calculate the
MFE free energy ∆G(φ, sMFE) and secondary structure sMFE for ensemble Γ. As a result, there is also no starting
point for post-processing these results to calculate ∆G(φ, sMFE) or sMFE for ensemble Γ.

This situation is not entirely satisfactory. By definition, an MFE secondary structure has the highest equilibrium
probability, p(φ, sMFE), in structural ensemble Γ. However, p(φ, sMFE) can nonetheless be arbitrarily small due to
competition from other structures in Γ. For ensembles where p(φ, sMFE) is non-negligible, an attractive alternative to
the deterministic approach is to use Boltzmann sampling to discover the MFE secondary structure. One advantage
of the random approach is that it determines MFE status based on secondary structure s rather than subensemble
stacking state sq ∈ s.

Sampling is performed for ensemble Γ treating all strands as distinct. Suppose that the identity of sMFE is
unknown, as is its free energy ∆G(φ, sMFE) and its equilibrium probability p(φ, sMFE). The probability, pfail, that a
sample of J structures does not include a structure sMFE that has probability p(φ, sMFE) ≥ pmin is

pfail ≤ (1− pmin)J . (S120)

Inverting this relationship, for a given pmin, we can calculate the number of samples, J , required to assure a failure
probability no higher than pfail:

J ≥ log pfail

log(1− pmin)
≈ log pfail

−pmin
(S121)

Because the dependence of J on pfail is logarithmic, it is inexpensive to reduce pfail for fixed pmin. For example, for
pmin = 0.01, we have J ≥ 688 for pfail = 10−3 and J ≥ 2750 for pfail = 10−12. However, the required number of
samples is sensitive to the value of pmin (the assumed lower bound in the MFE probability). For example, holding
pfail = 10−12 fixed, we require J ≥ 27, 618 samples for pmin = 0.001 and J ≥ 276, 297 samples for pmin = 0.0001.
While that number of samples remains affordable using the new simultaneous sampling algorithm (Figure 15), if the
MFE probability becomes vanishingly small, the required number of samples would grow too large to be practical.
On the other hand, if the MFE probability is vanishingly small, the MFE structure may not provide a useful summary
of the equilibrium base-pairing properties of the ensemble (in which case the equilibrium base-pairing probability
matrix P (φ) will continue to provide such a summary).

After sampling J structures using the new simultaneous sampling method, let pMFE∗ denote the highest probability
of the sampled structures, and let sMFE∗ denote the MFE proxy structure determined by random sampling. The
probability that there exists an (undiscovered) MFE structure with pMFE ≥ pMFE∗ is bounded by

pfail ≤ [1− p(φ, sMFE∗)]
J . (S122)

Hence, after sampling J structures, it is straightforward calculate the probability that the true MFE structure was
not identified. If desired, additional samples can be performed to increase J (potentially identifying a higher pMFE∗)
and further reduce the failure rate.

One of the other drawbacks of the deterministic approach of equations (9) and (10) is that it does not treat
ensemble Γ where strands with the same sequence are indistinguishable, which is the circumstance for typical ex-
perimental measurements. However, the random MFE algorithm can be applied using samples from ensemble Γ, in
which case the a posteriori failure bound (S122) is replaced by

pfail ≤ [1− p(φ, sMFE∗)]
J . (S123)

The MFE free energy ∆G(φ, sMFE∗) is then directly comparable to the complex free energy ∆G(φ) (S97) for ensemble
Γ with

∆G(φ) ≤ ∆G(φ, sMFE∗). (S124)

See Section S6.7 for an empirical comparison of deterministic and random algorithms in calculating the MFE free
energy and secondary structure.
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S6 Additional studies

Except where otherwise noted, computational studies were performed for ensemble stacking with parameters rna95
(Section S1.5) for RNA at 37 ◦C in 1 M Na+, subject to two historical modifications: 1) G·U wobble pairs are prohibited
as terminal base pairs in exterior loops and multiloops, and 2) terminal mismatch free energies are replaced by two
dangle stacking free energies in exterior loops and multiloops (see equation (S55). All benchmarks were run on AWS
EC2 C5 instances using a single computational core (3.0 GHz Intel Xeon Platinum processors with 72 GB of memory,
except 144 GB for of memory for figures involving complexes containing 30,000 nt).

S6.1 Comparison of predictions to structure databases
One approach to evaluating the quality of secondary structure models is make predictions for databases of structures
drawn from comparative sequence analysis and/or tertiary structure measurements.22,23 Here, were compare the
complex ensembles nostacking and stacking for two RNA parameter sets rna95 and rna06 using the “Archive II”
structure database from Reference 22 and the “SSTRAND” structure database from Reference 23. The free energy
parameters in the models we are testing were regressed based on experiments in 1M Na+. By contrast, the database
structures reflect a range of experimental conditions. As a result, it is unclear whether improvements in the free
energy model (loop free energy parameter sets) and/or the structural ensemble (stacking/no stacking) in modeling
RNA in 1M Na+ should be expected to yield convergence to database reference structures. For this reason, we draw
no conclusions, but nonetheless document comparisons between predictions and database structures to serve as a
reference (Table 2). We calculated three quantities:

• the normalized complex ensemble defect24,25

1−N−1
∑

1 ≤ i ≤ N
1 ≤ j ≤ N

P
i,j

(φ)Si,j(s∗) ∈ (0, 1)

representing the equilibrium fraction of nucleotides that are paired differently over the complex ensemble relative
to the database structure. Here, N is the number of nucleotides, P (φ) is the calculated base-pairing probability
matrix, and S(s∗) is the structure matrix corresponding to the database structure s∗.

• the normalized MFE defect25

1−N−1
∑

1 ≤ i ≤ N
1 ≤ j ≤ N

Si,j(sMFE′)S
i,j(s∗) ∈ [0, 1]

representing the fraction of nucleotides in the MFE proxy structure sMFE′ that are paired differently relative
to the database structure s∗.
• the F-measure22

2qr

q + r
∈ [0, 1]

representing the harmonic mean of the precision q (the fraction of pairs in the predicted sMFE′ that are in the
database structure s∗) and the sensitivity r (the fraction of pairs in the database structure s∗ that are in the
predicted sMFE′).

Note that at equilibrium, a sequence will adopt an ensemble of secondary structures. However, the structure database
typically records only a single structure per sequence. The MFE defect and F-measure similarly represent the
computed equilibrium structural ensemble using a single MFE proxy structure sMFE′ . Hence, these two quantities
are comparing one representative structure to another, potentially neglecting non-negligible contributions by other
structures in the ensemble.
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a

Parameters Structural ensemble Ensemble defect MFE defect F-measure

rna06 nostacking 0.492 0.479 0.476
stacking 0.450 0.448 0.525

rna95 nostacking 0.393 0.372 0.598
stacking 0.422 0.393 0.568

b

Parameters Structural ensemble Ensemble defect MFE defect F-measure

rna06 nostacking 0.463 0.452 0.479
stacking 0.433 0.427 0.513

rna95 nostacking 0.406 0.392 0.556
stacking 0.386 0.370 0.583

Table 2: Comparison of predictions to structure databases. (a) “Archive II” database from Reference 22 (excluding pseudo-
knotted structures). (b) “SSTRAND” database from Reference 23. Calculations performed for RNA at 37 ◦C in 1 M Na+

using either the rna95 or rna06 parameter sets with either the nostacking or stacking structural ensemble. Ensemble defect
and MFE defect approach 0 as predictions approach a database structure. F-measure approaches 1 as predictions approach a
database structure.

S6.2 Empirical dependence of ensemble size on complex size

We performed calculations to measure the number of secondary structures, |Γ(φ)|, and stacking states, |Γ�
(φ)|, for

a set of complexes with random sequences. Empirically, |Γ(φ)| and |Γ�
(φ)| grow exponentially with the number

of nucleotides in the complex (Figure S37). Least-squares linear regressions on the log-linear data yielded the fits
|Γ(φ)| = 0.00156 · 1.770N (r = 0.9999994) and |Γ�

(φ)| = 0.00650 · 2.023N (r = 0.9999996). Note that these results
are sequence-dependent (e.g., φ = AAAAA... will have an ensemble size of |Γ(φ)| = 1 independent of complex size).

Figure S37: Calculated ensemble sizes for complexes of random sequences. Each complex comprises 3 RNA strands of equal
length. Each data point represents the mean over 10 replicates with different sequences.
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S6.3 Empirical dependence of partition function on complex size
We use our overflow-safe partition function algorithm (with evaluation algebra SplitExp) to calculate partition
functions of both random complexes of 3 strands and designed duplexes to determine for what complex sizes overflow
is predicted to occur using a non-overflow-safe partition function algorithm (corresponding to evaluation algebra
SumProduct) with different floating point formats (single, double, and quad precision). For the designed duplexes,
NUPACK was used to reduce the complex ensemble defect below 1%.25,26 Relative to random sequences, the
designed sequences result in a deeper well on the free energy landscape and a larger partition function for a given
complex size (Figure S38). Least-squares linear regression of log-linear data yielded the fits: logQ = 0.5146N−7.305
(r = 0.999986) for random complexes and logQ = 1.5614N − 4.266 (r = 0.999993) for designed duplexes. Based on
the maximum representable values with different floating point formats, random complexes are predicted to overflow
at 187 nt, 1,393 nt, and 22,080 nt with single, double, and quad precision, respectively. The designed duplexes were
predicted to overflow at 58 nt, 456 nt, and 7,275 nt with single, double, and quad precision, respectively. Without
the overflow-safe evaluation algebra, edge-case sequences such as the repeating sequence φ = GGG...CCC... have
been observed to cause overflow at sequence sizes as low as 4,500 nt using quadruple precision. Figure S39 displays
example MFE proxy structures for random and designed sequences; the designed sequence has a larger partition
function with nucleotides that adopt the depicted base-pairing state with higher probability on average.
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Figure S38: Dependence of partition function on complex size for random and designed sequences. (a) Partition function
on a log scale vs complex size on a linear scale (log-linear data). (b) Same data plotted as log of the partition function on a
log scale vs complex size on a log scale (loglog-log data). The thresholds for overflow using different float point formats are
plotted as dashed lines, demonstrating that the overflow-safe algebra enables calculations for larger complexes. Solid lines of
best fit in panel (a) are plotted as solid curves in panel (b). Each random complex comprises 3 RNA strands of equal length.
Each designed duplex comprises 2 RNA strands of equal length. Each data point represents a mean over 5 replicate sequences.
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b

Figure S39: Example MFE proxy structures for random and designed sequences. a) Random sequence. Left: MFE proxy
structure sMFE′ for a 3 × 300 nt trimer, partition function Q(φ) = 1.537·10187, complex free energy ∆G(φ) = −265.6 kcal/mol.
Right: nucleotide defect with respect to sMFE′ . b) Designed sequence: MFE proxy structure sMFE′ for a 3 × 300 nt trimer,
partition function Q(φ) = 2.092 · 10279, complex free energy ∆G(φ) = −396.4 kcal/mol. Right: nucleotide defect with respect
to sMFE′ . Nucleotide defect relative to sMFE′ represents the probability that a given nucleotide does not adopt the depicted
MFE base-pairing state.
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S6.4 Relative cost of partition function, equilibrium pair probability, and MFE cal-
culations

The cost of calculating the partition function, Q(φ), equilibrium pair probability matrix, P (φ), and MFE,∆G(φ, s�MFE)
are profiled using O(N3) dynamic programs in Figure S40. Relative to the partition function, the MFE algorithm
is comparable for small complexes and up to ≈ 4× faster for large complexes due to the use of the overflow-safe
evaluation algebra for the partition function. The pair probabilities algorithm is roughly 2× the cost of the partition
function algorithm, except for a spike to ≈ 3× at complex sizes around the threshold for when the overflow-safe
evaluation algebra turns on for the pair probabilities algorithm.
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Figure S40: Relative cost of partition function, equilibrium pair probability, and MFE calculations. (a) Computational cost.
(b) Relative cost of MFE and pair probability calculations to partition function calculations. Each complex comprises 3 RNA
strands with random sequences of equal length. Each data point represents a mean over 5 replicate sequences.
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S6.5 Speed and scalability of partition function calculations with different floating
point formats and evaluation algebras

Figure S41 demonstrates the relative cost of performing partition function calculations with single-precision or double-
precision floats using the non-overflow-safe SumProduct evaluation algebra, the overflow-safe SplitExp evaluation
algebra, and the overflow-safe production implementation that dynamically switches from single-precision, to double-
precision, to overflow-safe as required by the calculation. The overflow-safe evaluation algebra is roughly 2× slower
than single-precision and double-precision floats, but enables calculations for larger complexes. The production
approach transitions between the different costs as the complex size increases.
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Figure S41: Speed and scalability of partition function calculations with different floating point formats and evaluation
algebras. (a) Computational cost. (b) Cost relative to the production algorithm. Each complex comprises 3 RNA strands
with random sequences of equal length. Each data point represents a mean over 5 replicate sequences.
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S6.6 Performance of simultaneous vs sequential structure sampling
Here, we compare the cost of sequential vs simultaneous Boltzmann-sampling a set of J structures from a complex
ensemble. The reported computation times do not include calculation of the partition function, which must precede
structure sampling. We performed studies with complexes of either random sequences (Section S6.6.1) or designed
sequences (Section S6.6.2) and then estimated the empirical algorithm complexities (Section S6.6.3). Speedups using
simultaneous sampling are expected to increase for free energy landscapes characterized by a deep well due to the
avoidance of sequentially resampling the same structural elements from the well. Hence, we would expect the typical
speedup for designed sequences to be greater than for random sequences. For random sequences, the speedup using
simultaneous vs sequential sampling is 7-10× for J = 103 samples and 10-24× for J = 104 samples. For designed
sequences, the speedup using simultaneous vs sequential sampling is 9-34× for J = 103 samples and 11-55× for
J = 104 samples. Because these designed complexes were generated using the MFE proxy structures of random
sequences as the target structure for sequence design, they do not have particularly deep free energy wells compared
to typical designed sequences (for example, these target structures will contain duplexes as short as 1 bp). As a result,
the relative performance for simultaneous vs sequential sampling should increase even more for typical engineered
complexes.

S6.6.1 Structure sampling for random complexes

Each random complex comprises 3 RNA strands with random sequences of equal length (ranging from 10 to 3000
nt each). Ten sets of replicate sequences were used for each complex size. For each complex, J structures were
sampled (ranging from 101 to 106 structures). The computational cost of sampling J structures is plotted for each
replicate in Figure S42. The mean speedup using simultaneous vs sequential sampling is plotted across complex sizes
in Figure S43 and across number of samples in Figure S44.
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Figure S42: Cost of simultaneous and sequential structure sampling for random complexes for different numbers of samples
J ∈ 101, . . . , 106. J structures are sampled for each of 10 replicate sets of sequences per complex size. Each data point
represents the sampling time for one replicate. Lines represent univariate regressions (see Section S6.6.3).
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Figure S43: Sampling cost as a function of complex size (N) for random complexes. (a) Cost of simultaneous and sequential
sampling. Each data point represents the mean over all replicates for a given complex size. (b) Speedup using simultaneous
vs sequential sampling. Each data point represents the ratio of means.
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Figure S44: Sampling cost as a function of number of samples (J) for random complexes. (a) Cost of simultaneous and
sequential sampling. Each data point represents the mean over all replicates for a given complex size. (b) Speedup using
simultaneous vs sequential sampling. Each data point represents the ratio of means. Not that for sufficiently large J , the cost
of sorting becomes significant, lessening the speedup of the simultaneous approach.
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S6.6.2 Structure sampling for designed complexes

Each designed complex comprises 3 RNA strands with sequences of equal length (ranging from 10 to 3000 nt each).
The sequences for a given designed complex were obtained by calculating the MFE proxy structure for a random
complex, and then using that as the target structure for sequence design and reducing the complex ensemble defect
below 1%.25,26 Ten sets of replicate sequences were used for each complex size. For each complex, J structures were
sampled (ranging from 101 to 106 structures). The computational cost of sampling J structures is plotted for each
replicate in Figure S45. The mean speedup using simultaneous vs sequential sampling is plotted across complex sizes
in Figure S46 and across number of samples in Figure S47.
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Figure S45: Cost of simultaneous and sequential structure sampling for designed complexes for different numbers of samples
J ∈ 101, . . . , 106. J structures are sampled for each of 10 replicate sets of sequences per complex size. Each data point
represents the sampling time for one replicate. Lines represent univariate regressions (see Section S6.6.3)
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Figure S46: Sampling cost as a function of complex size (N) for designed complexes. (a) Cost of simultaneous and sequential
sampling. Each data point represents the mean over all replicates for a given complex size. (b) Speedup using simultaneous
vs sequential sampling. Each data point represents the ratio of means.
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Figure S47: Sampling cost as a function of number of samples (J) for designed complexes. (a) Cost of simultaneous and
sequential sampling. Each data point represents the mean over all replicates for a given complex size. (b) Speedup using
simultaneous vs sequential sampling. Each data point represents the ratio of means. Not that for sufficiently large J , the cost
of sorting becomes significant, lessening the speedup of the simultaneous approach.
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S6.6.3 Empirical complexity estimates

Here, we measure empirical complexities for the sequential and simultaneous Boltzmann sampling algorithms using
the random and designed complexes from Sections S6.6.1 and S6.6.2. Table 3 uses bivariate least-squares linear
regression to estimate the complexities with respect to N and J . For sequential sampling, the empirical complexity
is ∼ J1.0N1.3 for both random and designed complexes (the complexity in J is close to 1 because the calculation
is just a repetition of a single sample J times). For simultaneous sampling, the empirical complexity is ∼ J0.8N1.2

for random complexes and ∼ J0.8N1.1 for designed complexes. Tables 4 and 5 use univariate least squares linear
regressions to estimate the complexity with respect to J for fixed N and the complexity with respect to N for fixed
J .

Sequences Method αN αJ P (s) r-value

Random Sequential 1.2893 0.9913 2.190e-07 0.9982
Random Simultaneous 1.1876 0.7806 3.437e-07 0.9902
Designed Sequential 1.3126 0.9946 1.934e-07 0.9979
Designed Simultaneous 1.1323 0.8094 2.799e-07 0.9848

Table 3: Bivariate least-squares linear regression of the fit log T ≈ αN logN+αJ log J+logP such that T ≈ PNαN JαJ , with
N the number of nucleotides in the complex, J the number of samples, T the computation time in seconds, αN the complexity
in N , αJ the complexity in J , and P the prefactor. For sequential sampling, αJ is close to 1 because the calculation is simply
a repetition of a single sample J times.

Complexes Method N αJ P (s) r-value

Random Sequential 30 0.9879 2.608e-05 0.9998
Random Sequential 90 0.9974 6.706e-05 0.9999
Random Sequential 300 0.9932 2.410e-04 0.9998
Random Sequential 900 0.9977 9.204e-04 0.9993
Random Sequential 3000 0.9818 7.578e-03 0.9994
Random Sequential 9000 0.9899 3.816e-02 0.9996

Random Simultaneous 30 0.7975 2.444e-05 0.9881
Random Simultaneous 90 0.8253 4.854e-05 0.9925
Random Simultaneous 300 0.8158 1.807e-04 0.9881
Random Simultaneous 900 0.8105 6.520e-04 0.9914
Random Simultaneous 3000 0.7316 7.078e-03 0.9900
Random Simultaneous 9000 0.7031 3.734e-02 0.9916

Designed Sequential 30 0.9899 2.522e-05 0.9996
Designed Sequential 90 0.9973 6.533e-05 0.9998
Designed Sequential 300 0.9961 2.549e-04 0.9994
Designed Sequential 900 0.9969 9.643e-04 0.9996
Designed Sequential 3000 0.9922 7.679e-03 0.9979
Designed Sequential 9000 0.9949 4.098e-02 0.9988

Designed Simultaneous 30 0.8374 1.456e-05 0.9860
Designed Simultaneous 90 0.8586 3.029e-05 0.9879
Designed Simultaneous 300 0.8524 1.023e-04 0.9854
Designed Simultaneous 900 0.8306 4.288e-04 0.9858
Designed Simultaneous 3000 0.7570 3.662e-03 0.9759
Designed Simultaneous 9000 0.7207 1.914e-02 0.9737

Table 4: Univariate least-squares linear regressions of the fit log T ≈ αJ log J + logP for fixed values of N such that
T ≈ PJαJ , with N the number of nucleotides in the complex, J the number of samples, T the computation time in seconds,
αJ the complexity in J , and P the prefactor. For sequential sampling, αJ is close to 1 because the calculation is simply a
repetition of a single sample J times.
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Complexes Method J αN P (s) r-value

Random Sequential 101 1.2878 2.104e-06 0.9921
Random Sequential 102 1.2855 2.063e-05 0.9929
Random Sequential 103 1.2856 2.047e-04 0.9930
Random Sequential 104 1.2870 2.032e-03 0.9929
Random Sequential 105 1.2872 2.029e-02 0.9930
Random Sequential 106 1.2870 2.034e-01 0.9930

Random Simultaneous 101 1.3117 9.975e-07 0.9848
Random Simultaneous 102 1.2836 5.124e-06 0.9896
Random Simultaneous 103 1.2288 3.453e-05 0.9931
Random Simultaneous 104 1.1360 3.800e-04 0.9960
Random Simultaneous 105 1.0526 5.910e-03 0.9983
Random Simultaneous 106 1.0575 7.958e-02 0.9992

Designed Sequential 101 1.3032 1.996e-06 0.9906
Designed Sequential 102 1.3111 1.853e-05 0.9914
Designed Sequential 103 1.3130 1.826e-04 0.9915
Designed Sequential 104 1.3142 1.809e-03 0.9916
Designed Sequential 105 1.3145 1.806e-02 0.9916
Designed Sequential 106 1.3145 1.805e-01 0.9916

Designed Simultaneous 101 1.2708 6.636e-07 0.9866
Designed Simultaneous 102 1.1939 4.066e-06 0.9908
Designed Simultaneous 103 1.0799 5.096e-05 0.9954
Designed Simultaneous 104 1.0315 5.403e-04 0.9981
Designed Simultaneous 105 1.0074 7.228e-03 0.9990
Designed Simultaneous 106 1.0420 8.692e-02 0.9991

Table 5: Univariate least-squares linear regressions of the fit log T ≈ αN logN + logP for fixed values of J such that
T ≈ PNαN , with N the number of nucleotides in the complex, J the number of samples, T the computation time in seconds,
αN the complexity in N , and P the prefactor.
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S6.7 Comparison of deterministic vs random MFE proxy structure estimation
Here, we compare the empirical performance of the deterministic and random approaches for estimating the MFE
secondary structure over a complex ensemble with coaxial and dangle stacking subensembles (see Section S5.7).
For recursions with coaxial and dangle stacking, the deterministic approach of using of the MinSum and ArgMin
evaluation algebras yields the deterministic MFE proxy structure, sMFE′ , that contains the MFE stacking state sqMFE

within its subensemble (this is not guaranteed to be the MFE secondary structure sMFE). Alternatively, with the
random approach, the random MFE proxy structure, sMFE∗ , is the lowest free energy structure encountered within
a random sample of J structures from the complex ensemble.

Comparisons are made for RNA sequences designed for the “multistranded engineered test set” of Reference 25
comprising target structures randomly assembled from duplex and loop sizes representative of the nucleic acid
nanotechnology literature. Five independent sequence designs with ensemble defect ≤ 1% were designed for each
of 30 target structure for complex sizes N ∈ {100, 200, 400, 800, 1600, 3200}. MFE proxy structures were calculated
using deterministic and random approaches for each of the 150 structures per complex size (using J = 105 samples
for the random approach)

For this test set, the two methods typically yield proxy structures with similar free energies for smaller struc-
tures but the deterministic approach yields proxy structures with lower free energies as the complex ensemble gets
larger (Figure S48ab). The equilibrium probability of the MFE proxy structure drops as the complex size increases
(Figure S48cd), reducing the probability that the random approach discovers the true MFE for a fixed number of
samples. Nonetheless, the MFE proxy structures generated by the two methods are structurally similar, having a
median normalized base-pairing distance (defined below) that increases with complex size up to ≈1.5% for com-
plexes with 3200 nt (Figure S48e). Note that the free energy of the MFE proxy structure, ∆G(φ, sMFE′), is typically
substantially lower than the free energy of the MFE stacking state, ∆G(φ, sqMFE), indicating that the MFE stacking
state does not typically dominate the other stacking states in the subensemble of the secondary structure to which
it contributes (Figure S48f).

The normalized base-pairing distance between two secondary structures, s1 and s2, containing N nucleotides each
is the fraction of nucleotides paired differently in the two structures:25

d(s1, s2) = 1− 1

N

N∑
i=1

N∑
j=1

Si,j(s1)Si,j(s2). (S125)

Here, S(s) is the structure matrix with entries defined as follows:

Si,j(s) ≡


1 i 6= j and structure s contains base pair i · j
1 i = j and base i is unpaired in structure s
0 otherwise

(S126)

Hence S(s) is symmetric, the row sums of the augmented S(s) matrix are unity, and 0 ≤ d(s1, s2) ≤ 1.
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Figure S48: Comparison of deterministic vs random MFE proxy structure estimation. Each data point represents median
± median absolute deviation for 150 sequences per complex size. (a) Free energies of MFE proxy structures: deterministic
(∆G(φ, sMFE′)) and random (∆G(φ, sMFE∗). (b) Residuals from panel (a). (c) Equilibrium probability of the deterministic
MFE proxy structure. (d) Equilibrium probability of the random MFE proxy structure. (e) Normalized base-pairing distance
(S125) between the deterministic and random MFE proxy structures. (f) Comparison of structure free energy ∆G(φ, sMFE′)
and stacking state free energy ∆G(φ, s�MFE) for deterministic MFE proxy structures.
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S7 Validation

Here, we summarize the unit tests (Section S7.1) and regression tests (Section S7.2) used to validate the unified
dynamic programming framework. Tests involving comparisons to enumerated quantities use the exhaustive enu-
meration algorithms described in Section S7.3.

S7.1 Unit tests
Over 100 C++ and Python unit tests were run via continuous integration on a dedicated JetBrains TeamCity
server, comprising O(107) test case assertions in total. Unless otherwise noted, unit tests for RNA employed rna95
parameters and unit tests for DNA employed dna04 parameters.

• Individual loop free energies. Test example loop free energies for all loop types vs manual calculations,
including contributions from dangles and coaxial stacking, for each current parameter set (rna95, rna06,
dna04).

• Secondary structure enumeration. Check structure counts, partition functions, and MFEs using O(N3)
algorithms vs enumerated calculations, with wobble pairs on and off, for single and multiple random strands of
DNA and RNA, with the recursions corresponding to any of the complex ensembles (stacking, nostacking,
none-nupack3, some-nupack3, all-nupack3).

• Partition functions and counts with coaxial and dangle stacking. Check that O(N3) algorithms
for the stacking complex ensemble match vectorized and unvectorized reference Python implementations of
pseudocode for partition function and count for single and multiple random strands of DNA and RNA.

• Overflow-safe evaluation algebra. Check that overflow-safe partition function agrees with non-overflow
variants for each complex ensemble (stacking, nostacking, none-nupack3, some-nupack3, all-nupack3), for
single and multiple random strands of DNA and RNA.

• Consistency between data types. Verify that all results are equal for partition function calculations
on complexes of up to 4 random RNA strands, using both O(N4) and O(N3) algorithms, for the following
algorithms that transition between floating point formats to achieve overflow-safe performance: (1) 32 bit →
32 bit overflow-safe, (2) 32 bit → 64 bit overflow-safe, (3) 64 bit → 32 bit overflow-safe, (4) 32 bit → 64 bit
non-overflow-safe→ 32 bit overflow-safe. Perform this test for each complex ensemble (stacking, nostacking,
none-nupack3, some-nupack3, all-nupack3).

• Consistency when using caching methodology for multistranded calculations. Verify consistency
of block caching used in multistranded algorithm for pair probability and partition function for random RNA
strands, O(N3) and O(N4) algorithms, caching on and off, different orders of evaluations of requested com-
plexes, on random sequences and edge cases we found during development. Perform this test for each complex
ensemble (stacking, nostacking, none-nupack3, some-nupack3, all-nupack3).

• Boltzmann sampled structure generation. Estimate equilibrium structure probabilities and equilibrium
base-pairing probability matrix from Boltzmann-sampled structures and check convergence to exact values
as the number of samples increases. Perform this test for each complex ensemble (stacking, nostacking,
none-nupack3, some-nupack3, all-nupack3) on single and multiple random strands of RNA.

• Comparisons of different complexity algorithms. Check that O(N3) and O(N4) algorithms agree for
structure counts and partition functions. Perform this test for each complex ensemble (stacking, nostacking,
none-nupack3, some-nupack3, all-nupack3) on single and multiple random strands of RNA.
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S7.2 Regression tests
Regression tests were performed by comparing to results calculated using NUPACK 3.2.2 for historical complex
ensembles and parameters sets supported by NUPACK 3.

• Individual secondary structure free energies. Test structure free energies vs NUPACK 3 for single
and multiple random strands, wobble pairs on and off, random temperatures, historical complex ensembles
(none-nupack3, some-nupack3, all-nupack3), and historical parameter sets (rna95-nupack3, dna04-nupack3,
rna99-nupack3).

• Necklace generation. Test necklace generation for rotationally distinct strand orderings up to (|Ψ0| = 10
strand species, Lmax = 4 strands per complex) vs NUPACK 3. Check that the number of free energies returned
via dynamic programs is equal to the number of necklaces requested.

• Partition functions and counts compared to NUPACK 3. Check that structure counts and par-
tition functions agree with NUPACK 3, for historical complex ensembles (none-nupack3, some-nupack3,
all-nupack3), for historical parameter sets (rna95-nupack3, dna04-nupack3, rna99-nupack3), for wobble
pairs on and off, for single and multiple random strands of RNA and DNA.

• Comparison with NUPACK 3 for different parameter sets. Check that structure counts and partition
functions agree with NUPACK 3 for single and multiple random strands, for random temperatures, random
concentrations of Na+ (RNA or DNA) and Mg++ (DNA only), historical complex ensembles (none-nupack3,
some-nupack3, all-nupack3), and historical parameter sets (rna95-nupack3, dna04-nupack3, rna99-nupack3).

• MFE structures. Check agreement with NUPACK 3 for single and multiple random strands of RNA and
DNA, for historical ensembles (none-nupack3, some-nupack3, all-nupack3), for historical parameter sets
(rna95-nupack3, dna04-nupack3, rna99-nupack3), for wobble pairs on and off.

• Equilibrium base-pairing probability matrices. Check matrices vs NUPACK 3 for single and mul-
tiple random strands of RNA and DNA, for historical complex ensembles (none-nupack3, some-nupack3,
all-nupack3), for historical parameter sets (rna95-nupack3, dna04-nupack3, rna99-nupack3), for wobble
pairs on and off. Test additional historical edge case sequences.

• Suboptimal and MFE structures. Check that generated structures for single and multiple random strands
of DNA and RNA are identical to NUPACK 3 for 0 and 0.4 kcal/mol energy gaps, for historical com-
plex ensembles (none-nupack3, some-nupack3, all-nupack3), for historical parameter sets (rna95-nupack3,
dna04-nupack3, rna99-nupack3), for wobble pairs on and off. Test additional historical edge case sequences.

• Equilibrium concentrations. Check convergence and solution accuracy vs NUPACK 3 concentration solver
using partition functions of random RNA complexes, random DNA complexes, and isolated edge cases that
were found not to converge well in earlier versions of the code.
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S7.3 Exhaustive enumeration algorithms

Here, we provide pseudocode for exhaustive enumeration algorithms that are used to help validate O(N4) and O(N3)
dynamic programs on complexes that are small enough to permit exhaustive enumeration. Exhaustive enumeration
is performed for a complex ensemble without coaxial and dangle stacking (Section S7.3.1), for enumeration of the
coaxial and dangle stacking subensemble for a single secondary structure (Section S7.3.2), and for a complex ensemble
with coaxial and dangle stacking (Section S7.3.3).

S7.3.1 Enumeration of complex ensemble without coaxial and dangle stacking subensembles

This pseudocode enumerates all possible secondary structures for a given complex ensemble (strand ordering) in a
recursive manner. The implementation is chosen for its simplicity (rather than its efficiency), and relies on imposing a
total ordering on base pair indices (i, j) via the function CompareBasePair. EnumerateSecondaryStructures
is a generator function that yields all possible secondary structures by delegating to the inner generator function
EnumerateHigherStructures. EnumerateSecondaryStructures yields all possible secondary structures
including potentially disconnected structures that are not part of the complex ensemble. Any disconnected structures
are removed in post-processing.

CompareBasePair(p, p′)

i, j ← p
i′, j′ ← p′

return i < i′ or (i = i′ and j < j′)

EnumerateSecondaryStructures(φ)

N ← Length(φ)
s← UnpairedStructure(N)
p← (0, 0)
EnumerateHigherStructures(φ, s, p)

EnumerateHigherStructures(φ, s, p)

N ← Length(φ)
for i ∈ [1 : N ]

for j ∈ [i+ 1 : N ]
p′ ← (i, j)
if CanPair(φ, i, j) and CompareBasePair(p, p′)

s′ ← AddBasePair(s, p′)
EnumerateHigherStructures(φ, s′, p′)

Yield s

Algorithm S9: Enumeration of all secondary structures consistent with sequence φ.
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S7.3.2 Enumeration of coaxial and dangle stacking subensemble for a single secondary structure

Stacking states are constructed hierarchically from a given secondary structure by first finding all coaxial stacking
states (without dangles) for each loop and then finding all dangle stacking states consistent with each coaxial stacking
state. The top-level function EnumerateStackingStatesForStructure is a generator function that yields all
possible stacking states for a given secondary structure and sequence. EnumerateStackingStatesForStructure
does this by delegating to the function EnumerateLoopStackingStates, that yields all stacking states for a given
loop within the secondary structure. EnumerateLoopStackingStates relies on the function GetValidMasks,
that returns a list of all possible coaxial stacking states within the loop (neglecting dangles) and the function
GetLoopStackingStates, that yields all stacking states for a loop consistent with a given coaxial stacking state.

The function Product takes a list of generators (or lists), G, and returns a tuple of elements, one from each
generator (or list). This approach lazily generates all tuples from the cartesian product of the sets generated by each
generator in G. (equivalent to a nested “for” loop with |G| levels of nesting).

The function Type returns the type of loop (“hairpin”, “stack”, “bulge”, “interior”, “multi” or “exterior”). The
function Subsequences splits the sequences of the loop into subsequences between the base pairs and nicks. For
example, in a multiloop with base pairs i · j, d · e, and f · g with i < d < e < f < g < j, the function returns the
list of subsequences [φ[i:d], φ[e:f ], φ[g:j]]. In an exterior loop with a on the 3′ side of the nick and b on the 5′ side of
the nick and base pairs i · j and d · e with a < i < j < d < e < b, the function returns the list of subsequences
[φ[a:i], φ[j:d], φ[e:b]]. For each region of the loop, its stacking state is indicated with a number: 0 for no nucleotides
stacking, 1 for a coaxial stack between the two adjacent base pairs, 3 for the 3′-most nucleotide stacking on the 3′

base pair, 5 for the 5′-most nucleotide stacking on the 5′ base pair, and 8 for the 3′-most nucleotide stacking on the
3′ base pair and the 5′-most nucleotide stacking on the 5′ base pair (if these are distinct nucleotides).

For a given subsequence, the function Before returns true if: (1) a base pair 5′-adjacent to the given subsequence
is involved in a coaxial stack, or (2) there is a nick 5′-adjacent to the given subsequence. For a given subsequence, the
function After returns true if: (1) a base pair 3′-adjacent to the given subsequence is involved in a coaxial stack,
or (2) there is a nick 3′-adjacent to the given subsequence. These properties: (1) prevent nucleotides from dangle
stacking on a base pair that is already in a coaxial stack, and (2) prevent nucleotides adjacent to a nick from being
included in invalid dangle states.

The function CoaxAdjacent returns true if a base pair either 5′- or 3′-adjacent to the given subsequence is
involved in a coaxial stack. The function NickAdjacent returns true if there is a nick either 5′- or 3′-adjacent to
the given subsequence.

EnumerateStackingStatesForStructure(φ, s)

G← [ ]
for l ∈ Loops(s)

Append(G,EnumerateLoopStackingStates(φ, l))
for [ω] ∈ Product(G) // [ω] is a list of stacking states within each loop in s

sq ← StackingState(s, [ω])
Yield(sq)

Algorithm S10: Enumeration of all stacking states for a given sequence φ and secondary structure s.

EnumerateLoopStackingStates(φ, l)

φR ← Subsequences(φ, l)
V mask ← GetValidMasks(φR, l)
if V mask = [ ]

Yield NoStacking()
for vmask ∈ V mask

GetLoopStackingStates(φR, l, vmask)

Algorithm S11: Enumeration of all stacking states for a given sequence φ and loop l. If the loop is not an exterior loop or
multiloop, the function NoStacking returns an object indicating that the loop does not having a subensemble of stacking
states (since coaxial and dangle stacking are defined only for exterior loops and multiloops).
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GetValidMasks(φR, l)

if ¬(Type(l) = “multi” or Type(l) = “exterior”)
return [ ] // No stacking states have to be enumerated

vindices ← [ ]
for i ∈ [1 : |φR|]

if |φRi | = 2
Append(vindices, i)

// Enumerate all possible combinations of coaxial stacks between base pairs in the loop.
V mask ← [ ]

for i ∈ [0 : 2|v
indices|]

// Consider each combination of a base pair being in a coaxial stack or not.
tmask ← BinaryVector(i, |vindices|)
vmask ← [ ]
for i ∈ [1 : |φR|]

if i ∈ vindices
Append(vmask, tmask

i )
else

Append(vmask, 0)

// Filter out any mask that is invalid.
c← true
for i ∈ [1 : |φR|]

if vmask
i = 1 and CoaxAdjacent(φRi , v

mask, l)
c← false

if c = true
Append(V mask, vmask)

return V mask

Algorithm S12: Enumeration of all coaxial stacking states in a given loop l containing sequence regions φR. The function
BinaryVector(number, width) produces a vector of 1s and 0s that is the binary representation of the input number with
zero-padding up to the input width.
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GetLoopStackingStates(φR, l, vmask)

GR ← [ ]
// Consider each subsequence region bounded by base pairs within the loop:
for i ∈ |φR|

if |φRi | ≥ 3 or (|φRi | ≥ 2 and NickAdjacent(φRi ))
if After(φRi , v

mask, l) and ¬Before(φRi , v
mask, l)

Append(GR, [0, 5]) // No dangles, or 5′ dangle

elseif Before(φRi , v
mask, l) and ¬After(φRi , v

mask, l)
Append(GR, [0, 3]) // No dangles, or 3′ dangle

elseif ¬(Before(φRi , v
mask, l) or After(φRi , v

mask, l))
if |φRi | = 3

Append(GR, [0, 3, 5]) // No dangles, 3′ dangle, or 5′ dangle
elseif |φRi | > 3

Append(GR, [0, 3, 5, 8]) // No dangles, 3′ dangle, 5′ dangle, or both 3′ and 5′ dangles
else

Append(GR, [vmask
i ])

// Yield all possible combinations of dangle states.
for [x] ∈ Product(GR)

ω ← LoopStackingState(l, [x])
Yield(ω)

Algorithm S13: Enumeration of stacking states for given loop l containing sequence regions φR consistent with a given
coaxial stacking state vmask. LoopStackingState constructs a representation of a given loop l with a given list of stacks [x].

S7.3.3 Enumeration of complex ensemble with coaxial and dangle stacking subensembles

To obtain all the stacking states for the complex, the above functions EnumerateSecondaryStructures and
EnumerateStackingStatesForStructure are composed.

EnumerateStackingStates(φ)

for s ∈ EnumerateSecondaryStructures(φ)
EnumerateStackingStatesForStructure(φ, s)

Algorithm S14: Enumeration of all stacking states consistent with sequence φ.
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