SUPPORTING INFORMATION

An Efficient Synthesis of Geminal-Dialkyl Dienes for Olefin Metathesis Polymerization

William J. Wolf, ${ }^{\dagger \text { ª }}$ Jiaming Li, ${ }^{\dagger \mathrm{a}}$ Simon C. Jones, ${ }^{\text {b }}$ Brian M. Stoltz, ${ }^{\mathrm{c}}$ and Robert H. Grubbs*a

a-The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
b-Electrochemical Technologies Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
c- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
${ }^{\dagger}$ These authors contributed equally
*to whom correspondence should be addressed: rhg@caltech.edu

TABLE OF CONTENTS

General Considerations S2
Experimental Procedures S2
DSC Data. S14
NMR Spectra. S15
References S60

General Considerations

Unless otherwise stated, all reactions were performed under argon atmosphere using oven dried glassware. Anhydrous solvents were dried using activated alumina and stored in Schlenk flasks over activated $3 \AA$ molecular sieves. All reagents were purchased from commercial suppliers (TiCl_{4} was purchased from Acros Organics, all other reagents and solvents were purchased from Millipore Sigma) and used as received. $\mathrm{CDCl}_{3}(99.8 \% \mathrm{D})$ was purchased from Cambridge Isotope Laboratories, Inc. and used as received. Methyl 9-decenoate was a donation from Elevance Renewable Sciences. The second generation Ru metathesis catalyst was received as a donation from Materia Inc. NMR spectra were collected using Varian 500 or 600 MHz spectrometers or a Bruker 400 MHz spectrometer. Mass spectrometry was performed at the Caltech Mass spectrometry facility. Differential Scanning Calorimetry was performed using a Mettler Toledo DSC 3+ Star System. Ethyl-(E)-hex-4-enoate, ${ }^{\text {i }}$ and nona-1,8-dien-5-one ${ }^{\text {ii }}$ were synthesized according to literature precedent.

Experimental Procedures

(Z)-cyclooct-4-en-1-one (11): According to a known procedure, ${ }^{\text {iii }}$ a solution of hydrogen peroxide (35% in water, $5 \mathrm{~mL}, 60 \mathrm{mmol}$) was added to a mixture of palladium acetate ($90 \mathrm{mg}, 0.4 \mathrm{mmol}$), benzoquinone ($87 \mathrm{mg}, 0.8 \mathrm{mmol}$) and 1,5 -cyclooctadiene ($5.4 \mathrm{~mL}, 40 \mathrm{mmol}$). The mixture was stirred for 5 days at $30^{\circ} \mathrm{C}$. The mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and water was added (100 mL) then the mixture was slowly basified with 1 M NaOH solution while cooling with ice. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic layers were twice washed with 1 M NaOH and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Distillation under reduced pressure afforded ketone 11 ($1.36 \mathrm{~g}, 27 \%$ yield) as a colorless oil.
Spectral data matched those reported in the literature. iv

(12:13>50:1)
(Z)-2,2-dimethylcyclooct-4-en-1-one (12): To a stirred solution of $\mathrm{KO} t$ - Bu ($5.61 \mathrm{~g}, 2.5$ equiv) in THF (100 mL) was added ketone $11(2.48 \mathrm{~g}, 20.0 \mathrm{mmol})$ in THF (20 mL). The solution was stirred for 1 hour at $-40^{\circ} \mathrm{C}$, and MeI ($6.3 \mathrm{~mL}, 5.0$ equiv) was added. The reaction mixture was slowly warmed to $23^{\circ} \mathrm{C}$ and stirring was continues for 20 hours. Water (50 mL) was then added and the aqueous phase was extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. GC analysis showed $>50: 1$ ratio of products 12 and 13, and pure compound 12 can be isolated by column chromatography ($\mathrm{SiO}_{2}, 10: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) as a colorless liquid ($1.29 \mathrm{~g}, 42 \%$).

TLC (10:1 pentane/ $\left.\mathrm{Et}_{2} \mathrm{O}\right)$: $\mathrm{R}_{\mathrm{f}}=0.4\left(\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.69-5.56(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 217.5,131.9,129.2,52.6,37.8,36.5,27.3,26.3,23.7$.
HRMS (FAB+, m/z): calc'd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$153.1279, found: 153.1276.

(Z)-4,4-dimethylcyclooct-1-ene (16): Ketone $\mathbf{1 2}(2.10 \mathrm{~g}, 13.8 \mathrm{mmol})$ in THF (50 mL) was added to a solution of Red-Al ($16.6 \mathrm{mmol}, 1.2$ equiv) in THF (40 mL) dropwise at $-78^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at the same temperature for 3 hours, the solution was quenched with $0.1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were then washed with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was filtered through a plug of silica with $\mathrm{Et}_{2} \mathrm{O}$ wash. The crude alcohol product $\mathbf{1 4}$ was obtained as a colorless oil (2.23 g), which was used in the next step without further purification.

To a suspension of NaH (60% in mineral oil, $2.24 \mathrm{~g}, 96 \mathrm{mmol}, 4.0$ equiv) in THF (100 mL) at $0{ }^{\circ} \mathrm{C}$ was added alcohol $14(2.23 \mathrm{~g}, 14 \mathrm{mmol}, 1.0$ equiv) in THF $(20 \mathrm{~mL})$. The mixture was stirred for 30 min , at which point $\mathrm{CS}_{2}(8.4 \mathrm{~mL}, 140 \mathrm{mmol}, 10.0$ equiv) was added. The mixture was stirred for an additional 30 min , at which point iodomethane ($8.7 \mathrm{~mL}, 140 \mathrm{mmol}, 10.0$ equiv) was added. The reaction mixture was allowed to warm to room temperature for 3 hours before being quenched with $\mathrm{MeOH}(50 \mathrm{~mL})$ and evaporated in vacuo. The residue was dissolved in EtOAc (100 mL), washed with water $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography (SiO_{2}, hexanes) afforded crude xanthate $15(4.42 \mathrm{~g})$ as a yellow oil.

Then, methyl xanthate 15 ($733 \mathrm{mg}, 3 \mathrm{mmol}, 1.0$ equiv) was dissolved in a flame-dried 500 mL flask with benzene (100 mL), combined with $\mathrm{H}_{2} \mathrm{O}(0.27 \mathrm{~mL}, 15 \mathrm{mmol}, 5.0$ equiv) and allowed to stir for 1 h . Argon gas was then bubbled through the solution for a period of 1 h , after which, a solution of $\mathrm{BEt}_{3}(1.0 \mathrm{M}$ in THF, $15 \mathrm{~mL}, 15 \mathrm{mmol}, 5.0$ equiv) was added via syringe pump over 1 h. On completion of BEt_{3} addition, dry oxygen ($54 \mathrm{~mL}, 2.4 \mathrm{mmol} \mathrm{O}_{2}, 0.8$ equiv) was introduced
via syringe pump at a rate of $1.2 \mathrm{ml} / \mathrm{hr}$ through a stainless steel cannula positioned beneath the reaction surface. Upon completion of air addition, hydrogen peroxide (30% in water, 50 mL) and sodium hydroxide (3.0 M in water, 50 mL) were introduced simultaneously into the reaction mixture (Caution: reaction is exothermic). After stirring for 10 min , the solution was diluted with brine (100 mL), and the aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). Combined organic portions were dried over anhydrous sodium sulfate, filtered, and concentrated. Distillation under reduced pressure afforded $\mathbf{1 6}$ as a colorless oil ($297 \mathrm{mg}, 72 \%$).
TLC (pentane): $\mathrm{R}_{\mathrm{f}}=0.9\left(\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85-5.48(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.49 (dd, $J=6.0,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.33-1.23$ (m, 2H), 0.89 (s, 6H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.4,128.9,39.7,37.5,36.1,30.3,29.0,26.8,23.5$.
HRMS (EI+, m/z): calc'd for $\mathrm{C}_{10} \mathrm{H}_{18}[\mathrm{M}]^{+\bullet} 138.1409$, found: 138.1408 .

Nonadeca-1,18-dien-10-one (18): A 100 mL three-necked round bottom flask was fitted with a dropping funnel and two ground glass stoppers and charged with a magnetic stirbar, NaH ($60 \mathrm{wt} \%$ in mineral oil, $3.7 \mathrm{~g}, 92 \mathrm{mmol}, 1.2$ equiv), and toluene (25 mL). This suspension was heated to $100^{\circ} \mathrm{C}$ and a solution of methyl 9-decenoate ($14.3 \mathrm{~g}, 80 \mathrm{mmol}, 1$ equiv) in toluene (10 mL) was added dropwise over the course of 30 min . The reaction mixture was then heated to $110{ }^{\circ} \mathrm{C}$ with stirring for 24 h , cooled to ambient temperature and quenched by the slow addition of MeOH . The solvent was removed in vacuo and the residue was suspended in $\operatorname{EtOH}(50 \mathrm{~mL})$ and water (25 mL). $\mathrm{NaOH}(1.6 \mathrm{~g}, 1.0$ equiv) was added and the reaction mixture was heated to reflux for 2 h . After cooling to ambient temperature, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with water $(3 \times 50 \mathrm{~mL})$, brine (30 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated. Crystallization with MeOH afforded 18 as a white solid (10.2 g, 90% yield over two steps)
Spectral data matched those reported in the literature. ${ }^{\vee}$

Trideca-1,12-dien-7-one (26): To a stirred solution of hydrazone $\mathbf{2 5}$ ($4.0 \mathrm{~g}, 40 \mathrm{mmol}, 1.0$ equiv) in THF (80 mL) was added n-butyl lithium solution ($16.8 \mathrm{~mL}, 2.5 \mathrm{M}$ solution in hexanes, 42 mmol , 1.05 equiv). After stirring 30 minutes at $0^{\circ} \mathrm{C}, 5$-bromo-1-pentene ($4.8 \mathrm{~mL}, 40 \mathrm{mmol}, 1.0$ equiv) was added and the reaction mixture was stirred for 1 hour at $23^{\circ} \mathrm{C}$. Then the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ again and n-butyl lithium solution ($16.8 \mathrm{~mL}, 2.5 \mathrm{M}$ solution in hexanes, 42 mmol , 1.05 equiv) was added. After stirring 30 minutes at $0^{\circ} \mathrm{C}$, 5 -bromo- 1 -pentene ($4.8 \mathrm{~mL}, 40 \mathrm{mmol}$, 1.0 equiv) was added again and the reaction mixture was stirred for 2 hours at $23{ }^{\circ} \mathrm{C}$ before quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times$ 100 mL) and the combined organic phases were washed with brine (100 mL), dried over anhydrous
MgSO_{4}, filtered, and concentrated under reduced pressure. The crude reaction mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, and HCl solution ($16 \mathrm{~mL}, 3.0 \mathrm{M}$) was added. After 12 h , the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic phases are washed with saturated NaHCO_{3} solution (100 mL). Column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexanes/EtOAc) gave 26 as a colorless oil ($7.0 \mathrm{~g}, 90 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.66$ (ddt, $\left.J=16.9,10.2,6.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.94-4.77(\mathrm{~m}, 4 \mathrm{H}), 2.32$ $-2.23(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.2,138.5,114.6,42.6,33.6,28.5,23.3$.
HRMS (EI+, m/z): calc'd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}]^{+\bullet} 194.1671$, found: 194.1646.

Henicosa-1,20-dien-11-one (29): A 500 mL flamed-dried round bottom flask charged with ethyl 10 -undecenoate ($21.0 \mathrm{~g}, 100 \mathrm{mmol}, 1.0$ equiv) and sodium ethoxide ($3.4 \mathrm{~g}, 50 \mathrm{mmol}, 0.5$ equiv) was equipped with a reflux condenser and a vacuum adapter. The reaction was stirred at $100^{\circ} \mathrm{C}$ under a dynamic vacuum (2 torr) for 12 hours to remove the ethanol produced. After the reaction was cooled to $23^{\circ} \mathrm{C}$, the crude β-keto ester 29a was dissolved in ethanol (50 mL) and 2 M NaOH solution ($20 \mathrm{~mL}, 1.0$ equiv) was added. The reaction mixture was warmed to reflux for 2 hours and cooled to $23^{\circ} \mathrm{C}$. A white solid precipitated and was collected by filtration and recrystallized from refluxing methanol, to give ketone 29 as a white solid ($7.47 \mathrm{~g}, 63 \%$ yield over two steps).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.73$ (ddt, $\left.J=16.9,10.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.97-4.82(\mathrm{~m}, 4 \mathrm{H}), 2.31$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.24-$ 1.17 (m, 16H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 211.7,139.2,114.2,42.8,33.8,29.4,29.3,29.3,29.1,28.9$, 23.9 .

HRMS (EI+, m/z): calc'd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}[\mathrm{M}]^{+\bullet} 306.2923$, found: 306.2927.

An oven-dried 500 mL three-necked round bottom flask was equipped with a magnetic stirbar and fitted with two rubber septa and a ground glass flow adaptor to introduce inert atmosphere. This flask was charged with (E)-hex-4-enoate ($20 \mathrm{~g}, 140 \mathrm{mmol}$) and $\mathrm{NBu}_{3}(17 \mathrm{~mL}$, 140 mmol) via syringe. Anhydrous toluene (350 mL) was added by cannula, and the reaction mixture was cooled to $-78^{\circ} \mathrm{C} . \mathrm{TiCl}_{4}(18.4 \mathrm{~mL}, 168 \mathrm{mmol})$ was added dropwise via syringe over twenty minutes, causing the reaction mixture to become deep red in color. The reaction mixture was stirred with warming to ambient temperature for 10 h , and saturated aqueous NaHCO_{3} was carefully added to quench the reaction. The organic layer was separated, the aqueous layer was
extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, and the combined organic layers were washed with water (20 $\mathrm{mL})$, brine ($2 \times 20 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated to a clear, yellow oil.

The yellow oil was dissolved in $\mathrm{EtOH}(200 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ and NaOH pellets were added $(3 \mathrm{~g})$. The reaction mixture was heated to $85^{\circ} \mathrm{C}$ and monitored by TLC ($5 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) until the starting material was fully consumed. The reaction mixture was concentrated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with water ($3 \times$ 25 mL) and brine (25 mL), dried over MgSO_{4}, filtered and concentrated. The product 31 was purified by column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in hexanes) to yield a clear, pale yellow oil ($11 \mathrm{~g}, 60 \mathrm{mmol}, 85 \%$)
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.49-5.34(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 4 \mathrm{H})$, $1.65-1.59(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.4,129.7,126.0,42.8,26.9,18.0$.
HRMS (EI+) calc'd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+\bullet} 166.1358$; found 166.1346

(Z)-dibenzyl oct-4-ene-1,8-diyl bis(carbonate) (38): In a nitrogen-filled glovebox, 4-penten-1$\mathrm{ol}(1.72 \mathrm{~g}, 20 \mathrm{mmol})$ was dissolved in 6 mL THF in a 20 mL vial equipped with a stir bar, and Ru-2 ($13.5 \mathrm{mg}, 0.1 \mathrm{~mol} \%$) was added. The vial was placed on a $35^{\circ} \mathrm{C}$ stir plate without capping and stirring was continued for 4 hours. At that time the reaction progress was monitored by GC analysis to ensure full conversion, and the vial was brought outside the glovebox and the reaction mixture was quenched with a few drops of ethyl vinyl ether. Column chromatography ($\mathrm{SiO}_{2}, 2: 1$ hexanes/EtOAc) gave 38a as a colorless oil ($1.06 \mathrm{~g}, 74 \%$ yield).

To the diol 38a ($1.06 \mathrm{~g}, 7.35 \mathrm{mmol}, 1.0$ equiv) in $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, pyridine ($3.0 \mathrm{~mL}, 36.75 \mathrm{mmol}$, 5.0 equiv) and DMAP ($180 \mathrm{mg}, 1.47 \mathrm{mmol}, 0.2$ equiv) was added sequentially at $0{ }^{\circ} \mathrm{C}$. Then benzyl chloroformate ($4.2 \mathrm{~mL}, 29.4 \mathrm{mmol}, 4.0$ equiv) was added dropwisely. The mixture was left to stir at $23^{\circ} \mathrm{C}$ for overnight before it was quenched with $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$. The aqueous phase was extracted by $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic phases were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 9: 1$ hexanes/EtOAc) gave 38 as a colorless oil ($2.52 \mathrm{~g}, 83 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.38(\mathrm{ddd}, J=5.6,4.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.15$ $(\mathrm{s}, 4 \mathrm{H}), 4.13(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{dq}, J=8.2,6.7 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.3,135.4,129.5,128.7,128.6,128.5,69.6,67.7,28.6,23.4$.
HRMS (FAB+, m/z): calc'd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$413.1964, found: 413.1961.

General Procedure A for gem-dimethylation of ketones:

In a flame-dried round-bottom flask, ketone (1.0 equiv) was dissolved in THF and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Methylmagnesium bromide solution (3.0 M solution in diethyl ether, 1.5 equiv) was added dropwise, and the reaction mixture was slowly warmed to $23{ }^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure.

The crude tertiary alcohol was transferred into a Schlenk flask (with one side arm fitted with a glass stopcock) with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The residual solvent was removed by connecting the side arm to vacuum. The flask was back-filled with argon and cooled to $0^{\circ} \mathrm{C}$, and then SOCl_{2} (2.5 equiv) was added slowly. A minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ can be added to aid with stirring. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour, and the reaction progress can be monitored by TLC (using $\mathrm{Al}_{2} \mathrm{O}_{3}$ plate). The side arm of the Schlenk flask was reconnected to vacuum and excess SOCl_{2} was removed at $0{ }^{\circ} \mathrm{C}$. Then the crude tertiary chloride product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$ and the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. Trimethylaluminum (2.0 M solution in hexanes, 2.0 equiv) was added dropwise. The reaction mixture was slowly warmed to $23^{\circ} \mathrm{C}$ and stirred for 4 hours and then quenched with aqueous HCl solution $(1.0 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The gem-dimethylation products were purified by column chromatography ($\mathrm{SiO}_{2}, 100 \%$ hexanes) or distillation.

10,10-dimethylnonadeca-1,18-diene (21): Prepared according to General Procedure A from ketone $18(10.2 \mathrm{~g}, 37 \mathrm{mmol})$ as a colorless liquid $(9.1 \mathrm{~g}, 83 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82(\mathrm{ddt}, J=16.9,10.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{dq}, J=17.1,1.7 \mathrm{~Hz}$, 2H), 4.93 (ddt, $J=10.2,2.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.09(\mathrm{~m}, 24 \mathrm{H}), 0.81$ (s, 6 H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.3,114.1,42.0,33.8,32.6,30.6,29.6,29.2,29.0,27.3,24.0$.
HRMS (EI+, m/z): calc'd for $\mathrm{C}_{21} \mathrm{H}_{40}[\mathrm{M}]^{+\bullet}$ 292.3130, found: 292.3144 .

5,5-dimethylnona-1,8-diene (24): Prepared according to General Procedure A from ketone $23(25 \mathrm{~g}, 181 \mathrm{mmol})$ as a colorless liquid ($13 \mathrm{~g}, 58 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81(\mathrm{ddt}, J=16.9,10.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{dq}, J=17.1,1.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.94-4.86(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.80,113.77,41.06,32.65,28.58,27.08$.
HRMS (EI+, m/z): calc'd for $\mathrm{C}_{11} \mathrm{H}_{20}[\mathrm{M}]^{+\bullet} 152.1565$, found: 152.1561 .

27
7,7-dimethyltrideca-1,12-diene (27): Prepared according to General Procedure A from ketone $26(1.94 \mathrm{~g}, 10 \mathrm{mmol})$ as a colorless liquid ($1.2 \mathrm{~g}, 58 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.75(\mathrm{ddt}, J=16.9,10.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.98-4.81(\mathrm{~m}, 4 \mathrm{H}), 2.03-$ $1.94(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.19-1.05(\mathrm{~m}, 8 \mathrm{H}), 0.75(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.3,114.1,41.8,33.9,32.7,29.9,27.3,23.5$.
HRMS (EI+, m/z): calc'd for $\mathrm{C}_{15} \mathrm{H}_{28}[\mathrm{M}]^{+\bullet} 208.2191$, found: 208.2177.

11,11-dimethylhenicosa-1,20-diene (30): Prepared according to General Procedure A from ketone $29(7.47 \mathrm{~g}, 24.4 \mathrm{mmol})$ as a colorless liquid ($5.66 \mathrm{~g}, 72 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.84(\mathrm{ddt}, J=16.9,10.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-4.89(\mathrm{~m}, 4 \mathrm{H}), 2.14-$ $2.00(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{q}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.35-1.12(\mathrm{~m}, 24 \mathrm{H}), 0.84(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.4,114.2,42.1,34.0,32.7,30.8,29.8,29.7,29.3,29.1,27.5$, 24.2.

HRMS (EI+, m/z): calc'd for $\mathrm{C}_{23} \mathrm{H}_{44}[\mathrm{M}]^{+\bullet} 320.3443$, found: 320.3425 .

5,5-diethylnona-1,8-diene (33): Prepared according to modified General Procedure A from ketone $23(276 \mathrm{mg}, 2.0 \mathrm{mmol}), \mathrm{EtMgBr}$, and AlEt_{3} to afford 33 as a clear, colorless oil (230 mg , 63% yield).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{ddt}, J=16.9,10.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}$, 2 H), 4.91 (ddt, $J=10.0,2.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.87$ (m, 4H), $1.26-1.19$ (m, 8H), 0.75 (t, $J=$ $7.5,1.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.9,113.9,37.3,34.9,28.0,27.7,7.6$.
HRMS (EI+) calc'd for $\mathrm{C}_{13} \mathrm{H}_{24}[\mathrm{M}]^{+\bullet} 180.1878$; found 180.1894.

11-butyl-11-ethylhenicosa-1,20-diene (34): Prepared according to modified General Procedure A from ketone 29 ($918 \mathrm{mg}, 3 \mathrm{mmol}$) with n-butylmagnesium chloride solution (2.0 M solution in diethyl ether, 1.5 equiv) and triethylaluminum (2.0 equiv). 34 was obtained as a colorless liquid ($680 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74(\mathrm{ddt}, J=17.0,10.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.96-4.82(\mathrm{~m}, 4 \mathrm{H}), 2.01-$ $1.92(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.11(\mathrm{~m}, 24 \mathrm{H}), 1.07-0.99(\mathrm{~m}, 8 \mathrm{H}), 0.82(\mathrm{td}, J=7.2$, $2.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.4,114.2,37.5,37.1,36.2,35.9,33.9,33.9,33.5,30.8,30.3$, 29.8, 29.7, 29.7, 29.3, 29.1, 28.7, 26.8, 25.4, 23.8, 23.3, 23.1, 14.4, 14.4, 7.7.

HRMS (EI+, m/z): calc'd for $\mathrm{C}_{27} \mathrm{H}_{52}[\mathrm{M}]^{+\bullet} 376.4069$, found: 376.4120.

11-ethyl-11-octylhenicosa-1,20-diene (35): Prepared according to modified General Procedure A from ketone $29(153 \mathrm{mg}, 0.5 \mathrm{mmol})$ with n-octylmagnesium chloride solution $(2.0 \mathrm{M}$ solution in THF, 1.5 equiv) and triethylaluminum (2.0 equiv). 35 was obtained as a colorless liquid (154 mg , 71% yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74(\mathrm{ddt}, J=16.9,10.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.99-4.80(\mathrm{~m}, 4 \mathrm{H}), 2.04-$ $1.90(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 34 \mathrm{H}), 1.05-1.00(\mathrm{~m}, 6 \mathrm{H}), 0.83-0.78(\mathrm{~m}, 3 \mathrm{H})$, $0.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 139.4,114.2,37.5,37.2,36.2,34.0,33.8,32.1,30.8,30.8,30.5$, $30.3,30.3,29.8,29.8,29.8,29.7,29.7,29.6,29.5,29.3,29.1,28.7,26.8,23.1,22.9,14.3,7.7$.

HRMS (EI+, m/z): calc'd for $\mathrm{C}_{31} \mathrm{H}_{60}[\mathrm{M}]^{+\bullet} 432.4695$, found: 432.4714.

(2E,9E)-6,6-dimethylundeca-2,9-diene (36): Prepared according to general procedure A from ketone $31(258 \mathrm{mg}, 1.6 \mathrm{mmol})$ as a colorless liquid ($230 \mathrm{mg}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.49-5.39(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.66(\mathrm{dt}, J=4.8,1.3 \mathrm{~Hz}$, 6 H), $1.27-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 132.3,124.2,41.8,32.6,27.3,27.1,18.0$.

HRMS (EI+) calc'd for $\mathrm{C}_{13} \mathrm{H}_{24}[\mathrm{M}]^{+\bullet} 180.1878$; found 180.1865.

General Procedure B for gem-dialkylation of ketones:

In a flame-dried round-bottom flask, ketone (1.0 equiv) was dissolved in THF and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Methylmagnesium bromide solution (3.0 M solution in diethyl ether, 1.5 equiv) was added dropwise, and the reaction mixture was slowly warmed to $23^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice, dried over anhydrous MgSO_{4}, filtered over a short silica plug, and concentrated under reduced pressure.

A 100 mL round bottom flask equipped with a magnetic stirbar was charged with the tertiary alcohol (1.0 equiv) and dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{M})$. This solution was cooled to $0{ }^{\circ} \mathrm{C}$ and PBr_{3} (0.35 equiv) was added dropwise. The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, and then concentrated in vacuo. The flask was fitted with a short path distillation head and the residue was distilled under vacuum to afford the tertiary bromide as a clear, colorless oil.

A 250 mL round bottom flask equipped with a magnetic stirbar was charged with ZnCl_{2} (0.1 equiv) and the tertiary bromide (1 equiv) and dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$. This solution was cooled to $-40^{\circ} \mathrm{C}$ and the dialkylzinc reagent (1.0 equiv) was added dropwise via syringe. The reaction mixture was stirred with warming to ambient temperature for 12 h , and then quenched by the dropwise addition of MeOH . The reaction mixture was washed with 1 M HCl , the organic layer was separated, washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The product was purified by distillation.

32
5-ethyl-5-methylnona-1,8-diene (32): Prepared according to general procedure B from ketone 23 $(5.86 \mathrm{~g}, 42.5 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{Zn}$ to afford $\mathbf{3 2}$ as a clear, colorless oil ($4.3 \mathrm{~g}, 61 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79(\mathrm{ddt}, J=16.9,10.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{dt}, J=17.0,1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.92-4.86(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.18$ (overlapping m, 6 H), $0.79(\mathrm{~s}, 3 \mathrm{H})$, $0.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.8,113.7,38.1,34.9,31.4,28.1,24.4,7.9$.
HRMS (EI+) calc'd for $\mathrm{C}_{12} \mathrm{H}_{22}[\mathrm{M}]^{+\bullet} 166.1722$; found 166.1700.

General Procedure C for ADMET Polymerization:

In a nitrogen-filled glovebox, monomer $\mathbf{3 0}(320 \mathrm{mg}, 1 \mathrm{mmol})$ in $0.5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was transferred into a 50 mL Schlenk flask equipped with a stir bar, followed by Grubbs $2^{\text {nd }}$ Generation Catalyst ($4.2 \mathrm{mg}, 0.5 \mathrm{~mol} \%$) in $0.5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. The Schlenk tube was sealed and removed from the glovebox and placed under static vacuum after one freeze-pump-thaw cycle. Then the Schlenk flask was placed in to a $60^{\circ} \mathrm{C}$ oil bath for 12 hours. The valve was opened to dynamic vacuum and stirring was continued for 2 hours until the mixture turned viscous and became difficult to stir. The Schlenk tube was sealed and taken into the glovebox where the CTA $\mathbf{3 8}(20.6 \mathrm{mg}, 0.05 \mathrm{mmol}$, 20:1 monomer: CTA ratio) in 2 mL toluene was added. The Schlenk tube was removed from the glovebox and the side arm was flame dried under vacuum and backfilled three times with argon. Then the Schlenk tube was opened to the argon line and placed in a $60^{\circ} \mathrm{C}$ oil bath for 72 h . The reaction mixture was transferred into a flame-dried round bottom flask and the solvent was removed under reduced pressure to obtain crude polymer poly-30a.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.47-5.32(\mathrm{~m}, 11 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.21-$ $4.10(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.91(\mathrm{~m}, 21 \mathrm{H}), 1.46-1.06(\mathrm{~m}, 131 \mathrm{H}), 0.82(\mathrm{~s}, 29 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined n $=22, \mathrm{M}_{\mathrm{n}}=6800$. GPC data: $\mathrm{M}_{\mathrm{n}}=5400 ;$ PDI $\left(\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}\right)=1.2$.

The crude polymer poly-30a was dissolved in toluene (10 mL) and 10% palladium on carbon (100 $\mathrm{mg}, 0.1$ equiv) was added in a round-bottom flask with a stir bar. The flask was sealed with a septum and back-filled with argon for three times, and then back-filled with H_{2} using a balloon. The reaction was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 24 hours under an atmosphere of hydrogen ($1 \mathrm{~atm} \mathrm{H}_{2}$ balloon). After that time the reaction mixture was filtered through a short pad of Celite (caution: Palladium on carbon is highly flammable and the palladium waste must be collected separately and covered with water). The filtered solution was concentrated upon heating under high vacuum to obtain the hydroxyl telechelic polymer poly-30b ($286 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.65(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.10(\mathrm{~m}, 210 \mathrm{H}), 0.82(\mathrm{~s}, 32 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=$ $21, M_{n}=6300$. GPC data: $\mathrm{M}_{\mathrm{n}}=7600 ;$ PDI $\left(\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}\right)=1.1$.

Table S1. Summary of Telechelic Polymer Samples Prepared.

Polymer	Monomer/CTA ratio	Yield (\%)	n	M_{n} (NMR)(Da)
poly-21b	10:1	95	15	4200
poly-24b	22:1	55	16	2200
poly-27b	12:1	99	10	2000
poly-30b-1	8:1	99	10	3100
poly-30b-2	20:1	97	21	6300
poly-30b-3	50:1	96	58	17200
poly-30b-4	100:1	89	97	28700
poly-32b	22:1	56	22	3200
poly-34b	20:1	95	19	6800

Telechelic polymer poly-21b: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62$ $1.48(\mathrm{~m}, 7 \mathrm{H}), 1.32-1.00(\mathrm{~m}, 122 \mathrm{H}), 0.74(\mathrm{~s}, 22 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=15, \mathrm{M}_{\mathrm{n}}=4200$. GPC data: $\mathrm{M}_{\mathrm{n}}=2800 ;$ PDI $\left(\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}\right)=1.44$.

Telechelic polymer poly-24b: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.63(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.59$ $1.52(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.04(\mathrm{~m}, 46 \mathrm{H}), 0.80(\mathrm{~s}, 20 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=16, \mathrm{M}_{\mathrm{n}}=2200$. GPC data: $\mathrm{M}_{\mathrm{n}}=4000$; PDI $\left(\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}\right)=1.4$.

Telechelic polymer poly-27b: ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.65(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43$ $1.09(\mathrm{~m}, 58 \mathrm{H}), 0.82(\mathrm{~s}, 13 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=10, \mathrm{M}_{\mathrm{n}}=2000$. GPC data: $\mathrm{M}_{\mathrm{n}}=3800$; PDI $\left(\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}\right)=1.5$.

poly-30b-1: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65(\mathrm{dt}, J=6.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.17(\mathrm{~m}, 94 \mathrm{H})$, $0.82(\mathrm{~s}, 15 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=10, \mathrm{M}_{\mathrm{n}}=3100$.
poly-30b-2: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.65(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.11(\mathrm{~m}, 208 \mathrm{H}), 0.82$ (s, 32H). ${ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=21, \mathrm{M}_{\mathrm{n}}=6300$.
poly-30b-3: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65(\mathrm{dt}, J=6.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.12(\mathrm{~m}, 571 \mathrm{H})$, $0.82(\mathrm{~s}, 88 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=58, \mathrm{M}_{\mathrm{n}}=17200$.
poly-30b-4: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65(\mathrm{dt}, J=6.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.11(\mathrm{~m}, 943 \mathrm{H})$, $0.82(\mathrm{~s}, 146 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=97, \mathrm{M}_{\mathrm{n}}=28700$.

Telechelic polymer poly-32b: ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.63(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{q}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.05(\mathrm{~m}, 83 \mathrm{H}), 0.78-0.68(\mathrm{~m}, 34 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=22, \mathrm{M}_{\mathrm{n}}=$ 3200. GPC data: $\mathrm{M}_{\mathrm{n}}=6800$; PDI $\left(\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}\right)=1.1$.

poly-34b: ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.19(\mathrm{~m}, 265 \mathrm{H}), 1.14-$ $1.09(\mathrm{~m}, 56 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 29 \mathrm{H}), 0.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 14 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR determined $\mathrm{n}=19, \mathrm{M}_{\mathrm{n}}$ $=6800$.

37
5,5-dimethylcyclohept-1-ene (37): After the polymerization of 24, the cyclic olefin was removed by vacuum distillation from the reaction mixture ($23{ }^{\circ} \mathrm{C}, 100 \mathrm{mTorr}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.60(\mathrm{ddd}, J=3.8,2.9,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.40-$ $1.32(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.5,40.3,33.7,29.3,24.4$.
HRMS ($\mathrm{EI}+, \mathrm{m} / \mathrm{z}$) calc'd for $\mathrm{C}_{9} \mathrm{H}_{16}[\mathrm{M}]^{+\cdot}$ 124.1252, found: 124.1264.

39
5-ethyl-5-methylcyclohept-1-ene (39): After the polymerization of 32, the cyclic olefin was removed by vacuum distillation from the reaction mixture ($23^{\circ} \mathrm{C}, 100 \mathrm{mTorr}$).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.63(\mathrm{t}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 4 \mathrm{H})$, $1.29(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 131.4, 38.3, 35.9, 33.6, 25.2, 24.1, 8.1.
HRMS (EI+, m/z) calc'd for $\mathrm{C}_{10} \mathrm{H}_{18}[\mathrm{M}]^{+\bullet} 138.1409$, found: 138.1413 .
DSC was performed using a Mettler Toledo DSC 3+ Star System. Scan rates of $10 \mathrm{~K} / \mathrm{min}$ for heating and $5 \mathrm{~K} / \mathrm{min}$ for cooling were used.

Figure S1. DSC Traces for Different Gem-dimethyl Polymer Samples

EI＇I
L9＇

L9＇
ع9．

$89^{\circ} \mathrm{I}$ 69°－ $\mathrm{St} \cdot \mathrm{Z}$
$\mathrm{ST} \cdot \mathrm{Z}$ 9 C
$9 \mathrm{C} \cdot 2$

9 9ㄷ․ | $9 I^{\prime} \quad 2$ |
| :--- |
| $\angle \mathrm{I}$ | $\angle \mathrm{I} \cdot 2$

$8 \mathrm{I} \cdot \mathrm{z}$ $8 I \cdot 2$
$8 T \cdot 2$ 8I＇て $6 I \cdot 2$ 6 I＇Z $0 て ゙ て$ Iと＇て
とદ＇z 0s＇z $0 S^{\prime} z$ TS．z ES＇z ss＇z

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 26.

ST＇カZ$9 \nabla^{\circ} \angle Z$
七と＊6て
てL＊ 62
LL＇0¢
L6．とદ
とI＇でー

$86^{\circ} \downarrow$ $66^{\circ} \cdot$
$66^{\circ} \downarrow$ $66^{\circ} \mathrm{t}$
$20^{\circ} \mathrm{s}$ $20^{\circ} \mathrm{s}$ 20．s ع0．s

| $\varepsilon 0^{\circ}$ |
| :--- | :--- |
| $\varepsilon 0^{\circ}$ |

$\angle L \cdot \mathrm{~S}$ $6 L \cdot \mathrm{~S}$ | 08.5 |
| :--- |
| 18.5 | $18 . \mathrm{S}$

$28^{\circ} \mathrm{G}$ ع8． S †8． S $58 . \mathrm{S}$ $98^{\circ} \mathrm{S}-$ $88^{\circ} \mathrm{S}$

$\left.\begin{array}{l}C \angle L \angle U \\ 68[\angle O\end{array}\right]$
96てL＇0 sIEL゚0 とてもぐ0 0カャレ゙0
sて6I＇I SZ6I＇T
Zヤ6I＇L 666T＇T 690で 6てIでし 9カてでし
s8てで

2898＊
S0 ${ }^{\circ} 8^{\circ}$ I
92L8＇
［6 28° I
七 $\mathrm{L} 88^{\circ}$［
LE88 ${ }^{\circ}$－
9588＇
8888．${ }^{\prime}$
［ T68＊
\dagger S68 ${ }^{\circ}$ I
6868́․
ST06．
8L06＇
0016．
てZI6．I
$\rightarrow \angle \angle 8^{\circ} \downarrow$

$76 \angle 8^{\circ}$
2 788°

$0 と 88^{\circ}$ も
8ャ88＊\downarrow
ても68＇も
と968 \downarrow
2868 \downarrow
$0006^{\circ} \downarrow$
6T06＊\downarrow
L8S6＇も
ST96＊${ }^{\circ}$
七七96＊\downarrow
$6996^{\circ} \downarrow$
て $286^{\circ} \downarrow$
0066＊\downarrow
LS66．ヵ
6て9 ${ }^{\circ} \mathrm{S}-$
sعLL＇s
ZSLL＇S
86LL＇s
8も8L＇S
0I6L．S
てZ08．S
ع808．s
てとI8．S
06I8．S
L028． S
00ع8．s
$\angle\left[\varepsilon 8^{\circ} \mathrm{S}\right.$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 33 ．

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 5}$.

$68 \angle L^{\circ} 0$
\downarrow I6 $L^{\circ} 0$
6\＆08．0
SIZ8：0
S6てて「
0てもでI

999て＇
889でし
$\angle \nabla \angle て^{\prime} \mathrm{I}$
ちて8でT
とゅ $\angle 9 \varepsilon 6^{\circ} \mathrm{I}$
88\＆6．
6ヵカ6．
S $\angle+6^{\circ} \mathrm{I}$
LOS6．
とャS6．
8296．
ES 96°
0896°
T
$8 \varepsilon \angle 6^{\circ} \mathrm{T}$
ع9 $\angle 6^{\circ}$ I－

$2806^{\circ} \downarrow$
$\angle 606^{\circ} \hbar$
てIT6＊
$\rightarrow 6$ I6．${ }^{\circ}$

$8 \downarrow て 6^{\circ} \downarrow$
9926＇\downarrow

2986＊${ }^{\circ}$
2686．\downarrow

L266＊	

$\angle I I O^{\circ} \mathrm{S}$
$\angle \triangleright I 0^{\circ} \mathrm{S}$

$8 \angle$ LO ${ }^{\circ}$
8020 s．
七88 ${ }^{\circ} \mathrm{S}$
ع66L＇s
عS08＇s
ع0L8．s
S9I8．S
$\angle L 28^{\circ} \mathrm{s}$
8とと8．
88と8．
8ャカ8． S
LSS8．S

${ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 32.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound poly-30b-1.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound poly-30b-3.

$\left.\begin{array}{l}\varepsilon 9^{\cdot} \varepsilon \\ \dagger 9^{\prime} \varepsilon \\ \varsigma 9^{\prime} \varepsilon \\ 99^{\prime} \varepsilon\end{array}\right]$

$\mathrm{CDCl}_{3}-7.26$

${ }^{i}$ Noack, M.; Göttlich, R. Eur. J. Org. Chem. 2002, 2002 (18), 3171-3178.
${ }^{\text {ii }}$ Thommen, M.; Prevot, L.; Eberle, M. K.; Bigler, P.; Keese, R. Tetrahedron 2011, 67, 38683873.
${ }^{\text {iii }}$ Lub, J.; Ten, H. W.; Rossin, R.; Van, D. B. S. M.; Robillard, M. S. US2013189184 (A1), July 25, 2013.
${ }^{\text {iv }}$ Arrington, K. J.; Murray, C. B.; Smith, E. C.; Marand, H.; Matson, J. B. Macromolecules 2016, 49, 3655-3662.
${ }^{\mathrm{v}}$ Marx, V. M.; Herbert, M. B.; Keitz, B. K.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 94-97.

