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Abstract

Phagocytic clearance and lysosomal processing of pathogens and debris are essential functions 

of the innate immune system. However, the assessment of these functions in vivo is challenging 

because most nanoscale contrast agents compatible with non-invasive imaging techniques are 

made from non-biodegradable synthetic materials that do not undergo regular lysosomal 

degradation. To overcome this challenge, we describe the use of an all-protein contrast agent to 

directly visualize and quantify phagocytic and lysosomal activities in vivo by ultrasound imaging. 

This contrast agent is based on gas vesicles (GVs), a class of air-filled protein nanostructures 

naturally expressed by buoyant microbes. Using a combination of ultrasound imaging, 

pharmacology, immunohistology and live-cell optical microscopy, we show that after intravenous 

injection, GVs are cleared from circulation by liver-resident macrophages. Once internalized, the 

GVs undergo lysosomal degradation, resulting in the elimination of their ultrasound contrast. By 

non-invasively monitoring the temporal dynamics of GV-generated ultrasound signal in circulation 

and in the liver and fitting them with a pharmacokinetic model, we can quantify the rates of 

phagocytosis and lysosomal degradation in living animals. We demonstrate the utility of this 

method by showing how these rates are perturbed in two models of liver dysfunction: phagocyte 

deficiency and non-alcoholic fatty liver disease. The combination of proteolytically-degradable 

nanoscale contrast agents and quantitative ultrasound imaging thus enables non-invasive 

functional imaging of cellular degradative processes.

Keywords

ultrasound, contrast agents, phagocytosis, lysosomes, liver disease, reticuloendothelial system
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The reticuloendothelial system (RES), also known as the mononuclear phagocyte system, is a 

network of phagocytic immune cells that is essential for organismal development and 

homeostasis; malfunctions in this system may lead to increased susceptibility to infections1,2 and 

are associated with the pathogenesis of a variety of conditions, including neurodegeneration,3,4 

chronic liver disease5 and many others.6 Cells of the RES, such as monocytes, macrophages and 

dendritic cells, continuously sample their surroundings, mediating the recognition and clearance 

of abnormal and senescent cells, debris and foreign particulates.7,8 Additionally, they interface 

with the adaptive immune system by presenting lysosomally-processed antigens to lymphocytes 

and secreting cytokines to stimulate the proper inflammatory response.8-10 Phagocytosis and 

lysosomal degradation are thus vital processes of RES-mediated immunoregulation.

Non-invasive functional imaging of phagocytosis and lysosomal activities will enable early 

detection and monitoring of non-alcoholic fatty liver disease (NAFLD) and other conditions 

resulting from RES dysfunction. NAFLD currently affects over 25% of the global population and 

its progression is associated with chronic hepatic inflammation.11  Due to the large patient 

population and broad range of outcomes which include hepatitis, cirrhosis, fibrosis and 

hepatocellular carcinoma, rapid and non-invasive diagnostic methods are needed to stratify 

patients into defined risk groups.5,11 Ultrasound is well suited for this task due to its wide availability, 

portability, low operational costs and high tissue penetrance.12 Based on in vitro observations that 

pro-inflammatory macrophages suppress phagocytosis13 and lysosomal degradation,14,15   one 

would expect livers in patients with NAFLD to exhibit reduced accumulation and extended 

persistence of intravenously-administered nanoscale contrast agents. Indeed, clinical studies 

have confirmed the former.16,17 However, the latter cannot be evaluated with currently available 

technologies because agents compatible with non-invasive imaging modalities are typically made 

from synthetic materials which do not undergo regular lysosomal degradation.7,8

Here, we describe the use of an all-protein nanoscale contrast agent to visualize and 

quantify both phagocytic clearance and lysosomal degradation in vivo using ultrasound imaging. 
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This contrast agent is based on gas vesicles (GVs), a class of air-filled protein nanostructures 

natively formed inside certain photosynthetic microorganisms as a means to regulate buoyancy.18 

GVs comprise a rigid, 2 nm-thick protein shell allowing the free exchange of gas but preventing 

the internal condensation of liquid water, thereby forming a thermodynamically stable capsule of 

air with a hydrodynamic diameter of approximately 250 nm.19 They are easily isolated from 

cultures of their native cyanobacterial hosts20 and can be expressed heterologously in bacteria21,22 

and mammalian cells.23 Because sound waves are strongly reflected by air-water interfaces, GVs 

have been developed as contrast agents for ultrasound imaging.19, 24-27 Due to their innate stability, 

GVs are able to withstand repeated insonation without loss of contrast.19 However, when the GV 

shell is compromised by mechanical or chemical disruption, the gaseous contents it encloses 

rapidly and irreversibly dissolve into the surrounding media, leading to the elimination of 

ultrasound contrast.19,21,27

Based on their nanoscale dimensions and all-protein composition, which distinguishes 

them from other classes of ultrasound contrast agents,28-31 we hypothesized that we could use 

GVs as a contrast agent to non-invasively visualize the phagocytic and lysosomal functions of 

hepatic macrophages in vivo. Previous studies have shown that intravenously injected GVs are 

rapidly taken up by the liver.32,33 If this uptake is mediated by macrophages and the internalized 

GVs undergo lysosomal proteolysis, this would manifest in the initial transfer of ultrasound 

contrast from the bloodstream to the liver, followed by its elimination with kinetics representative 

of natural RES clearance and degradation. Measurement of these processes would thus provide 

a quantitative picture of the complete phagocytic and lysosomal degradation pathways. This rate-

based approach would improve upon previous Kupffer cell imaging techniques16,34-36 which are 

limited to the assessment of phagocytosis. In this study, we test this hypothesis by visualizing the 

temporal dynamics of GV ultrasound contrast in the blood and liver, establishing the cellular and 

molecular pathways mediating GV uptake and degradation, and developing a pharmacokinetic 

model to parametrize RES activity from hemodynamic and liver ultrasound signals. Finally, we 
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demonstrate the diagnostic utility of functional imaging of macrophage phagolysosomal activity in 

two models of liver disease: clodronate-mediated macrophage deficiency and diet-induced 

NAFLD. 
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Results and Discussion
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Figure 1: Non-invasive ultrasound imaging of GV clearance and elimination in vivo. A, Diagram 

of imaging setups used to measure GV contrast in the blood and liver. Inset i, intravascular 

persistence of purified GVs was visualized by ultrafast power Doppler imaging of the brain. Inset 

ii, hepatic persistence of GVs modified to produce non-linear contrast was visualized by 

amplitude modulation imaging of the liver. B, Representative power Doppler images of a coronal 

cross section of the brain following GV injection. Scale bars, 2 mm. C-D, Normalized time 

courses of ultrafast Doppler signal enhancement in the brain (C, N = 6) and AM signal in the 

liver (D, N = 4). Dashed lines, time of GV injection (300 s); thin lines, individual trials; thick lines, 

mean; shaded areas, ± SEM. E, Representative AM images of a liver cross section following GV 

injection. Scale bars, 2 mm. F, Biodistribution of fluorescently-labeled GVs 1 h after IV injection. 

Representative fluorescence image of excised organs (left; scale bar, 10 mm). Percentage of 

total collected photons originating from each organ (right). N = 5. Error bars not shown.

Gas vesicle blood clearance, liver uptake and degradation can be monitored by ultrasound. 

We started by quantifying the kinetics of GV uptake and degradation in healthy C57BL/6 mice 

(Fig. 1a). We first visualized intravascular GVs with ultrafast power Doppler imaging, leveraging 

the ability of intravenously (IV) injected GVs to enhance blood flow contrast.25 We chose the brain 

as our target organ due to its practical advantages in mouse experiments: hemodynamic signals 

can be conveniently measured through intact skin and skull25,37 and head-fixation reduces motion 

artifacts. We acquired images of a single coronal plane at a center frequency of 15 MHz and 

frame rate of 0.25 Hz (Fig. 1b). Following a 300-s baseline, we IV injected 100 μL of purified GVs 

isolated from Anabaena flos-aquae (OD50030, corresponding to 2.1 x 1011 particles20) and tracked 

the ensuing distribution and clearance (Fig. 1c). As expected, the introduction of GVs caused a 

marked increase in hemodynamic signal, peaking at approximately 100 s after injection, and 

returning to baseline with an apparent circulation half-life of 232 s (Fig. 1c, Fig. S1). 
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Next, we quantified GV uptake and degradation in the liver by imaging this organ during 

and after IV injection (Fig. 1a). To maximize GV specificity, we injected GVs modified to produce 

non-linear ultrasound contrast27 and imaged with a non-linear amplitude modulation (AM) pulse 

sequence24 (Fig. 1, d-e). Following injection of 100 μL GVs at OD500 30, we observed the 

accumulation of non-linear contrast in the liver—reaching a maximum after approximately 10 

min—followed by a gradual loss of signal until only 10% remained at the end of one hour (Fig. 

1d). Notably, the maximum occurs just as contrast in the blood returns to baseline (Fig. S2). The 

apparent half-life of GVs in the liver—20 min—is substantially longer than their circulation time, 

and on a timescale consistent with lysosomal processing.38-40 To independently confirm liver 

uptake, we acquired fluorescence images of mouse organs excised 1h after IV injection of GVs 

labeled with a far-red fluorescent dye (Fig. 1f). In line with previous investigations of GV 

biodistribution,32,33 the liver was the dominant organ for GV uptake, emitting 81.4% of collected 

photons. The lungs (7.8%) and spleen (5.5%) had minor roles in GV clearance, while the heart 

and kidneys had no discernible role. 
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Figure 2: Liver macrophages are the primary mediators of GV clearance. A, Immunofluorescent 

confocal micrographs of 75-µm sections of liver tissue obtained from healthy mice 1h after IV 

injection of fluorescently-labeled GVs. Sections were stained with anti-F4/80 (macrophages) 

and DAPI. Scale bars, 50 μm. B, Percentage of detected GVs found within macrophage regions 

based on segmentation with ilastik. Error bars indicate ± SD. N = 3 biological replicates, 78 total 

fields of view. C, Experimental timeline. Macrophages were depleted by IV injection of 30 mg/kg 

liposomal clodronate 48 h before GV injection. D, Normalized Doppler signal enhancement time 

courses following IV injection of GVs in mice pre-treated with clodronate (red, N = 6) or saline 

liposomes (blue, N = 3). Dashed line, time of GV injection (300 s); thin lines, individual trials; 

thick lines, mean; shaded areas, ± SEM.

GVs are primarily cleared by liver macrophages. To identify the cells involved in GV clearance, 

we performed immunofluorescence imaging of liver sections obtained from mice perfused 1h after 

IV injection of fluorescently-labeled GVs (Fig. 2a). Based on the apparent active degradation of 

GVs, as suggested by the gradual decline of liver ultrasound contrast, we hypothesized that GVs 

would be taken up by Kupffer cells—resident macrophages lining the hepatic sinusoids which are 

implicated in the clearance of many nanoparticles.7 We tested this hypothesis by defining 

antibody-stained F4/80+ Kupffer cell regions through image segmentation by Ilastik41 and 

quantifying the localization of GVs with respect to these borders (Fig. S3). On average, 60% of 

GV-containing pixels resided within Kupffer cells (Fig. 2b). 

To confirm the role of Kupffer cells in GV clearance, we ablated phagocytic cells by IV 

administration of 30 mg/kg liposome-encapsulated clodronate42 (Fig. 2c). 48h later, we measured 

GV circulation times with hemodynamic ultrasound (Fig. 2d). Compared to mice treated with 

saline-filled control liposomes, clodronate-treated mice had a nearly 7-fold enhancement in GV 

circulation time, with half-life increasing from 274 s to 1670 s (Fig. S2). Our results are in line with 

previous observations that treatment with 50 mg/kg clodronate increased the circulation half-life 
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of 100 nm gold nanoparticles 13-fold.1 Taken together, our data shows that GVs are mainly filtered 

from the blood by Kupffer cells.
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Figure 3: Internalized GVs are degraded within lysosomes, resulting in loss of ultrasound 

contrast. A, Diagram of live cell confocal microscopy protocol. Murine macrophages 

(RAW264.7) expressing membrane-localized fluorescent protein (blue) were incubated with 

GVs dually-labeled with AF647 (red) and pHrodo (yellow) to track localization and pH, 

respectively. B, Representative images of a single cell at different time points following GV 

uptake. A phagosome maturation event is indicated by the white arrows. Scale bars, 10 μm (63x 

objective). C, Representative population-level images of cells pre-treated with DMSO (top) or 

100 nM bafilomycin A1 (bottom) following GV uptake. The AF647 channel is not shown. Scale 

bars, 20 μm (20x objective). D, Ratio of pHrodo to AF647 signals in images from c, normalized 

to the initial timepoint. Error bars represent ± SEM. N = 4. Welch’s t test (*: p<0.05; **: p<0.001). 

E, Diagram of uptake protocol for ultrasound imaging. RAW264.7 cells were incubated for 30 

min with GVs modified to produce non-linear signal, transferred to GV-free media for 

predetermined periods of time, and loaded into an agarose phantom for non-linear xAM 

imaging. F, Representative xAM images of cell pellets pre-treated with DMSO (top) or 100 nM 

bafilomycin A1 (bottom) at the indicated times after GV uptake. Scale bars, 1 mm. G, Time 

course of xAM signal intensity in cell pellets, normalized to the initial timepoint. Error bars 

represent ± SEM. N = 4-10 per timepoint. Welch’s t-test (*: p<0.05; **: p<0.01).

GVs are degraded in the lysosome following phagocytosis. Having established their uptake 

by liver macrophages, we next studied what happens to GVs following phagocytosis. 

Macrophages typically internalize nanoparticles into membrane-bound organelles—

phagosomes—that are then trafficked along the phagolysosomal pathway. During this maturation 

process, the phagosomes acquire v-ATPase proton pumps to acidify their contents prior to fusion 

with the lysosome;43 this low pH environment is required for lysosomal enzyme activity. To 

visualize the movement of GVs along this pathway in vitro, we incubated murine macrophages 

(RAW264.7) with a dilute suspension of GVs dually-labeled with Alexa Fluor (AF647) and pHrodo 
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Red—a pH-sensitive dye that fluoresces weakly at pH 7 and brightly at pH 3—and imaged them 

with live-cell confocal optical microscopy (Fig. 3a). Focusing on individual cells, we initially 

observed punctate spots of AF647 signal, likely corresponding to GVs concentrated within 

phagosomes, which matured over the next several minutes to produce strong pHrodo signal, 

indicating acidification of their environment (Fig. 3b). Zooming out to observe population-level 

dynamics revealed that the proportion of GVs in acidified compartments, as parametrized by the 

ratio of pHrodo to AF647 signal, grew continuously during a 1-hour incubation (Fig. 3, c-d). This 

rise was abolished when v-ATPase was inhibited by pretreatment with 100 nM bafilomycin A1 

(BafA1),44 thereby confirming that GVs undergo phagolysosomal processing in macrophages.

Lysosomal proteolysis is expected to break down the GV shell, resulting in GV collapse, 

gas dissolution and the disappearance of ultrasound contrast. To confirm this effect in vitro, we 

exposed RAW264.7 cells to GVs for 30 min. At predetermined time intervals, we detached the 

cells from their solid substrate and loaded them into an agarose phantom for imaging with a non-

linear cross-propagating amplitude modulation pulse sequence (xAM)26 (Fig. 3e). In control cells 

pretreated with 0.01% v/v dimethyl sulfoxide (DMSO), the signal declined with a half-life of 

approximately 3 h (Fig. 3, f-g). Conversely, in cells pretreated with BafA1 to block the activity of 

the pH-dependent lysosomal enzymes, we observed signal that persisted for at least 5 h without 

decay. These results confirm that GVs are digested within macrophage lysosomes in a process 

that can be monitored with non-linear ultrasound imaging. The reason that this process happens 

somewhat more slowly in vitro compared to the liver may be the accelerated rate of phagosome 

maturation in primary macrophages.45 
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Figure 4: Quantification of phagocytic and lysosomal activities in mouse liver macrophages. A, 

Proposed GV clearance pathway. Upon IV infusion, GVs are phagocytosed from the blood by 

liver-resident macrophages and degraded by lysosomal proteolysis. B, Pharmacokinetic model 

of GV clearance. Fitting this model to GV signal time courses enables quantification of 

macrophage function. Uptake and degradation rates are represented by k1 and k2, respectively, 

and kc is a correction factor that enables conversion between the two imaging modes and 

accounts for uptake in other tissues. C, Representative plot of vascular and liver ultrasound signal 

time courses in healthy mice (dashed lines) and corresponding fitted curves (solid lines). D, 

Uptake and elimination rates obtained by fitting model to data from Fig. 1, c-d. Error bars represent 

± SD. 

GV pharmacokinetics can be used to monitor disease progression. The results presented 

thus far confirm that upon IV injection, GVs are filtered from the blood by liver macrophages and 
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subsequently catabolized in the lysosome (Fig. 4a). This process can be described with a two-

compartment pharmacokinetic model comprising the blood and liver, whose rate constants 

parametrize the concurrent processes of phagocytosis and lysosomal degradation (Fig. 4b), with 

contrast enhancement linearly proportional to intact GV concentration in each compartment (Fig. 

S4).  By fitting this model to the dynamics of GV ultrasound contrast in the vasculature and liver 

in vivo, we can thus non-invasively quantify macrophage phagolysosomal function (Fig. 4c, input 

data shown in Fig. S5). The assumption that ultrasound signal time courses are representative of 

true pharmacokinetics is based on two key observations: GVs are stable under our imaging 

parameters, so changes in signal are due to active biological processes; and GVs are primarily 

taken up by liver macrophages, with increases in liver AM contrast matched by decreases in brain 

Doppler contrast. For simplicity, we further assume each process to be first-order and neglect the 

initial distribution dynamics during GV infusion by considering timepoints occurring after the peak 

in Doppler signal. Using this approach, we calculated rates of 0.167 min-1 and 0.041 min-1 for 

uptake and degradation, respectively, in healthy mice (Fig. 4d, Table S1).
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Figure 5: Monitoring disease progression by functional imaging of phagolysosomal activity. A, 

Macrophage population in response to clodronate dose. Top: Representative 

immunofluorescence confocal micrographs of liver sections labeled with anti-F4/80 

(macrophages) and DAPI. Scale bars, 50 μm. Bottom: Macrophage population determined by 

segmentation with ilastik, normalized to the mean from control livers. Error bars represent ± SD. 

N = 3 biological replicates, >100 total fields of view. Welch’s t-test (****: p<0.0001). B, 

Biodistribution of fluorescently-labeled GVs 1h after injection. Bottom: Representative 

fluorescence images of excised organs. Due to their low fluorescence, the hearts are circled 

with dashed lines. Scale bars, 10 mm. Top: Percentage of collected photons originating from 

each organ. Error bars not shown. N = 5. Welch’s t-test (*: p<0.05; **: p<0.001). C-D, 

Normalized time courses of Doppler signal enhancement in the brain (C) and AM signal in the 

liver (D) following GV injection in clodronate-treated mice. Dashed lines, time of GV injection 

(300 s); thick lines, mean; shaded areas, ± SEM. N = 4-6. E, Uptake and degradation rates 

obtained by fitting the model in Fig. 4b to each distinct combination of time courses from C and 

D, normalized to those of healthy mice. Error bars represent ± SD. Welch’s t-test (*: p<0.05; **: 

p<0.01; ***: p<0.001; ****: p<0.0001). F, Left: Timeline of NAFLD induction. Mice were fed with 

a methionine and choline deficient diet for 4 weeks, followed by an additional 3 weeks with a 

control diet. Right: Representative images of H&E stained liver sections. Scale bars, 100 µm. G-

H, Normalized time courses of Doppler signal enhancement in the brain (G) and AM signal in 

the liver (H) following GV injection in mice with NAFLD. Dashed lines, time of GV injection (300 

s); thick lines, mean; shaded areas, ± SEM. N = 4-5. I, Uptake and degradation rates obtained 

by fitting the model in Fig. 4b to the time courses in G and H, normalized to those of healthy 

(Week 0) mice. Error bars represent ± SD. Welch’s t-test (**: p<0.01; n.s: p>0.05).

Having established a method to quantify liver macrophage function, we next evaluated its 

ability to detect pathological disruption of the RES. First, we administered two doses of liposomal 
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clodronate—0.40 mg/kg and 30 mg/kg—to partially or fully deplete Kupffer cells in the liver. 

Histological evaluation confirmed that 31% of the Kupffer cell population remained at the lower 

dose, decreasing to 16% at the higher dose (Fig. 5a; Fig. S6). Interestingly, ex vivo imaging of 

organ fluorescence revealed that most GVs are still cleared by the liver (Fig. 5b). However, closer 

inspection of liver sections with immunofluorescence showed GVs tending to localize to the 

sinusoidal margins, suggesting uptake by liver sinusoidal endothelial cells (LSECs) (Fig. S7). This 

is consistent with a recent study showing that LSECs upregulate phagocytic activity upon 

depletion of nearby Kupffer cells.7 Based on these results, we expected that GVs would circulate 

longer in the blood in clodronate-treated animals due to diminished phagocytic potential, and that 

their residence time in the liver would increase due to less efficient lysosomal degradation by non-

macrophage cells. Indeed, fitting our model to the normalized hemodynamic Doppler (Fig. 5c) 

and liver AM (Fig. 5d) signal time courses yielded uptake and degradation rates substantially 

lower than those of healthy mice (Fig. 5e). Specifically, phagocytosis rates were reduced by 66% 

and 82% at the low and high doses of clodronate, while proteolysis rates were reduced by 27% 

and 57%, respectively. Notably, phagocytosis rates were proportional to the macrophage 

population.

For our second model of RES dysfunction, we imaged mice with NAFLD. This disease is 

characterized by liver infiltration of pro-inflammatory M1-polarized macrophages5,46 which have 

lower phagocytic13,17,34,47 and lysosomal activities15 than the normally anti-inflammatory Kupffer 

cells.48 We induced NAFLD by feeding mice with a methionine- and choline-deficient (MCD) 

diet5,49 and performed ultrasound imaging after 4 weeks of this treatment (Fig. 5f). Histological 

evaluation confirmed the appearance of widespread steatosis, a hallmark of NAFLD (Fig. 5f). In 

line with our hypothesis, diseased mice had significantly suppressed phagocytic and lysosomal 

functions: uptake rate was reduced by 35% while degradation rate was reduced by 58% (Fig. 5, 

g-i). We verified that these differences are not due to saturation of the smaller livers of MCD 

mice50 by GVs (Fig. S8). When we simulated therapeutic intervention by reverting to a control diet 
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for 3 additional weeks, the steatosis subsided (Fig. 5f) and phagolysosomal activity returned to 

its original level (Fig. 5, g-i). Compared to age-matched litter-mate controls, these “recovered” 

mice showed a slight decrease in degradation rate but no discrepancies in uptake rate (Fig. S9, 

Table S1). Taken together, our results demonstrate the capability of GV-enhanced ultrasound to 

non-invasively visualize macrophage malfunction as a biomarker of disease.

Conclusions

GVs are advantageously positioned to image in vivo phagolysosomal function due to their 

inherent stability at ambient conditions, susceptibility to natural proteolytic degradation and 

dependence on shell integrity for ultrasound contrast. When combined with a simple 

pharmacokinetic model, GV imaging makes it possible to parametrize macrophage activity in 

terms of phagocytosis and lysosomal degradation rates, clearly delineating healthy and disease 

states, as demonstrated in two models of RES deficiency. 

The diagnostic power of macrophage functional imaging arises from the dependence of 

phagolysosomal kinetics on cellular phenotype which, in turn, reflects the local tissue and 

inflammatory microenvironment. Moving forward, this capability could be refined by application of 

GVs engineered to display surface ligands,27 as phenotype-specific responses to certain particle-

bound domains may augment differences in degradative behavior.51 Methods to alter GV 

biodistribution would enable targeting and functional assessment of macrophages in tissues other 

than the liver. Additionally, the ability to genetically express GVs23 could enable study of 

intracellular proteolytic processes, such as autophagy and proteasomal degradation. 

To maximize the translational utility of this technology, three aspects could be improved. 

First, imaging parameters should be optimized for clinical use. In this study, we separately 

acquired ultrafast Doppler and non-linear AM images to maximize signal specificity. However, 

simultaneous multiplexed imaging of blood and liver signals would greatly streamline diagnostic 
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use. This could be accomplished by intercalating amplitude modulation images with Doppler 

images of the liver, enabling GV quantitation in both compartments with a single, stationary 

transducer. Second, while GV administration at doses similar to those used in our experiments 

does not result in acute, adverse health effects in mice,19 clinical translation would require formal 

studies of dose-limiting and long-term toxicity. In addition, to support long-term monitoring of 

individual subjects, it would be useful to better understand the immunogenicity of GVs and the 

impact of repeated injections, as the development of antibodies may skew clearance kinetics.52 

Finally, in some applications it may be useful to image GVs with other imaging modalities, such 

as magnetic resonance imaging28,29 and optical coherence tomography;53 adaptation of 

phagolysosomal imaging to these modalities would facilitate applications where the efficacy of 

ultrasound may be limited. 

 In summary, the combination of nanoscale, lysosomally-degradable contrast agents and 

quantitative ultrasound imaging enables non-invasive assessment of macrophage function as a 

disease-relevant biomarker. This technology will broaden the diagnostic capabilities of 

biomolecular ultrasound and motivate further methods for non-invasive characterization of cellular 

function.

Methods

GV preparation and quantification

Native gas vesicles (GVs) were isolated from Anabaena flos-aquae as previously described.20 

Concentrations were measured by optical density (OD) at 500 nm using a spectrophotometer 

(NanoDrop ND-1000, Thermo Scientific). Stripped GVs were prepared by treatment of native GVs 

with 6M urea solution followed by two rounds of centrifugally-assisted flotation and removal of the 

subnatant.20 Fluorescently-labeled gas vesicles were prepared by mixing GVs at OD 10 in 1x 

phosphate-buffered saline (PBS) with 6 μM Alexa Fluor 647 NHS Ester (Invitrogen, prepared as 
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10 mM solution in dimethyl sulfoxide). Dually-labeled GVs were prepared by mixing GVs at OD10 

with 6 μM pHrodo Red succinimidyl ester (Invitrogen, prepared as 10 mM solution in dimethyl 

sulfoxide) and 18 μM Alexa Fluor 647 NHS Ester (Invitrogen, prepared as 10 mM solution in 

dimethyl sulfoxide). After rotating in the dark at 25°C for 1 h, the reactions were quenched with 

Tris-HCl. Prior to use, all GVs were buffer exchanged into 1x PBS by two rounds of overnight 

dialysis through a regenerated cellulose membrane (12-14 kD MWCO, Repligen).

Cell culture

RAW264.7 (TIB-71) and HEK293T (CRL-3216) cells were ordered from the American Type 

Culture Collection (ATCC). Cells were cultured on tissue culture treated 10-cm dishes in 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum and 1% 

penicillin/streptomycin. 

Lentiviral transduction. Plasmid constructs were designed with SnapGene (GSL Biotech) and 

assembled with Gibson Assembly reagents from New England Biolabs. Briefly, mWasabi54 was 

inserted downstream of a 20-AA palmitoylation tag from GAP43 and expressed under the EF-1α 

promoter (gift from Dan I. Piraner55). This plasmid was then transfected along with third-

generation lentiviral vector and helper plasmids (kind gifts from the laboratory of David Baltimore) 

into HEK293T cells using polyethyleneimine (PEI). Following a 12 h incubation, PEI-containing 

media was replaced with fresh media supplemented with 10 mM sodium butyrate (Sigma Aldrich). 

Viral particles were concentrated 48 h later via ultracentrifugation. RAW264.7 cells were 

transduced by spinfection. Briefly, concentrated virus was added to non-tissue culture treated 24-

well plates coated with RetroNectin (Takara Bio). Following centrifugation (2,000xg, 2h), 4e5 

RAW264.7 cells in 1 mL media were added to each well. The plates were spun again at 900xg 

for 50 min before transferring to the incubator. The brightest 10% of cells were selected with a 

BD FACSAria III (BD Biosciences) at the City of Hope Analytical Cytometry Core Facility. 

Preparation of fibronectin-treated cover slips. Ethanol sterilized square (22 mm x 22 mm) #1.5H 

glass cover slips (Thorlabs) were individually placed into the wells of a 6-well plate and immersed 
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in 2 mL PBS containing 10 μg fibronectin from bovine plasma (Sigma Aldrich) for 2h at room 

temperature. The fibronectin solution was then aspirated and the plates stored at 4°C until use. 

Sterile glass-bottom 35mm dishes (MatTek) were similarly coated with 2.5 μg fibronectin in 500 

μL PBS. 

Animal preparation and disease models

All in vivo experiments were performed on male C57BL/6J mice (The Jackson Laboratory) under 

protocols approved by the Institutional Animal Care and Use Committee at the California Institute 

of Technology. 

Macrophage depletion. Liposome-encapsulated clodronate (Clodrosome, Encapsula 

NanoSciences) was administered through the lateral tail vein 48 h prior to imaging. Mice receiving 

a dose of 30 mg/kg were injected with undiluted liposome suspension, while mice receiving the 

lower dose of 0.40 mg/kg were injected with liposomes diluted 1:100 with sterile saline. Control 

mice were injected with the equivalent volume of undiluted PBS liposomes (Encapsome, 

Encapsula NanoSciences). 

Diet-induced nonalcoholic fatty liver disease. 8-week old mice were free fed with either a 

methionine and choline deficient diet (5ADJ, TestDiet) or control diet (5CC7, TestDiet) for up to 4 

weeks. Afterwards, all mice were fed the control diet for an additional 3 weeks. Because this 

dietary protocol often results in dramatic weight loss, the mice were monitored weekly for signs 

of adverse health. GV pharmacokinetics were measured at 2 weeks, 4 weeks and at the 

conclusion of the study. Immediately after ultrasound imaging, the mice were fixed via sequential 

transcardial perfusion of PBS and 10% neutral buffered formalin (Sigma Aldrich), and the livers 

were removed for histological assessment by the UCLA Translational Pathology Core Laboratory. 

Briefly, 4-µm sections were cut from paraffin-embedded organs, stained with hematoxylin & eosin, 

and imaged at 20x with a Leica Aperio slide scanner.

Ultrasound imaging
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Transcranial ultrafast Doppler imaging. Mice (8-10 weeks old) were maintained under 1.5% 

isoflurane anesthesia on a temperature-controlled imaging platform with a rectal probe (Stoelting 

Co.). Following head depilation (Nair) and insertion of a catheter with a 30-g needle into the lateral 

tail vein (fixed in place with GLUture), the mice were head-fixed in a stereotaxic frame inside a 

light- and sound-proofed box on an optical table. A 16 MHz transducer (Vermon) connected to a 

programmable ultrasound scanner (Verasonics Vantage) was coupled to the head through a 

column of ultrasound gel (centrifuged at 2000xg, 10 min to remove bubbles). The transducer was 

positioned to capture a full coronal section at an arbitrary plane along the rostrocaudal axis. Once 

the internal temperature of the mouse stabilized at 37°C, power Doppler images were acquired 

every 4 s for up to 60 min using a previously described functional ultrasound script with slight 

modifications.25 Briefly, the pulse sequence consisted of 11 tilted plane waves (varying from -10 

to 10 degrees), each containing 8-half-cycle emissions at a voltage of 15V (900 kPa peak positive 

pressure measured in free water tank). An ensemble of 250 coherently compounded frames, 

collected at a framerate of 500 Hz, was then processed through a singular value decomposition 

filter to isolate blood signals from tissue motion and generate a single power Doppler image. 300 

s after the start of imaging, 100 μL OD30 native GVs were infused over 10 s by syringe pump. 

Pixel-wise signal enhancement was calculated as the ratio of intensity at each time point relative 

to its mean intensity in the first 75 frames. Time courses were then extracted by averaging signal 

enhancement within a manually defined region of interest encompassing the whole brain, 

processed with a 10-sample moving mean filter and normalized to the global maximum.

Liver amplitude modulation imaging. Mice (10-14 weeks) were maintained under 2% isoflurane 

anesthesia on a mouse heating pad controlled by a rectal probe (TCAT-2LV, Physitemp 

Instruments). After depilation of the abdomen (Nair) and insertion of a 30-g tail vein catheter, the 

mice were secured in a supine position with surgical tape. Ultrasound imaging was performed 

with an 18 MHz, 128-element linear array transducer (L22-14v, Verasonics) mounted on a 

custom-made manual translation stage and positioned such that the liver was at approximately 8 
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mm in depth. Once the internal temperature of the mouse stabilized at 37°C, B-mode and 

amplitude modulation images were simultaneously acquired every 4 s for up to 90 min. All images 

were reconstructed from 128 focused beam ray lines. Each ray line was transmitted at 18 MHz 

from a 32-element active aperture with a focal depth of 8 mm and peak positive pressure of 600 

kPa (measured in free water tank). B-mode images were reconstructed from a single pulse, while 

amplitude modulation was implemented by first transmitting a single pulse from the full active 

aperture, followed by two pulses where the even and odd elements in the active aperture are 

sequentially silenced.24 Stripped GVs (OD 30, 100 μL) were manually injected as a bolus after 

300 s. Image processing and display were performed by internal Verasonics programs. Time 

courses were calculated as the average signal intensity within a manually defined rectangular 

region of interest encompassing the liver. To enable comparison, the time courses were smoothed 

by robust locally weighted-regression using linear least squares, baseline corrected with respect 

to the first 75 time points and normalized to the global maximum.

In vitro macrophage imaging. Wild-type RAW264.7 cells were seeded onto fibronectin-coated 

cover slips (2e6 cells/2mL DMEM). After 24 h, the culture media was exchanged with fresh DMEM 

containing bafilomycin A1 (100 nM) or vehicle (0.01% v/v DMSO). Media of the same composition 

was used for all subsequent steps. Following a 1 h pretreatment, a GV suspension composed of 

320 μL fresh media and 80 μL stripped GVs (OD10 in PBS) was dropped at the center of a UV-

sterilized Parafilm-lined 6-well plate and a cover slip was floated on top, cell-side down. This GV 

suspension was freshly prepared immediately prior to uptake. After incubation at 37°C for 30 min, 

the cover slips were transferred to pre-warmed fresh media and incubated for the desired amount 

of time. The media was then aspirated and the cover slips were gently washed once with 2 mL 

room temperature PBS. Cells were detached with 500 μL 0.25% trypsin-EDTA (Genesee 

Scientific), neutralized with 1 mL media, and pelleted by centrifugation (300xg, 5 min, 4°C). From 

this point on, special care was taken to minimize exposure of the cells to temperatures above 

4°C. The pellet was washed once with 1.4 mL ice-cold PBS and resuspended in 50 μL cold serum-
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free DMEM with 25 mM HEPES before loading into an ultrasound phantom (1% agarose in PBS). 

Cell densities were manually counted by hemocytometer. 

The phantoms were imaged with a 128-element linear array transducer (L10-4v, 

Verasonics) mounted on a custom manual translation stage using a previously described cross-

propagating amplitude modulation pulse sequence26 that was modified to acquire single frames. 

Briefly, each frame consisted of 64 ray lines transmitted at 4V (400 kPa peak positive pressure in 

water) and 6 MHz from a 65-element aperture. Within the active aperture, amplitude modulation 

was implemented by sequentially sending a plane wave angled at 19.5° from the first 32 elements, 

a plane wave angled at -19.5° from the last 32 elements, followed by simultaneous emission of 

both plane waves. The first 3 frames were saved along with a post-collapse image (after 10 

insonations at 30 V). Signal intensities were extracted from manually selected circular regions of 

interest with diameters of 1.8 mm, baseline corrected by subtraction of signal from the post-

collapse image, and adjusted for cell density. The time courses from each run were then 

normalized to the mean intensity from the samples harvested immediately after uptake (t=0). 

GV contrast measurement. Phantoms were constructed as previously described.19 Briefly, 

phantoms were made by embedding stripped GVs in 1% agarose in PBS and imaged with the 

same parameters used for liver imaging. Signal intensities were extracted from manually defined 

regions of interest.

Fluorescence imaging

Whole organ fluorescence. Mice were prepared as described above for transcranial neuroimaging, 

with the only modification being that the GVs were fluorescently-labeled with Alexa Fluor 647. 

Ninety minutes after GV injection, the mice were transcardially perfused with 30 mL of cold 

heparinized PBS (10 U/mL, Sigma Aldrich). The heart, lungs, kidneys, spleen, and liver were then 

carefully excised and stored in ice-cold Fluorobrite DMEM (Gibco) prior to analysis. Images were 

acquired on a Bio-Rad ChemiDoc MP imaging system using red epi-illumination and a 695/55 nm 
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filter with an exposure time of 0.5 s. Integrated intensities were then calculated using the built-in 

“Analyze Particles” function in FIJI. 

Immunofluorescence. Mice were prepared as described above for whole organ fluorescence. 

Ninety minutes after GV injection, the mice were transcardially perfused with 30 mL of cold 

heparinized PBS, followed immediately by 20 mL 10% neutral buffered formalin. The liver and 

spleen were removed and immersed in formalin overnight (4°C). Each organ was then sectioned 

with a vibrating microtome (75 μm, Compresstome, Precisionary Instruments). Slices were 

blocked and permeabilized (2h, rt) with PBS containing 10% goat serum (Sigma Aldrich), 0.2% 

Triton X-100 (Fisher Scientific), and 0.1% sodium azide (Sigma Aldrich). Each slice was stained 

for macrophages with rat anti-mouse F4/80 (BioLegend, 1:200 dilution, overnight, 4°C) and Alexa 

Fluor 594 goat anti-rat IgG secondary antibody (2h, rt, 1:400 dilution). The sections were mounted 

with ProLong Diamond with DAPI (Invitrogen) and allowed to harden overnight before imaging 

with a Zeiss LSM 800 confocal microscope through a 10x or 20x objective. Imaging parameters 

prioritized signal specificity over speed. 

Confocal microscopy images of entire liver slices were background subtracted in FIJI (20 

px, rolling ball method). Randomly selected 500 px by 500 px regions of interest—simulating the 

sampling of arbitrary fields of view –were exported to Ilastik41 for processing. The “Density 

Counting” workflow was used to count macrophages (Fig. S6). Images were also segmented into 

macrophage and non-macrophage regions with the “Pixel Classification” workflow and loaded into 

MATLAB for colocalization analysis (Fig. S3). 

Live-cell imaging. 1e5 RAW264.7 cells expressing palmitoylated mWasabi were seeded on 

fibronectin-treated 35mm glass-bottom dishes. After 24 h, the culture media was exchanged with 

serum-free Fluorobrite DMEM containing 25 mM HEPES and either 100 nM bafilomycin A1 

(Cayman Chemical) or vehicle (0.01% v/v DMSO). Following a 1 h incubation, this media was 

replaced with a 200 μL freshly-prepared suspension of OD 1.2 dually-labeled GVs. The well was 
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then sealed with a UV-sterilized 18mm circular glass cover slip and inverted for 5 min at 37°C to 

allow for contact and uptake. 

Laser scanning confocal images were acquired every 2 min for 1h on a Zeiss LSM 800 

microscope with a large incubation chamber maintained at 37°C. High magnification images were 

acquired through a 63x oil immersion objective. Population level images were acquired through a 

20x objective. In both cases, acquisition parameters were set to optimize speed. Image files were 

loaded into FIJI, visualized by maximum intensity projection, de-speckled with a 1-px median filter 

and quantified by integration of signal intensities across the entire field of view.

Pharmacokinetic modeling

A two-compartment pharmacokinetic model was implemented in MATLAB as the following system 

of ordinary differential equations:

(1)
𝑑𝐵
𝑑𝑡 =  ― 𝑘1𝐵

(2)
𝑑𝐿
𝑑𝑡 = 𝑘1𝑘𝑐𝐵 ― 𝑘2𝐿

Where B represents GV contrast in the blood and L represents GV contrast in the liver. These 

variables were then directly parametrized with normalized Doppler and AM signal time courses, 

respectively, and the constants were derived by non-linear least squares curve fitting with initial 

values of 0 and bounds of 0 to 1. k1 and k2 represent rates of phagocytosis and lysosomal 

degradation, respectively. kc is a constant relating the blood Doppler signal to the liver nonlinear 

signal. Input data were all distinct combinations of Doppler and AM time courses from each 

biological condition. Output values are tabulated in Table S1.

Statistical analysis

Sample sizes were chosen based on preliminary experiments to yield sufficient power for the 

proposed comparisons. Statistical methods are described in applicable figure captions. 

Data and code availability 

All gas vesicles, plasmids, data and code are available from the authors upon reasonable 

request. 
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