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Supplementary Methods 

Characterizing the 2018 drought based on a longer time period 

The short time period (2015–2018) used for anomaly calculation may impact the 

results, especially for contextualizing the “normal” years. Therefore, we also used a 

longer time period (2000–2018) to calculate the anomalies of GOSIF and VPD due to 

their longer data record. The results based on the longer time period showed that among 

the four years (2015-2018), only 2018 showed widespread positive anomalies in VPD 

for the southwestern US (Fig. S1), while other years were nearly drought-free, 

suggesting that 2018 was indeed a severe drought year regardless of the reference 

period used (2015-2018 or 2000-2018). The maps of VPD and GOSIF anomalies based 

on either short or longer time period detected the severe drought in 2018 over the 

southwestern US, although the anomalies were enhanced over the shorter reference 

period (Fig. S2). Although different time periods were used to calculate the anomalies, 

the SIF had similar responses to VPD anomalies especially for the dryland-dominated 

U.S. Southwest (Fig. S2). 
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Fig. S1. The spatial patterns of growing-season averaged standardized anomalies of VPD in 

2015, 2016, 2017, and 2018 over the CONUS. The anomalies were calculated based on longer 

time period from 2000 to 2018. The boundary of the seven states in the southwestern US is 

highlighted. 

 

Fig. S2. The spatial patterns of growing-season averaged standardized anomalies of GOSIF and 

VPD in 2018 over the CONUS. The left column was calculated based on longer time period 

from 2000 to 2018; while the right column was based on short time period from 2015 to 2018.  
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SMAP pixel-mean GPP versus PFT-specific GPP 

We compared the pixel-mean SMAP GPP and PFT-specific SMAP GPP for the 

four selected sites, and found that the difference between the two types of GPP was 

negligible for three out of four sites (except for US-Vcm; Fig. S3), suggesting that 

three sites are generally consistent with the overlying 9-km grid cell. The US-Vcm 

site is recovering from recent fire disturbance and is dominated by elderberry and 

aspen seedlings, while the GPP of the overlying SMAP 9km grid cell is dominated 

by surrounding evergreen needleleaf forests. The L4C sub-grid PFT-specific GPP for 

shrubland was therefore selected for the tower comparison at this site rather than the 

GPP for evergreen needleleaf forests. 

 

Fig. S3. The comparison between SMAP pixel-mean GPP and PFT-specific GPP for four EC 
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flux sites. The pixel-mean GPP integrated information from the 9km pixel regardless of the 

land cover type, while the PFT-specific GPP indicated that the extracted GPP was only 

aggregated by sub-pixels having same land cover type with target flux tower. 

 

To complement SMAP GPP and GOSIF, the coarse-resolution SIF that were directly 

aggregated from discrete OCO-2 SIF soundings, MODIS EVI, and MODIS GPP were 

also used as proxies of ecosystem productivity to understand the impact of drought. 

OCO-2 SIF 

The OCO-2 SIF was extracted from the OCO-2 Level 2 bias-corrected SIF files 

(OCO2_L2_Lite_SIF, V8r) (OCO-2 Science Team/Michael Gunson, 2017). The OCO-

2 instrument provides SIF estimates with higher spatial resolution along orbits (i.e., 1.3 

× 2.25 km2) (Frankenberg et al. 2014) than previous GOSAT and GOME-2 SIF. 

However, due to the sparse sampling strategy of OCO-2 (Li and Xiao 2019a; Sun et al. 

2018), we generated a coarse-resolution SIF (1.5°, monthly) from 2015 to 2018 to 

guarantee global coverage using the discrete and non-gridded SIF retrievals. Since 

varying viewing zenith angle (VZA) may affect the magnitude of SIF (Li et al. 2018a), 

we only used SIF retrievals with VZA lower than 45°. The instantaneous SIF at 757 nm 

was converted to a daily scale using the daily correction factor included in the Lite SIF 

files. For examining the consistency among productivity proxies, we calculated the 

correlation between GOSIF and SMAP GPP (or OCO-2 SIF). The comparison 

between GOSIF and the coarse-resolution OCO-2 SIF was only conducted at 

monthly time scale owing to the comparatively sparse OCO-2 sampling. The 

growing-season averaged anomaly of OCO-2 SIF was not calculated because of large 
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spatial gaps existing in the monthly data and data missing in August 2017.  

 

Fig. S4. The consistency between three productivity measures in growing seasons from 2015 

to 2018. (a) shows the 8-day GOSIF versus SMAP GPP; (b) shows the monthly GOSIF versus 

coarse-resolution OCO-2 SIF. The data in the 2018 drought year are shown with filled red 

circles. 

 

Fig. S5. The spatial pattern of monthly anomalies of GOSIF, OCO-2 SIF, APAR, and SIFyield 

in May, July, and September 2018 over the CONUS. The boundary of the seven states in the 

southwestern U.S. is highlighted. 
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MODIS GPP and EVI 

MOD17 GPP model (Zhao et al. 2005) uses a similar LUE model and inputs as 

the SMAP L4C product, except that VPD provides the sole moisture control on 

productivity. Here, we obtained the gap-filled 8-day, 500 m MODIS GPP 

(MOD17A2HGF Version 6) from https://lpdaac.usgs.gov/products/mod17a2hgfv006/. 

At the ecosystem scale, we examined the 8-day variations of MODIS GPP and 

EVI in the 2018 drought year relative to their multi-year average, and assessed 

whether they could also characterize the drought-induced reduction of tower GPP. 

The EVI used in this study was derived and calculated from the daily MODIS nadir 

surface reflectance product (MCD43C4, Collection 6, 0.05°) over the period 2015–

2018.  

 

Fig. S6. The seasonal cycles of MODIS GPP (g C m-2 d-1) and EVI at four EC flux sites. The 

red lines stand for the 8-day variations in the growing season during the 2018 drought year, 

while the black lines denote the averages of normal years. 
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Validating the relationships between flux tower GPP and different variables  

For the four selected EC flux sites, we first examined the relationships between 

8-day tower GPP and different productivity proxies and environmental indicators 

during the growing season from 2015 to 2018. High correlations between tower GPP 

and these variables were prerequisite for effectively monitoring the drought-induced 

variations of GPP based on these variables. The included productivity proxies were 

GOSIF, SMAP GPP, MODIS GPP, EVI, and APAR; while environmental indicators 

were SIFyield (SIF/APAR), MODIS LUE term (minimum air temperature scalar × VPD 

scalar), and SMAP LUE term (minimum air temperature scalar × VPD scalar × 

landscape freeze/thaw scalar × root zone soil moisture scalar) (Jones et al. 2017). The 

SMAP LUE term was constructed by specifying additional environmental constraints 

for frozen landscape conditions and low root zone soil moisture upon the original 

MODIS LUE term (Jones et al. 2017), which was directly provided by the L4C 

product, while the MODIS LUE was derived as MODIS GPP divided by APAR. We 

also compared the tower-based LUE (tower GPP/APAR) with SIFyield, SMAP LUE, 

and MOSID LUE. These comparisons provided insight into the underlying reasons 

for the relationship between the tower GPP and satellite productivity metrics. We 

used the average of a total of nine 500-m GPP pixels in a 3*3 pixel window 

surrounding each tower site. 

Overall, among five productivity proxies (Table S1), GOSIF showed the highest 

correlations with tower GPP (R2=0.46-0.80); EVI was also highly correlated with tower 

GPP (R2=0.52-0.78); SMAP GPP and MODIS GPP had comparable but lower 
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correlations. The higher sensitivity of GOSIF to tower GPP compared to two GPP 

products was contributed by the SIFyield, which better accounted for the variance in 

tower GPP than the LUE terms from SMAP and MODIS. The stronger GPP-SIFyield 

relationships resulted from the stronger tower LUE-SIFyield relationships compared with 

SMAP or MODIS LUE (Table S2). Due to inclusion of soil moisture information, the 

SMAP LUE had slightly higher sensitivity to tower GPP than MODIS LUE.  

Table S1. The correlations between 8-day tower GPP and five productivity proxies and three 

environmental indicators at four sites. The numbers show the R2 between tower GPP and each 

variable. All relationships are statistically significant (p<0.01) except for APAR at the US-Wjs 

site.   

Site  GOSIF SMAP

GPP 

MODIS 

GPP 

APAR EVI SIFyield SMAP 

LUE 

MODIS 

LUE 

US-Vcm 0.69 0.53 0.52 0.60 0.57 0.44 0.1 0 

US-Whs 0.71 0.70 0.54 0.49 0.67 0.42 0.35 0.13 

US-Wjs 0.46 0.29 0.51 0.30 0.52 0.18 0.32 0.23 

US-Wkg 0.80 0.74 0.68 0.69 0.78 0.57 0.46 0.19 

Table S2. The R2 values for the linear relationships of tower LUE with SIFyield, SMAP GPP 

LUE, and MODIS LUE at four sites.  

Site  SIFyield SMAP 

LUE 

MODIS 

LUE 

US-Vcm 0.20 0.11 0.08 

US-Whs 0.74 0.47 0.65 

US-Wjs 0.05 0 0.01 

US-Wkg 0.64 0.52 0.26 
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    Fig. S7 showed the relationships between tower GPP and SMAP GPP (and 

GOSIF) at four selected EC flux tower sites. The slopes between SMAP GPP and 

tower GPP were close to 1 for three out of the four sites (US-Vcm, US-Wkg, and 

US-Whs). The relationship was only weaker for US-Wjs, leading to different slope. 

We further examined site homogeneity of US-Wjs by using 250m EVI, land cover 

map from 30m National Land Cover Database (NLCD), and 500m MODIS land 

cover map (Fig. S8). The 9km SMAP pixel where US-Wjs was located was mainly 

dominated by grassland and shrubland (Fig. S8a). MODIS land cover map did not 

well identify the shrubland pixels (Fig. S8b), and classified a significant fraction of 

grassland pixels which had lower EVI and consequently lower productivity (Fig. S8c) 

as shrublands. We found that the 9km pixel-mean EVI, grassland EVI, shrubland EVI 

based on MODIS land cover map (actually largely composed by grassland pixels) 

were all lower than the EVI at the US-Wjs site (Fig. S8d). The SMAP PFT-specific 

GPP was calculated based on the MODIS land cover map, and therefore, 9km pixel-

mean GPP, grassland GPP and shrubland GPP (largely composed by grassland pixels) 

all underestimated the GPP of US-Wjs. Although SMAP partly solves the 

heterogeneity problem for matching the tower site by providing PFT-specific GPP, 

the GPP may also be affected by the classification accuracy of MODIS land cover 

map. If NLCD were used to identify shrubland pixels (Fig. S8a), the tower GPP for 

US-Wjs would not be underestimated since the identified shrubland pixels by NLCD 

had consistently higher EVI (Fig. S8c). When linking 9km SMAP GPP or 0.05° 

GOSIF to the flux tower sites, the heterogeneity problem may be inevitable since the 
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footprints of traditional towers range from several hundred meters to 1 or 2 

kilometers. The landscape around US-Wjs is not highly heterogeneous, but the 

difference between tower GPP of US-Wjs and the GPP from surrounding pixels was 

still observed. Nevertheless, SMAP GPP and GOSIF could still capture the drought 

impact on tower GPP (Fig. 8 in the main text). Further enhanced spatial resolution 

for both SMAP GPP and GOSIF will be more helpful. More sites encompassing a 

variety of biomes are needed to validate the relationships between SMAP GPP/GOSIF 

and tower GPP. This can help to understand whether both products systematically 

under- or over-estimate GPP for certain biomes and promote model improvement in the 

future. 

 

Fig. S7. Relationships of tower GPP with SMAP GPP (upper panels) and GOSIF (lower 

panels) at four selected EC flux tower sites. Each circle represents variables at 8-day time 

scale from April to October over 2015–2018.  
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Fig. S8. Land cover and EVI within the 9km SMAP pixel where US-Wjs is located. (a) Land 

cover from 30m NLCD map; (b) Land cover from 500m MODIS map; (c) 250 m MODIS 

EVI. The 9km pixel is mainly covered by grassland (cyan) and shrubland (red). (c) 

Shrubland has higher EVI than grassland (green: low EVI; red: high EVI). (d) shows the 

EVI for US-Wjs pixel and SMAP 9km averaged and PFT-specific EVI. SMAP calculated 

PFT-specific GPP based on MODIS land cover map (b), therefore, the real shrubland pixels 

which had higher EVI were not used, leading to slight underestimation of GPP for US-Wjs.   

 

Soil moisture validation 

    We obtained surface soil moisture for US-Whs and US-Wkg sites, and found 

that the SMAP root-zone soil moisture had lower correlations with surface soil 

moisture possibly due to different depths of soil, but it still captured the negative 

anomaly of measured soil moisture to a certain degree (Fig. S9). This may account 

for the stronger relationships between the SMAP LUE and tower GPP relative to the 
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MODIS LUE, and consequently stronger relationships between SMAP GPP and 

tower GPP than MODIS GPP (Table S1). 

 

Fig. S9. The seasonal cycles of flux and SMAP soil moisture and (m3/m3) for the US-Whs and 

US-Wkg sites. The red lines stand for the 8-day variations in the growing season during the 

2018 drought year, while the black lines denote the averages of normal years.  

 

The impact of drought on irrigated and rainfed crops 

    For counties that provided data for both rainfed and irrigated crops, we 

correlated the county-level anomalies of SMAP GPP and GOSIF to those of rain-fed 

crop yield or irrigated crop yield separately (Fig. S10). We found that the yield of 

irrigated crops was weakly related to SMAP GPP and GOSIF, while the yield of 

rainfed crops had much higher sensitivity to the variations of SMAP soil moisture  

and were thus strongly correlated with SMAP GPP and GOSIF. This confirmed the 
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findings of previous studies that the rainfed crops were more vulnerable to the 

climate change or drought than the irrigated crops (Li et al. 2015; Ozelkan et al. 

2016). 

 

Fig. S10. Relationships of anomalies in crop yield with anomalies in SMAP GPP and GOSIF 

for irrigated and rainfed crops. Hollow circles represent the anomalies in county-level end of 

season crop yield against anomalies in county-averaged GPP and GOSIF in normal year (2015-

2017), while solid circles denote the 2018 drought year.  
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