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Abstract: Tomography aims to recover a three-dimensional (3D) density map of a medium or an
object. In medical imaging, it is extensively used for diagnostics via X-ray computed tomography
(CT). We define and derive a tomography of cloud droplet distributions via passive remote sensing.
We use multi-view polarimetric images to fit a 3D polarized radiative transfer (RT) forward model.
Our motivation is 3D volumetric probing of vertically-developed convectively-driven clouds that are
ill-served by current methods in operational passive remote sensing. Current techniques are based on
strictly 1D RT modeling and applied to a single cloudy pixel, where cloud geometry defaults to that
of a plane-parallel slab. Incident unpolarized sunlight, once scattered by cloud-droplets, changes its
polarization state according to droplet size. Therefore, polarimetric measurements in the rainbow and
glory angular regions can be used to infer the droplet size distribution. This work defines and derives
a framework for a full 3D tomography of cloud droplets for both their mass concentration in space and
their distribution across a range of sizes. This 3D retrieval of key microphysical properties is made
tractable by our novel approach that involves a restructuring and differentiation of an open-source
polarized 3D RT code to accommodate a special two-step optimization technique. Physically-realistic
synthetic clouds are used to demonstrate the methodology with rigorous uncertainty quantification.

Keywords: polarization; 3D radiative transfer; inverse problems; tomography; remote sensing;
convective clouds; cloud microphysics

1. Motivation, Context & Outline

Clouds play a significant role at local and global scales, affecting weather, the water cycle, solar
power generation, and impacting the Earth’s energy balance [1]. Moreover, uncertainties in global
climate models are significantly affected by our limited understanding, and therefore modeling, of
cloud dynamics and microphysics [2]. Thus, understanding, modeling, and predicting cloud properties
is a key issue with worldwide socio-economic implications that is in the center of many research
studies [3]. Much of the current understanding relies on routine remote sensing of cloud properties
such as by the MODerate resolution Imaging Spectrometer (MODIS) [4]. In practice, global-scale
retrievals have so far been based on an individual pixel basis, using an approximation that clouds are
plane-parallel slabs. This approximation uses a 1D radiative transfer (RT) model, which leads to biases
in many retrievals [5] while other retrievals simply fail [6]. Convective clouds are therefore a blind
spot due to their inherently 3D nature.
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In its 2018 Decadal Strategy for Earth Observation from Space [7], the National Academies of
Sciences, Engineering, and Medicine have indeed identified “Clouds, Convection, and Precipitation”
as one of its five top-priority Targeted Variables for NASA’s next generation of satellite missions. To
bridge this gap, new technology is needed to study clouds as 3D volumetric objects, on a global scale.
The CloudCT [8] space mission, by the European Research Council (ERC), is specifically destined to
provide data and products for this goal. It will involve 10 nano-satellites orbiting in formation, thus
acquiring simultaneously unique multi-view measurements of such vertically-developed 3D clouds
(Figure 1).

Moreover, common retrieval of cloud droplet characteristics use two optical bands
simultaneously [9]: a visible band, where reflected radiance increases with cloud optical thickness, and
a shortwave infra-red (SWIR) band, where absorption by condensed water depends on cloud droplet
size. To sense droplet size in 3D by CloudCT or other future missions, sensors will need to have either
SWIR or polarization capability.

Figure 1. Artist’s illustration of the CloudCT [8] mission: a distributed multi-view system of 10
nano-satellites orbiting the Earth in formation. Measurements acquired by the formation will enable
tomographic retrievals of cloud properties. Courtesy Mark Sheinin.

1.1. Why Polarized Light?

There is an additional caveat in common retrievals, which rely on SWIR absorption [9]. In addition
to absorption, light undergoes multiple scattering in clouds. Multiple scattering diminishes sensitivity
to droplet microphysics. High sensitivity to microphysics is embedded in single-scattering events.
It is thus beneficial to pick-up single-scatter signals, out of the strong multiply-scattered background
radiance. Polarization signals of scattered light are dominated by single-scattering events, and are
thus highly sensitive to the type and size specifications of scatters. Polarization therefore provides
a significant signal for retrieval of droplet size distributions. In contrast, the intensity signal, which
undergoes multiple-scattering events before reaching the sensor, is insensitive to the droplet size and
provides complementary information about optical densities within the cloud.

In recent years, there is growing interest in polarimetric imagers for remote sensing of clouds
and aerosols [10–16]. In turn, increased interest in polarimetric sensing capabilities has led to the
development of 1D and 3D polarized (or “vector”) RT codes [17,18] with an aim of improving retrieval
algorithms. Motivated by the CloudCT mission formulation—only the first of many to come in
innovative passive cloud remote sensing—we develop herein a novel framework for 3D remote
sensing of cloud properties using multi-view polarimetric measurements.

1.2. Why Passive Tomography?

From its etymology, the word “tomography” means a slice-by-slice recovery of an object’s 3D
internal structure using 2D projections of cumulative density. In the computer age, this task is termed
Computed Tomography (CT) [19]. Common medical CT approaches are transmission-based X-ray CT
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or single-photon emission computed tomography (SPECT). There, 2D projections represent straight
line-of-sight (LOS) integrals of the local X-ray opacity or nuclear marker density, respectively. In both
imaging modalities, the inverse problem of recovering the medium content is linear [20].

Medical CT modalities generally use active radiation. Active methods are also used for
atmospheric sensing or scatterers by radar and lidar. There, a transmitter and receiver are generally
collocated and signals are based on backscattering and time-resolved two-way transmission. Probing is
solved per LOS using methods which are computationally relatively simple. However, the technology
is expensive, horizontal sampling is generally very limited, and irradiance decays fast from the
transmitter. Passive sensing is less expensive, uses minimal power, and can image wide swaths of
Earth. Thus global coverage mandates passive imaging from space. Consequently, this paper focuses
on the derivation of 3D passive tomography of scatterer fields.

In passive imaging of scatterers, the light source irradiating the atmosphere is the sun:
uncontrolled, steady and mono-directional. Passive remote sensing does not benefit from pulsed
sources for echo-location. It should rely on multi-angular data. In general, however, retrieving
atmospheric scatterer fields in 3D requires a full forward model of scattering in 3D. The model
generalizes both the direct transmission model of linear CT and the diffusion limit. It can handle
atmospheric regimes where neither a direct transmission model nor the diffusion limit are valid.

1.3. Context

In one sense or another, without tomography per se, three-dimensional cloud analysis using
remote sensing data has been a topic of research for over two decades. There are well-known biases in
optical thickness retrievals using the independent pixel approximation (IPA). To remove these biases,
Marshak, et al. [21] invokes an inverse nonlocal IPA (NIPA). Marshak et al. [21] further demonstrates
this approach on a single realization of a stochastic model for marine stratocumulus (Sc). NIPA is
based on the RT Green’s function for horizontal (cross-pixel) transport of solar radiation between
irradiation and escape to the above-head sensor, which can be computed numerically and conveniently
parameterized. Using many instances of the same stochastic cloud model, neural networks
(NNs) were successfully trained to retrieve domain-average cloud properties from nadir radiance
fields [22–24]. Zinner et al. [25] generalized NIPA to multi-spectral retrievals of both optical thickness
and column-averaged effective radius. Iwabuchi and Hayasaka [26] creatively combined NIPA-like
physics-based and NN-like statistical regression methods to retrieve spatially varying properties of Sc
clouds without suffering from IPA-induced biases.

Multi-angle Imaging Spectro-Radiometer (MISR)/Terra [27] was launched in 1999 and soon
inspired research into cloud or cloud field reconstruction based on its unique multi-angle imaging
capability. Marchand and Ackerman [28] used the original scalar version of the Spherical Harmonics
Discrete Ordinates Method (SHDOM) iteratively to fit MISR observations of marine Sc by modifying
the column optical thickness under each pixel. Other early pioneers were Seiz and Davies [29]
who reconstructed the outer shell of a 2D transect through a large convective cloud by applying
labor-intensive stereographic methods to MISR’s multi-angle imagery. Cornet and Davies [30] then
estimated the mean optical thickness of that same cloud by performing repeated Monte Carlo 3D RT
simulations, holding the outer shape constant, to fit the MISR radiometry. Evans et al. [31] trained a
neural network to improve on the IPA retrieval of mean optical depth and its standard deviation using
one or more MISR angles. To that effect, these last authors used SHDOM to compute multi-angle
radiance fields from very many cloud fields generated with a Large Eddy Simulation (LES). This started
a new trend in uncertainty quantification (UQ) in cloud remote sensing, using LES for ground truth
that has by now become the standard, and used here as well.

There is a renewed interest in determining a cloud’s outer surface in its own right. On the
one hand, very high resolution imagery from ground [32] or space [33] has been processed by
stereophotogrammetric methods to generate dense “point clouds” representing many features seen
from two cameras. On the other hand, the multi-view technique of “space carving”—used here
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for initializing the iterative tomography—defines the 3D region that contains a certain cloud by
intersecting threshold-based cloud masks from multiple directions. Space carving methods have
been applied to determine conservatively the outer shape of clouds observed with the airborne
hyperangular Research Spectro-Polarimeter (RSP) [34], MISR [35] (same cloud as Reference [29]),
and other sensors (e.g., References [36,37]). Note that methods based on cloud-masking, feature
detection-and-tracking and/or stereoscopic location do not require radiometrically calibrated sensors.
The loosened radiomeric use seems sub-optimal, since most sensors are in fact painstakingly calibrated
to stringent (NIST-traceable) standards. Zinner et al. [38] have, to some extent, reconciled the notion of
cloud surface sensing and RT-based cloud property estimation. Their approach scans the illuminated
sides of vertically-developed convective clouds using a multispectral sensor mounted on an airborne
platform. Then, a standard bi-spectral technique infers the vertical profile of cloud particle size along
the side of the cloud. Alexandrov et al. [39] used LES clouds and 3D vector RT to demonstrate
cloud-side microphysical profiling with RSP’s scanning polarimetric capability.

Remote sensing of clouds in complex 3D scenarios has already benefited from the advent of
convolutional neural networks (CNNs), which excel in mapping one or more (e.g., multi-spectral)
images, to inherent properties of the objects in the scene. The CNN is trained on a large database where
the multi-spectral radiances are simulated with 3D RT and the pixel-scale cloud properties (typically,
optical thickness and column-mean effective droplet radius) are known from the LES and assumed
microphysics. Deep learning has thus been applied to both nadir satellite imagery [40] and to an array
of ground-based sky cameras [41].

To close this non-exhaustive survey of cloud or cloud scene reconstruction techniques, we mention
data fusion, which generally involves a combination of active and passive sensors. Liou et al. [42]
blazed this path toward the inference of 3D cloud structure by creatively using a combination
of ground-based mm-wave radar and multi-spectral imagery from a NOAA satellite overflying
the same region. The radar delivers only a vertical 2D “curtain” of radar reflectivities from
an extensive cirrus layer, while the multi-spectral imager provides raw information about the
horizontal structure of the same cirrus layer. Barker et al. [43] used A-train satellite data (CloudSat,
CALISPO, MODIS) to construct a plausible 3D cloud scene by populating off-nadir columns (where
actively-probed profiles are lacking) by looking for a sub-satellite (hence actively profiled) pixel that
is close in multi-spectral space. This “donor–receiver” algorithm is then iterated until a broadband
3D RT estimation of up-welling flux at the top of the atmosphere (TOA) agrees with the CERES
measurement of it, thus satisfying a form of radiative closure. Fielding et al. [44] formalize cloud
scene reconstruction with fused ground-based passive/active observations using an ensemble Kalman
filter technique. Ensemble Kalman filtering is common in data assimilation for numerical weather
prediction. Fielding et al. [44] assimilate observations into a suite of forward models based on 1D or
3D RT, however, rather than into the primitive equations of atmospheric dynamics.

1.4. Outline

Linear CT models (analogous to medical Xray CT and SPECT) were used to study gas emission
and absorption in 3D plumes in the vicinity of pollution sources [45,46] or volcanoes [47,48].
There, Rayleigh-scattered sunlight was transmitted through the gas to a spectrometer on a platform
flying around the plume. Following the vision of Werner et al. [49], Huang et al. [50,51] used scanning
microwave radiometers to reconstruct 2D slices of particle density in clouds based on its impact on
local emissivity. Linear CT was also adapted by Garay et al. [52] to characterize a smoke plume over
water emanating from a coastal wild fire. There, the signal is sunlight scattered to space and detected by
the Multi-angle Imaging Spectro-Radiometer (MISR) sensor [27] at nine viewing angles. The analysis
in Reference [52] yields the direct transmission through the plume per LOS, from which linear CT
analysis yields the plume density without using solar radiometers under the plume. Aides et al. [53]
formulated CT based on single-scattered light. Their forward model is based on sets of broken-ray
paths, where light changes direction once from the sun to a sensor. All the above atmospheric
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tomography methods assume the medium to be optically thin enough for direct and once-scattered
radiation to dominate the measured radiance.

Biomedical imaging also involves CT modalities which are not based on linear models. A notable
case in scattering-based tomography of X-ray CT is in Reference [54]. It exploits scattered radiation to
obtain reconstruction with significantly lower dose and simpler acquisition hardware relative to linear
CT systems, while enhancing estimation of chemical decomposition per volume element. Another
example is Optical Diffusion Tomography (ODT) [55–57], which uses non-ionizing near-infrared light.
It is worth noting the work by Che et al. [58] which departs from physics-based approaches into the
realm of machine learning.

In contrast to ODT and the linear models described, which rely on either very high or very low
orders of scattering, we use a steady-state polarized 3D RT forward model which generalizes far
beyond these assumptions. This approach can seamlessly extract information about droplet sizes and
densities from all orders of scattering.

Specifically, we adopt the vector Spherical Harmonics Discrete Ordinates Method
(vSHDOM) [59,60], a popular computational 3D polarized RT model that, importantly here, is open
source. We then formulate an inverse 3D RT problem for cloud tomography utilizing multi-view
multi-spectral polarimetric images. In contrast to linear CT, the image formation model is nonlinear in
the cloud’s microphysical and density variables. Our approach seeks an optimal fit of observed data to
a physical model based on droplet microphysical and density parameters. Our work here generalizes
our prior inversion approaches, which have been based on intensity-only observations [61–65].
Our generalization takes advantage of polarimetric measurements, thereby providing the benefits
described in Section 1.1.

In Section 2, we cover basic cloud droplet optics using Mie scattering theory and the fundamentals
of polarized 3D RT. The latter yields radiance which has a clear decomposition into single- and
multiply-scattered light. This decomposition supports the solution to the inverse problem at hand.
We then lay out our 3D cloud tomography method where we target three basic microphysical
properties, volumetrically. Necessary but tedious mathematical details are presented in the Appendix A.
Subsequently, the new 3D cloud tomographic capability is demonstrated on realistic synthetic clouds
from an LES that provide ground truth for unambiguous retrieval error quantification. We conclude
with a summary of our results and an outline of future developments, mostly looking toward CloudCT
and other future space-based uses.

2. Theoretical Background

This section describes bulk microphysical parameterization of scattering media, the polarimetric
radiative transfer image formation (forward) model and the relation between them. The section also
describes the coordinate systems in use (per-scatterer, imager and Earth frames). We further decompose
the polarized radiance into single-scattered and high-order scattered components. These foundations
are used in subsequent sections, to formulate tomographic recovery. For concise reading, this section
does not elaborate on some definitions. An extended, self-contained theoretical background section is
given in Appendix A, which the readers are encouraged to follow to ease reproduction of our results.

2.1. Scatterer Microphysical Properties

In the lower atmosphere, cloud particles are droplets of liquid water that are very nearly spherical,
having radius r. They are however polydisperse, with a droplet size distribution denoted n(r).
For most remote-sensing purposes, n(r) is parameterized using an effective radius, re (in µm) and
a dimensionless variance, ve [66]. A commonly used parametric size distribution with empirical
support [66] is the Gamma-distribution (Figure 2), detailed in Appendix A.1. Let ρw be the density of
liquid water. An important cloud characteristic is the water mass density or Liquid Water Content
(LWC) per unit volume. The parameters re and ve dictate the shape of the droplet size distribution.
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LWC relates to droplet size and concentration, thus to optical opacity. In Section 3 the parameters
LWC, re, ve are unknown quantities, which we seek to estimate on a 3D grid.

Figure 2. (Left) A Normalized Gamma droplet size distribution. The effective radius and variance
dictate the centroid and width of the droplet size distribution. The limit of very low ve approaches a
mono-disperse distribution. (Center) Log-polar plot of the Mie phase-function p11 induced by a single
water sphere of radius r. (Right) Log-polar plot of the effective phase-function 〈ss p11〉r/σs induced by
a small volume that includes particles of different sizes.

2.2. Single Scattering of Polarized Light

In the absence of molecular absorption, material optical properties can be approximated using
a single wavelength for each spectral band. This approximation, commonly used in multi-spectral
remote sensing, relies on a single rendering of spectrally-averaged optical properties. It is valid if
wavelength dependencies within a spectral band are weak, a condition met when narrow bands
are considered. Macroscopic optical cross-sections are then expressed as averages weighted by the
size-distribution n(r). We respectively denote the extinction, scattering and absorption cross-sections as

σt(λ), σs(λ), σa(λ). (1)

Note that throughout the text, dependency on λ is generally omitted for simplicity; however, it is used
at specific points as needed.

Scattering, as a fraction of the overall interaction [67], is expressed by the dimensionless single
scattering albedo

v =
σs

σt
. (2)

The extinction coefficient (or optical density), denoted by β, is expressed in terms of the LWC as [68]

β = LWC · σ̃t. (3)

Here, σ̃t is the mass extinction coefficient (in units of m2/g).
Let ω and ω′ be the unitary incident and scattered ray direction vectors respectively in Figure 2.

Single-scattering geometry is defined by the local coordinate system of the incoming beam’s electric
fields. The electric field of incoming light is decomposed into components along orthogonal directions.
We set them as

E1 ∝ ω×ω′, E2 ∝ E1 ×ω. (4)
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The scattering angle is θ = cos−1(ω·ω′). The angular redistribution of singly-scatterred light
by a volume element is defined by the macroscopic phase matrix P(θ). For spherical (or just
randomly-oriented) particles, the phase-matrix P(θ) takes the following symmetric form [66]

P (θ) =


p11 (θ) p21 (θ) 0 0
p21 (θ) p22 (θ) 0 0

0 0 p33 (θ) −p43 (θ)

0 0 p43 (θ) p44 (θ)

 , (5)

where p11 is the (unpolarized) scattering phase-function.
It is convenient to define the state of polarized light in terms of the Stokes [66]

vector I = (I, Q, U, V)>, where I is the unpolarized intensity. The Stokes components relate to statistics
of the fields E1, E2 mentioned in Equation (4), as described in Appendix A.2. The degrees of polarization
(DOP) and linear polarization (DoLP) are respectively defined as the ratios

√
Q2+U2+V2/I,

√
Q2+U2/I.

The angle of linear polarization (AoLP) is 1/2 tan−1(U/Q). Referring to the matrix elements in
Equation (5), in single-scattering of unpolarized incident sunlight, the DoLP of scattered light amounts
to the ratio |p21|/p11.

Mie Scattering

Mie theory describes how light interacts with a spherical particle of size comparable to λ [69].
Denote µ= cos θ. Scattering of the Stokes vector I is described by the phase matrix PMie(µ), which is
fully defined by six matrix components:

pMie
11 (µ), pMie

12 (µ), pMie
22 (µ), pMie

33 (µ), pMie
43 (µ), pMie

44 (µ). (6)

Expressions of Mie and Rayleigh scattering phase matrices are given in Appendix A.3.
Mie scattering due to water droplets peaks at specific angles. For a single droplet or monodisperse

material, PMie has sharp scattering lobes at angles that depend on the droplet’s r/λ ratio. A macroscopic
voxel contains droplets in a range of radii r, smoothing the scattering lobes. The smoothing effect
depends on ve (Figure 3). Two angular domains that stand out for remote-sensing purposes are the
cloud-bow (θ ∈ [135◦, 155◦]) and glory (θ ∈ [175◦, 180◦]). Both domains have peaks that are sensitive to
the droplet microphysical parameters, and are significantly polarized (i.e., peaks are visible in the pMie

12
component). The latter fact renders these peaks distinguishable in the presence of a multiply-scattered
signal component.

cloudbow

glory

Figure 3. Normalized phase matrix element −pMie
12 /pMie

11 around the cloud-bow and glory regions.
For highly disperse droplet distributions (large ve) the secondary lobes of the cloud-bow (θ ∼ 140◦)
and glory (θ ∼ 180◦) diminish. The main cloud-bow peak is slightly sensitive to λ or ve. The side-lobe
angles are more sensitive to λ and re. The side-lobe amplitude is sensitive to ve. This cloud-bow
signal is helpful for retrievals of re. [Right plot] Solid lines indicate monochromatic light. Dashed lines
indicate spectral averaging over a 100 nm bandwidth, which is more than double any of the spectral
bands considered further on.



Remote Sens. 2020, 12, 2831 8 of 32

2.3. Multiple Scattering of Polarized Light

The Radiative Transfer Equation (RTE) [70] describes multiple scattering interactions of
monochromatic partially polarized light within a medium. Transmittance between two points x1, x2 is

T (x1→x2) = exp
[
−
∫ x2

x1

β(x)dx
]

. (7)

An atmospheric domain Ω is bounded by ∂Ω. The intersection of ∂Ω with a ray originating at
point x in direction −ω (Figure 4) is denoted x0(x, ω). Denote the Stokes vector field as I (x, ω).
Then I(x0, ω) is the Stokes vector of radiation which propagates in direction ω at boundary point
x0(x, ω). The non-emissive forward RT model [70] couples I (x, ω) to a vector source field J (x, ω)

(Figure 4) by

I (x, ω) = I(x0, ω)T (x0→x) +
∫ x

x0

J(x′, ω)β(x′)T
(
x′→x

)
dx′, (8)

J (x, ω) =
v(x)
4π

∫
4π

P
(
x, ω·ω′

)
I
(
x, ω′

)
dω′. (9)

Equations (8)–(9) are solved numerically, either directly with an explicit solver [60] or indirectly using
a Monte-Carlo path tracer [71]. We use vSHDOM [60] to simulate scattered Stokes components of a
realistic atmosphere, having both Mie and Rayleigh scattering due to water droplets and air molecules.

voxelTOA

Domain: 

Boundary: 

Figure 4. (Left) Light scatters in the medium, generally multiple times, creating a partially
polarized (vector) scatter field J (9). Integration yields the partially polarized (vector) light field
I (8). Here I(xk, ωk) is a pixel measurement at the top of the atmosphere (TOA) and ISingle is the
single-scattered contribution from x′. (Right) Ray tracing of a line-integral over a discretized voxel
field h[g] (zero-order interpolation).

Multiple scattering interactions are defined using two coordinate systems. Local scatterer
coordinates are set by (Ê1, Ê2). Stokes measurements in satellites, however, are defined in Meridional
coordinates. Let ẑ denote the zenith direction vector at every point on Earth. In meridian coordinates,
the electric field components are defined by direction vectors

m̂1 =
ẑ×ω

‖ẑ×ω‖ , m̂2 = ω× m̂1. (10)

Each pixel-scale Stokes measurement is described by a coordinate system defined by m̂1 and m̂2. The
transformation between the two coordinate systems amounts to a multiplication of I by a Mueller
rotation matrix.
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Sampling I (x, ω) at the location of each camera and direction of each camera pixel yields the
measured Stokes vector. A measurement k is taken at the camera position xk, LOS direction ωk,
and wavelength λk (Figure 4). Thus, Equations (8) and (9) yield the pixel measurement model

I[k] = I (x0, ωk) T (x0→xk) +
∫ xk

x0

J
(
x′, ωk

)
β(x′)T

(
x′→xk

)
dx′. (11)

2.4. Single-Scattering Separation

It is often convenient to separate the single-scattering contribution from the rest of the radiance
field [72]. The solar irradiance at the top of the atmosphere (TOA) is FSun. It is unoplarized, thus
corresponds to a Stokes vector FSun= (FSun, 0, 0, 0)>. The Sun is modeled as an ideal directional
source with direction ωSun. A solar ray heading to point x intersects the TOA at point xSun. The solar
transmittance is given by T (xSun→x). Let δ denote Dirac’s delta. Thus, I can be written as a sum of the
diffuse component Id, and direct solar component:

I (x, ω) = Id (x, ω) + δ (ω−ωSun) FSunT (xSun→x) . (12)

Inserting (12) into (9) yields

J (x, ω) = Jd (x, ω) +
v(x)
4π

P (x, ω·ωSun) FSunT (xSun→x) , (13)

where

Jd (x, ω) =
v(x)
4π

∫
4π

P
(
x, ω·ω′

)
Id
(
x, ω′

)
dω′. (14)

Consider Figure 4. It shows a broken-ray path of direct sunlight, which undergoes single scattering
at x′, then reaches the camera at xk. Denote this broken ray by

xSun→x′→xk. (15)

The direction vector between x′ and xk is ωk. This broken ray projects to a pixel corresponding to ωk at
camera location xk thus contributing to the measurement I(xk, ωk). Using Equations (8) and (13), the
single-scattered contribution from x′ is

ISingle
(

xSun→x′→xk
)
=

v(x′)
4π

β(x′)P
(
x′, ωk·ωSun

)
FSunT

(
xSun→x′

)
T
(
x′→xk

)
. (16)

Thus, the entire single-scattered signal accumulates contributions along the LOS

ISingle (xk) =
∫ xk

x0

ISingle
(

xSun→x′→xk
)

dx′. (17)

2.5. Ray Tracing

Ray tracing computes a function over a straight line through a 3D domain. A common operation
is path-integration (e.g., Equations (7) and (8)). Let h(x) be a continuous field. Define a grid of discrete
points xg, where g = 1, 2, ..., Ngrid. Denote h[g] = h(xg). A path-integral over h(x) is numerically
computed using an interpolation kernel K

∫ x2

x1

h(x)dx =

Ngrid

∑
g=1

h[g]
∫ x2

x1

K
(
x− xg

)
dx. (18)
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For zero-order interpolation (i.e., voxel grid), (18) degenerates to

∫ x2

x1

h(x)dx =

Ngrid

∑
g=1

h[g]`g (x1→x2) , (19)

where `g (x1→x2) is the intersection of the path with voxel g (Figure 4). For voxel indices g that do not
intersect the path x1→x2, the value of `g (x1→x2) is 0.

3. Cloud Tomography

So far, we described the forward (image-formation) model, that is, how images are formed, given
cloud properties. In this work, we formulate a novel inverse tomographic problem of recovering
the unknown cloud microphysical properties, volumetrically. In voxel g, the vector of unknown
parameters is (LWC[g], re[g], ve[g]). The unknown microphysical parameters are concatenated to a
vector of length 3Ngrid

Θ =
(
..., LWC[g], re[g], ve[g], ...

)>, 1 ≤ g ≤ Ngrid. (20)

Neglecting circular polarization, each pixel measures a Stokes vector, yI =
(
yI, yQ, yU

)
at Nλ

wavelengths. Let Nviews and Npix denote the number of view points and camera pixels. The total
number of Stokes measurements is thus Nmeas=NλNviewsNpix. The measurement vector of length
3Nmeas is expressed as

y =
(
yI[1], ...., yI[Nmeas]

)>. (21)

In this section, we formulate the use of measurements y (multi-view, multi-pixel, multi-spectral,
polarimetric measurements) for tomographic retrieval of Θ (3D volumetric cloud density and
microphysics). It is worth mentioning at this point that the Stokes components are not measured
directly. Rather, they are computationally retrieved from measurements taken using different states of
polarization filters (see Appendix C for the AirMSPI measurement model).

3.1. Polarimetric Information

To make an initial assessment of the sensitivity of polarimetric measurements, we simulate
a simple homogeneous cubic cloud (Figure 5), parameterized by two microphysical parameters:
(LWC, re). Back-scattered Stokes measurements are taken at the TOA for the same angles and
wavelengths as sampled by the Airborne Multi-angle Spectro-Polarimetric Imager (AirMSPI) [14].
AirMSPI is used here as a proxy instrument to demonstrate our approach. However, the approach is
applicable to other polarimetric imagers.
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Figure 5. A homogeneous cubic cloud illuminated with solar radiation at a zenith angle of 15◦ off-nadir.
The solar azimuth angles are φ0 = [0.0◦, 67.5◦]. The outgoing Stokes vector I is simulated at AirMSPI
resolution and wavelengths, with AirMSPI measuring along a North-bound track.

Let I[k], U[k], Q[k] be simulated Stokes components at measurement index k, and let ve be held
constant. Define a cost (data-misfit) function for each of the Stokes components

DI (LWC, re) =
Nmeas

∑
k=1

(I[k]− yI[k])
2 , (22)

DQ (LWC, re) =
Nmeas

∑
k=1

(
Q[k]− yQ[k]

)2 , (23)

DU (LWC, re) =
Nmeas

∑
k=1

(U[k]− yU[k])
2 . (24)

Equations (22)–(24) are 2D manifolds. Figure 6 plots the cost manifolds for different solar azimuth
angles, φ0. While there is an ambiguity between LWC and re when relying on DI, there are better
defined minima for DQ and DU. This indicates that polarization measurements carry valuable
information.
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Figure 6. Logarithm of the 2D cost manifolds for a 2-parameter homogeneous cubic cloud (Figure 5).
Each column of plots corresponds to the cost of the different Stokes components in Equations (22)–(24).
Each row of plots corresponds to a different Solar azimuth angle φ0.
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3.2. Inverse Problem Formulation

Denote IΘ as the image formation model. Tomography can be formulated as minimization of a
data-fit function. We perform

Θ̂ = arg min
Θ

D (IΘ, y) = arg min
Θ

(IΘ − y)> Σ−1 (IΘ − y) , (25)

Here Σ is related to the co-variance matrix of the measurement noise. For brevity, we omit the subscript
Θ but remember that

I≡IΘ, J≡JΘ, β≡βΘ, v≡vΘ, P≡PΘ, T≡TΘ. (26)

Assuming noise in different pixels, wavelengths and angles is uncorrelated, (25) degenerates to

Θ̂ = arg min
Θ

Nmeas

∑
k=1

(I[k]− yI[k])
> R−1 (I[k]− yI[k]) . (27)

The matrix R depends on the particular sensor technology. Description of R, tailored to the AirMSPI
sensor, is detailed in Appendix C.

We solve (27) by a gradient-based approach. The gradient with respect to the unknown parameters
Θ is

∇ΘD (IΘ, y) = 2
Nmeas

∑
k=1

(
I[k]− yI[k]

)>R−1∇ΘI[k]. (28)

The term∇ΘI[k] is the Jacobian of the sensing model. Equation (28) is used to formulate an update rule
for an iterative optimization algorithm

Θb+1 = Θb − χb∇ΘD (IΘ, y) , (29)

where b denotes the iteration index and χb is a scalar. We use L-BFGS [73] for numerical optimization
that, in particular, determines the value of χb adaptively. One approach to computing the gradient
∇ΘD is the Adjoint RTE [74,75]. Due to the recursive nature of the RTE, computing the gradient
through the exact Jacobian∇ΘI[k] is computationally expensive. In the following sections, we derive a
method to make the computation of the gradient tractable and efficient. We do that by approximating
the Jacobian ∇ΘI in a tractable way, using a two-step iterative algorithm [61,63].

3.3. Iterative Solution Approach

We formulate an iterative algorithm which alternates between two steps (See the diagram in
Figure 7).
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Pre-computed 
Mie tables RTE (rendering)

Approximate gradient
L-BFGS 

step

vSHDOM parameters

Optimization parameters

Fixed for one iteration

Preconditioning

Figure 7. A block diagram of the iterative algorithm. Red marks hyper-parameters. Numerical
parameters of vector Spherical Harmonics Discrete Ordinates Method (vSHDOM) and L-BFGS are
summarized in Appendix D (Table A2).

Starting with an initial guess, Θ0, Step 1 uses vSHDOM to compute the forward (recursive)
RT equations. This renders synthetic images according to the multi-view geometry, spectral bands
and spatial samples of the cameras. Keeping Id fixed, Step 2 efficiently computes an approximate
gradient with respect to Θ. The approximate gradient is fed into an L-BFGS step to update the current
estimate Θb.

Step 1: RTE Forward Model

The first step in the estimation approach is running the forward model in Equations (8) and (9)
using a numerical RTE solver. This requires transforming microphysical to optical properties at every
voxel (g) and spectral band (λ):

LWC[g], re[g], ve[g] −→ βλ[g], vλ[g], Pλ[g]. (30)

This transformation can be implemented as described in Appendix A, using specifically
Equations (A8)–(A13). However, using this implementation during each optimization iteration can be
time-consuming. Therefore, we use pre-computed lookup tables, σ̃λ (re, ve) , vλ (re, ve) , Pλ (re, ve),
over the grids re∈

[
rmin

e , ..., rmax
e
]

and ve∈
[
vmin

e , ..., vmax
e
]
. With these pre-computed tables

and {LWC[g], re[g], ve[g]}, vSHDOM [60] renders the Stokes vector at each 3D voxel
and direction. This is the forward modeling procedure. The result is the set of fields
I (x, ω) , Id (x, ω) , J (x, ω) , ISingle (xSun→x′→xk).

Step 2: Approximate Jacobian Computation

The forward vRTE model in (11) depends on optical properties (β, v, P), which themselves
depend on the sought microphysics. The Jacobian at voxel g is expressed by applying the chain-rule to
(11). For example, the derivative with respect to the effective radius is

∂I[k]
∂re[g]

=
∂I[k]
∂β[g]

∂β[g]
∂re[g]

+
∂I[k]
∂v[g]

∂v[g]
∂re[g]

+
∂I[k]
∂P[g]

∂P[g]
∂re[g]

. (31)

Analogously, replacing re in (31) with LWC or ve yields the respective microphysical derivatives. We
proceed by expressing the derivatives ∂{β, v, P}/∂{LWC, re, ve}. Afterwards, we expand and combine
the derivatives ∂I/∂{β, v, P} to express (31).
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For each voxel, the derivatives of (β, v, P) with respect to the microphysics are calculated using
pre-computed tables

∂β

∂LWC
= σ̃(re, ve),

∂β

∂re
=

σ̃(re+εre , ve)−σ̃(re, ve)

εre

, (32)

∂v

∂LWC
= 0,

∂v

∂re
=

v(re+εre , ve)−v(re, ve)

εre

, (33)

∂P
∂LWC

= 0,
∂P
∂re

=
P(re+εre , ve)−P(re, ve)

εre

, (34)

where ve derivatives are computed analogously to the re derivatives. Using the shorthand notation
∂g≡{ ∂

∂LWC[g] ,
∂

∂re[g]
, ∂

∂ve[g]
}, the overall Jacobian is given by a sum of terms

∂gI[k] = A1 + A2 + A3 + A4 + A5 + A6. (35)

The full expression for each term in Equation (35) is given in Appendix B. For example,

A1 = −`g (x0→xk) I (x0, ωk) T (x0→xk)
[
∂gβ
]

. (36)

Let us focus on the term

A4 =
∫ xk

x0

{
v(x′)

4π

∫
4π

P
(

x′, ωk·ω′
) [

∂gI
(

x′, ω′
) ]

dω′
}

β(x′)T
(
x′→xk

)
dx′. (37)

This Jacobian term stands out, because it is the only term which requires computing the derivative of
I. This derivative is computationally expensive because I is computed recursively through the RTE
(Equations (8) and (9)). In principle, a change in the microphysics of one voxel can recursively affect
the radiance at every other voxel. We decompose ∂gI using the diffuse-direct decomposition of (12)

∂gI
(

x′, ω′
)
= ∂gId

(
x′, ω′

)
+ δ

(
ω′−ωSun

)
FSun

[
∂gT

(
xSun→x′

) ]
. (38)

At the core our approach for computational efficiency is the assumption that the diffuse light Id is less
sensitive to slight changes in the microphysical properties of any single voxel g. Rather, Id is impacted
mainly by bulk changes to the over-all volume. Thus, we approximate (37) by keeping Id independent
of Θ for a single iteration of the gradient computation, that is,

∂gId≈0. (39)

This bypasses the complexity of recursively computing ∂gId.
It is important to note that at every iteration, the Jacobian ∇ΘI[k] still is impacted by Id. This is

because Id affects I through Equation (12), and I appears in the terms A1, . . . , A6. As the estimated
medium properties evolve through iterations, so does Id (in Step 1, above). We just assume during
Step 2 that ∂gId is negligible compared to other terms in Equation (35).

Contrary to Id, the single-scattered component is highly sensitive to changes in the micro-physical
properties of a single voxel. We therefore include an exact treatment of single-scattering in the gradient
computation (Appendix B). This is the essence of our numerical optimization approach. It enables
tackling multiple-scattering tomography, in practice. Simulation results presented in the following
section rely on additional numerical considerations (e.g., initialization, preconditioning, convergence
criteria), which are all described in the accompanying Appendix D.

4. Computational Efficiency

Sections 3.2 and 3.3 describe our iterative gradient-based approach to Equations (28) and (29).
The approach relies on an approximate Jacobian. We argue that our gradient computation is efficient,
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relative to the state of the art. Recall that the goal is estimation of three unknown cloud-droplet
parameters per voxel. Each Jacobian component expresses differentiation relative to each parameter in
each voxel. Accounting for the need to run the forward model in Equation (28) and the Jacobian, brute
force computation requires 3Ngrid + 1 full 3D vRTE computations, for each iteration of the optimization.

An alternative tractable approach relies on adjoint differentiation of 3D vRTE. To the best of our
knowledge, only Martin et al. [75] have at least formulated a potentially efficient atmosphere/surface
tomography based on the adjoint 3D vector RTE. However, the method was only demonstrated using 2D
scalar RT, showing promise in retrieving cloud extinction [76]. The adjoint approach requires computing
one full 3D vRTE and one full adjoint-3D vRTE, per gradient computation. Due to symmetry, the overall
complexity of each iteration of the optimization would be that of two 3D-vRTE computations.

Our method to approximate the gradient per iteration requires lower resources: one forward full
3D vRTE (for Equation (28)) computation and a simple single-scattering computation. Intuitively, our
approach compromises gradient accuracy at voxels where the adjoint Stokes vector has undergone
multiple scattering events. These voxels will tend to be at larger optical distances from the sensors.
The scattering events cause a decorrelation of the adjoint Stokes vector from the optical properties
and therefore loss of sensitivity to the properties of individual voxels. The measurement sensitivity to
cloud properties is therefore expected to diminish. Thus, while the accuracy of the gradient in these
voxels is reduced, so is the magnitude of the gradient. This region of diminished sensitivity coincides
with the “hidden core” of the cloud. We refer the reader to Forster et al. [77] for more details on the
hidden core concept.

5. Simulations

In the context of tomography, simultaneity is defined by the evolution timescales of targeted clouds
and by the time it takes to acquire multi-angular data. Becasue updraft timescales of shallow cumulus
are ∼ 15min [78], our target clouds significantly evolve over a typical single-platform observation
time span (e.g., 7 min for Terra’s MISR). Hence, single-platform systems do not satisfy simultaneity
in out context. As mentioned, real data of simultaneous spaceborne multi-angular polarimetric
images of clouds does not yet exist, but a mission to supply this data is in the works. Therefore, we
use careful simulations to test the approach. We simulate an atmosphere with molecular Rayleigh
scattering and liquid water clouds. Rayleigh scattering is calculated from the Air Force Geophysics
Laboratory (AFGL) database [79] for a summer mid-latitude atmosphere. Mie tables are pre-computed
for re ∈ [4, 25]µm and ve = 0.1 with Nre = 100. The surface is Lambertian with a water-like albedo
of 0.05. For realistic complexity, a Large Eddy Simulation (LES) model [80] was used to generate a
cloud field. Each voxel is of size 20 × 20 × 40 m3. The LES outputs [80] are clouds with 3D variable
LWC and 1D (vertically) variable re. A typical value [81] of ve = 0.1 was chosen. Consequently, the
present recovery demonstrations recover LWC and re on their respective native LES grid. On the other
hand, ve = 0.1 is excluded from the unknowns. The assumption of fixed ve is not fundamental to our
approach or implementation, however, relaxing this assumption warrants an investigation which will
be done in future work. The spatial variability of the recovered parameters is discussed in more detail
in Section 6.

From the generated cloud field, two isolated cloudy regions are taken for reconstruction:

1. Scene A: An atmospheric domain of dimensions 0.64 × 0.72 × 20 km3 with an isolated cloud
(see synthetic AirMSPI nadir view in Figure 8).

2. Scene B: An atmospheric domain of dimensions 2.42 × 2.1 × 8 km3 with several clouds of
varying optical thickness (see synthetic AirMSPI nadir view in Figure 9).

Synthetic measurements rendered with the spatial resolution and angular sampling of AirMSPI [14],
namely, 10 m pixels and 9 viewing angles: ±70.5◦, ±60◦, ±45.6◦, ±26.1◦, and 0◦ from zenith, where ±
indicates fore- and aft-views along the northbound flight path. The solar zenith angle is 15◦ from nadir
in the measurement plane, that is, 0◦ solar azimuth. We simulate measurements at AirMSPI’s three
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polarized spectral bands: λ = [0.47, 0.66, 0.865] µm. The bandwidths are narrow enough (≈46 nm) to
render images using a single representative wavelength per band.

Figure 8. Scene A synthesized Stokes image using vSHDOM, before and after the application of a
realistic AirMSPI noise model. We show here the Bidrectional Reflectance Factor (BRF) of the nadir view
at λ = 0.67µm.

Figure 9. Scene B synthesized Stokes using vSHDOM. We show here the BRF of the nadir view at
λ = 0.67 µm.

Single scattering albedos for these wavelengths equal unity (up to 4 significant digits).
In other words, and in sharp contrast with the operational Nakajima–King [9] two-wavelengths
non-tomographic retrieval, absorption by droplets plays no role in this demonstration of the
tomography of cloud microphysics. The measurements are synthesized with realistic noise, according
to the AirMSPI data acquisition model (see Appendix C).

Qualitative volumetric results of the recovered LWC for Scene A are shown in Figure 10. Scatter
plot of the recovered LWC and the recovery results of re for Scene A are given in Figure 11. Qualitative
volumetric results of the recovered LWC for Scene B are shown in Figure 12. A scatter plot of the
recovered LWC and the recovery results of re for Scene B are given in Figure 13.
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Figure 10. Scene A recovery results. (Left) Slices of the true cloud generated by Large Eddy Simulation
(LES). (Right) Slices of the cloud estimated tomographically using AirMSPI polarized bands.
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−0.002 g/m3. (Right) recovery results of the 1D effective radius.
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Figure 13. Scene B (Left) Scatter plot of the estimated vs. true LWC. The fit correlation is 0.96, the RMS
is 0.085 g/m3 and the bias is −0.0035 g/m3. (Right) Recovery results of the 1D effective radius.

For quantitative assessment of the recovery, we use local mean error ε, and global bias
measures [53] ϑ:

εLWC =
‖ ˆLWC−LWC‖1

‖LWC‖1
, ϑLWC =

‖ ˆLWC‖1−‖LWC‖1

‖LWC‖1
, εre =

‖r̂e − re‖1

‖re‖1
. (40)

We further define the Root Mean Square (RMS) error and bias of the retrieved LWC as:

RMS =
1√

Ngrid

‖ ˆLWC−LWC‖1
2, bias =

1
Ngrid

Ngrid

∑
g=1

( ˆLWC[g]− ¯LWC[g]). (41)

The quantitative error measures upon convergence for the two scenes are:
Scene A: εre≈11%, εLWC≈30%, ϑLWC≈− 4%, RMS≈0.065 g/m3, bias≈− 0.002 g/m3,
Scene B: εre≈13%, εLWC≈29%, ϑLWC≈− 5%, RMS≈0.085 g/m3, bias≈− 0.0035 g/m3.

Using a 2.50 GHz CPU, the recovery run-time of cloud properties in Scenes A,B was ∼13 hours and
∼10 days, respectively.

Multi-angular tomographic retrieval enables vertical resolution of the droplet effective radius.
By contrast, a homogeneous droplet radius is typically retrieved by mono-angular observations fitted to
a plane-parallel homogeneous cloud model. The retrieval errors of droplet radii in the demonstrations
above are significantly smaller than retrieval errors of a homogeneous droplet radius. The latter can
easily exceed 50% in similar conditions to our study that is, shallow cumuli and illumination conditions
(see e.g., Reference [82]).

6. Discussion

In the formulation of our retrieval, and in nature, the droplet effective radius re and droplet
effective variance ve vary in 3D. This allows us to, in principle, localize the variations in cloud
microphysical properties which is a significant advance over other methods. Operational remote
sensing algorithms, which rely on 1D RT and plane-parallel cloud models, retrieve a single value for
re (and for ve), for each cloudy pixel. This occurs both in bi-spectral [9,83] and polarimetric [11,84]
techniques. The physical interpretation is complicated by the difficulty in determining which portion
of the cloud the retrieved quantities corresponds to.

In our current demonstrations we assume 1D variable re and a completely homogeneous ve.
This is much more general than operational methods, but still a degenerate representation compared
to full 3D variability. We now discuss the realism of such a representation.
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Vertically varying droplet size distributions arise as a result of moist adiabatic thermodynamics
in vertically stratified environments (e.g., Reference [81]). Further 3D variability forms due to the
diabatic mixing of air parcels in the turbulent processes of entrainment and detrainment. Despite the
complexity of these processes, there is evidence that the horizontal variability re is indeed small over a
cloud scale.

This evidence comes from in-situ aircraft observations of shallow cumulus [85–87],
modelling studies [88] and theory [89]. However, there are also select observations of monsoonal
clouds [90] and theoretical arguments [89] that suggest there is a sharp gradient in the droplet effective
radius in the very outer shell of the clouds. If this is the case, then a representation having vertical-only
variation of re loses validity at the outer shell.

The value of ve can also vary significantly across different environmental conditions. This is seen
in research flights including in-situ measurements [91–95]. Moreover, in LES simulations of shallow
cumulus clouds with bin microphysics, ve might range from 0.01 to 0.26 [96]. The core of a cloud tends
to have a low effective variance as condensation is the dominant process there [96,97]. Cloud edges, in
contrast, experience also evaporation and entrainment mixing, as the cloud is diluted by environmental
air [98]. This tends to increase ve. If the cloud has precipitation, spatial variability of ve increases [99].

While horizontal variations reduce the accuracy of our demonstrated retrieval, these points
show that the approximations used in our demonstrations are often reasonable and a significant
advance. To further push the potential of the general framework proposed here and retrieve additional
degrees of freedom describing microphysical variations in 3D, we may include more information. One
option is to include additional measurements, for example, by using a combination of AirMSPI [14]
and Research Spectro-Polarimeter (RSP) [100]. Another option is to introduce regularization schemes,
which mathematically express the natural trends of horizontal variability mentioned above. The 3D
tomographic approach presented in the paper offers a lot more flexibility than current operational
analyses and enables the development and application of retrievals that might provide new insight
into cloud microphysics.

7. Summary & Outlook

We derive the tomography of cloud microphysics based on multi-view/multi-spectral polarimetric
measurements of scattered sunlight. This novel type of tomography uses, for the first time, 3D polarized
RT as the image formation model. The recovery of droplet sizes is made possible due to the crucial
phase-function information carried by the polarized signal. We define a model-fitting error function
and compute approximate gradients of this function to make the recovery tractable. Demonstration
are done on synthetic 3D clouds, based on a Large Eddy Simulation with the effective radius assumed
to vary only vertically. Our open-source code is publicly available [101].

Future work will address the extent to which polarimetric measurements penetrate the cloud
and the relation between re in the outer shell and re in the cloud core, as defined by Forster et al. [77].
Furthermore, we will relax the fixed ve assumption that was used in the demonstrations, and thus assess
full microphysical retrieval capabilities of polarization measurements. Moreover, future plans include
experimental demonstration and use, while the CloudCT formation orbits. Research is ongoing [77]
about the adaptation of our cloud tomography methodology for satellite data as can be obtained from
the multi-view imaging from MISR on Terra and a SWIR view from the collocated MODIS, but with
significantly lower spatial resolution than used so far.

Lastly, we note that our atmospheric tomography approach described herein can be adapted
to aerosols, including dense plumes of wild fire smoke, volcanic ash, and dust near their sources.
The main difference in this extended application is that the forward model must be further linearized
with respect to the complex refractive index of the varying aerosol material, which has been done for
1D polarized RT (e.g., Reference [102]), even for non-sphericity effects (e.g., Reference [103]).

Author Contributions: Conceptualization, A.L. and Y.Y.S.; methodology, A.L., Y.Y.S., A.B.D.; software, A.L., J.L.;
validation, A.L. and J.L.; formal analysis, A.L.; investigation, A.L.; resources, Y.Y.S.; data curation, A.L. and J.L.;



Remote Sens. 2020, 12, 2831 20 of 32

writing—original draft preparation, A.L.; writing—review and editing, A.L., Y.Y.S., A.B.D. and J.L.; visualization,
A.L.; supervision, Y.Y.S.; project administration, A.L. and Y.Y.S.; funding acquisition, Y.Y.S. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors are grateful to the US-Israel Binational Science Foundation (BSF grant 2016325) for
continuously facilitating our international collaboration. Aviad Levis’ work was partially supported as a
Zuckerman Foundation STEM Leadership Fellow. Yoav Schechner is a Landau Fellow supported by the Taub
Foundation. His work was conducted in the Ollendorff Minerva Center (BMBF). Anthony Davis’ work was carried
out at JPL/Caltech, supported by NASA’s SMD/ESD/(RST+TASNPP) and ESTO/AIST programs. That research
was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration (80NM0018D0004). Support for Jesse Loveridge’s work from JPL
under contract #147871 is gratefully acknowledged. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No
810370: CloudCT).

Acknowledgments: We thank I. Koren, D. Rosenfeld, A. Aides, D. Diner, L. Di Girolamo, and G. Matheou for
support and fruitful discussions. We acknowledge F. Evans and A. Doicu for the online vSHDOM code.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Extended Theoretical Background

Appendix A.1. Scatterer Microphysical Properties

In the lower atmosphere, cloud particles are droplets of liquid water that are very nearly spherical,
having radius r. They are however polydisperse, with a droplet size distribution denoted n(r). For most
remote-sensing purposes, n(r) is parameterized using an effective radius in µm and a dimensionless
variance [66]:

re =

∫ ∞
0 r3n(r)dr∫ ∞
0 r2n(r)dr

, ve =

∫ ∞
0 (r−re)

2 r2n(r)dr
r2

e
∫ ∞

0 r2n(r)dr
. (A1)

A commonly used parametric size distribution with empirical support [66] is the Gamma-distribution
(Figure 2):

n(r) = N c r(v
−1
e −3) exp[−r/(reve)], (A2)

where we require 0 < ve < 1/2. Here c = (reve)(2−v−1
e )/Γ(v−1

e −2) is a normalization constant and

N =
∫ ∞

0
n(r)dr (A3)

is the droplet number concentration. Let ρw be the density of liquid water. An important cloud
characteristic is the water mass density or Liquid Water Content (LWC) per unit volume:

LWC =
4
3

πρw

∫ ∞

0
r3n(r)dr. (A4)

It is expressed as LWC = 4/3 πρwr3
e(1− ve)(1− 2ve) for the Gamma distribution in (A2). In Section 3

these microphysical parameters, LWC, re, ve, are unknown quantities we seek to estimate on a 3D grid.

Appendix A.2. Polarized Light

A light wave is associated with orthogonal components of a random electric wave, E1(t) and
E2(t), where t is time. The components’ direction unit vectors are respectively Ê1 and Ê2. The wave
propagates in direction ω = Ê1 × Ê2. It is convenient to define the polarized light state in terms of the
Stokes [66] vector I = (I, Q, U, V)>. Each component of I expresses temporal integration:

I = 〈E1E∗1 + E2E∗2 〉t, Q = 〈E1E∗1 − E2E∗2 〉t, (A5)

U = 〈E1E∗2 + E2E∗1 〉t, V = i〈E1E∗2 − E2E∗1 〉t,
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where i =
√
−1. Unpolarized intensity is I. The degrees of polarization (DOP) and linear polarization

(DoLP) are respectively defined as the ratios
√

Q2+U2+V2/I,
√

Q2+U2/I. The angle of linear polarization
(AoLP) is 1/2 tan−1(U/Q).

Appendix A.3. Single Scattering of Polarized Light

Light interaction with a single particle is described by the total extinction cross-section st(r, λ),
decomposed into scattering and absorption cross-sections, respectively:

st(r, λ) = ss(r, λ) + sa(r, λ). (A6)

In Mie scattering by spheres, introduced further on, we have

st(r, λ) = π r2Qt(2π r/λ), ss(r, λ) = π r2Qs(2π r/λ), sa(r, λ) = π r2Qa(2π r/λ), (A7)

whereQt,Qs,Qa are dimensionless efficiency factors, which depend on the normalized size parameter
2π r/λ. In the limit r � λ, Qt ≈ 2. Furthermore, when ss(r, λ)� sa(r, λ), then Qs ≈ 2 and Qa ≈ 0.

When molecular absorption can be neglected, material optical properties can be approximated
using a single wavelength for each narrow spectral band. This approximation, commonly used in
multi-spectral remote sensing, relies on a single rendering of spectrally-averaged optical properties.
It is valid if wavelength dependencies within a spectral band are weak, a condition met when narrow
bands are considered. Macroscopic optical cross-sections are then expressed as weighted averages

σt(λ)=〈st(r, λ)〉r, σs(λ)=〈ss(r, λ)〉r, σa(λ)=〈sa(r, λ)〉r. (A8)

We note that (A8) aggregates scattering properties rather than electric fields. This aggregation holds for
scatterer populations that are in each other’s far field (i.e., are� λ apart) [66]. Here the size-weighted
average over some function a(r) is defined by

〈a〉r =
1
N

∫ ∞

0
a(r)n(r)dr. (A9)

The size integral of (A9) is terminated in practice at rmax = 70 µm. Note that throughout the text,
dependency on λ is generally omitted for simplicity; however, it is used at specific points as needed.

Scattering, as a fraction of the overall interaction [67], is expressed by the dimensionless single
scattering albedo

v =
σs

σt
. (A10)

The extinction coefficient (or optical density) is denoted by β. Following Equations (A3), (A4) and (A8),
β = Nσt is expressed in terms of the LWC as [68]

β =
LWC

4
3 πρw〈r3〉r

σt = LWC · σ̃t. (A11)

Here, σ̃t is the mass extinction coefficient (in units of m2/g).
Let ω and ω′ be the unitary incident and scattered ray direction vectors respectively in Figure 2.

Single-scattering geometry is defined by the local coordinate system of the incoming beam’s electric
fields. As stated above, the electric field of incoming light is decomposed into components along
orthogonal directions. We set them as

E1 ∝ ω×ω′, E2 ∝ E1 ×ω. (A12)
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The scattering angle is θ = cos−1(ω·ω′). The angular redistribution of singly-scattering light from a
sphere of is defined by the 4×4 dimensionless Mueller matrix Ps(θ, r). The macroscopic phase matrix is
the size-weighted average

P(θ) =
〈ss(r)Ps(θ, r)〉r

σs
. (A13)

For spherical (or just randomly-oriented) particles, the phase-matrix P(θ) takes the following symmetric
form [66]

P (θ) =


p11 (θ) p21 (θ) 0 0
p21 (θ) p22 (θ) 0 0

0 0 p33 (θ) −p43 (θ)

0 0 p43 (θ) p44 (θ)

 , (A14)

where p11 is the (unpolarized) scattering phase-function. In single-scattering of unpolarized incident
sunlight, the DoLP of scattered light amounts to the ratio |p21|/p11.

Appendix A.3.1. Rayleigh Scattering

The Rayleigh model describes light scattering by particles much smaller than the wavelength.
The Rayleigh phase matrix takes the following form [70]

PRayl (θ) =


3
4
(
1 + cos2 θ

)
− 3

4 sin2 θ 0 0
− 3

4 sin2 θ 3
4
(
1 + cos2 θ

)
0 0

0 0 3
2 cos θ 0

0 0 0 3
2 cos θ

 . (A15)

The single-scattering DoLP due to air molecules is then

DoLPRayl(θ) =
sin2 θ

1 + cos2 θ
. (A16)

According to (A16) a maximum DoLP is attained at single-scattering angle θ = 90◦.

Appendix A.3.2. Mie Scattering

Mie theory describes how light interacts with a spherical particle of size comparable to λ [69].
Denote µ = cos θ. Mie scattering is defined in terms of complex-valued amplitude scattering functions
S1(µ), S2(µ), which correspond to scattering of the E1, E2 electric field components. Scattering
of the Stokes vector I is described by the phase matrix PMie(µ), which is fully defined by six
matrix components:

pMie
11 =

$

2
(S1S∗1 + S2S∗2) , pMie

12 =
$

2
(S1S∗1 − S2S∗2) ,

pMie
22 =

$

2
(S1S∗1 + S2S∗2) , pMie

33 =
$

2
(S1S∗2 + S2S∗1) ,

pMie
43 =

$

2
(S1S∗2 − S2S∗1) , pMie

44 =
$

2
(S1S∗2 + S2S∗1) . (A17)

Here, $ is a normalization constant, set to satisfy 1
2

∫ 1
−1 pMie

11 (µ)dµ = 1.
Mie scattering due to water droplets peaks at specific angles. For a single droplet or monodisperse

material, PMie has sharp scattering lobes at angles that depend on the droplet’s r/λ ratio. A macroscopic
voxel contains droplets in a range of radii r, smoothing the scattering lobes. The smoothing effect
depends on ve (Figure 3). Two angular domains that stand out for remote-sensing purposes are the
cloud-bow (θ ∈ [135◦, 155◦]) and glory (θ ∈ [175◦, 180◦]). Both domains have peaks that are sensitive to
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the droplet microphysical parameters, and are significantly polarized (i.e., peaks are visible in the pMie
12

component). The latter fact renders these peaks distinguishable in the presence of a multiply-scattered
signal component.

Appendix B. Jacobian Derivation

In Equation (35) of the main text, the Jacobian is written as a sum of six terms

∂gI[k] = A1 + A2 + A3 + A4 + A5 + A6. (A18)

In this section we expand and describe each of these terms. Using Equations (7) and (19), the
transmittance derivative is

∂gT (x1→x2) = −T (x1→x2) `g (x1→x2) ∂gβ. (A19)

Then,

A1 = −`g (x0→xk) I (x0, ωk) T (x0→xk)
[
∂gβ
]

, (A20)

A2 = `g (x0→xk)

xk∫
x0

[
∂gv

4π

∫
4π

P
(

x′, ωk·ω′
)

I
(
x′, ω′

)
dω′

]
β(x′)T

(
x′→xk

)
dx′, (A21)

A3 = `g (x0→xk)

xk∫
x0

{
v(x′)

4π

∫
4π

[
∂gP

(
x′, ωk·ω′

) ]
I
(
x′, ω′

)
dω′

}
β(x′)T

(
x′→xk

)
dx′, (A22)

A4 =

xk∫
x0

{
v(x′)

4π

∫
4π

P
(

x′, ωk·ω′
) [

∂gI
(

x′, ω′
) ]

dω′
}

β(x′)T
(
x′→xk

)
dx′, (A23)

A5 = `g (x0→xk)
[
∂gβ
] xk∫

x0

J
(

x′, ωk
)

T
(
x′→xk

)
dx′, (A24)

A6 = −`g (x0→xk)
[
∂gβ
] xk∫

x0

J
(

x′, ωk
)

β(x′)T
(

x′→xk
)

dx′. (A25)

Note that I (x, ω) and J (x, ω) are computed in Step 1 and are therefor ready for use when computing
A1, A2, A3, A5 and A6. Furthermore, `g (x0→xk) =0 for any voxel that is not on the LOS of pixel k.
Therefore, the terms A1, A2, A3, A5, A6 are computed using a single path tracing xk→x0.

We now give special attention to A4 in Equation (A23). Using the diffuse-direct decomposition of
(12), we decompose (A23) as

A4 =

xk∫
x0

{
v(x′)

4π

∫
4π

P
(

x′, ωk·ω′
) [

∂gId
(

x′, ω′
) ]

dω′
}

β(x′)T
(

x′→xk
)

dx′

+

xk∫
x0

{
v(x′)

4π

∫
4π

P
(

x′, ωk·ω′
)

δ
(
ω′−ωSun

)
FSun

[
∂gT

(
xSun→x′

) ]
dω′

}
β(x′)T

(
x′→xk

)
dx′.

(A26)

The first term in (A26) is based on ∂gId, i.e., a derivative of the diffuse (high order scattering) component.
Herein lies a recursive complexity. In principle, a differential change in the microphysics of one voxel
can recursively affect the radiance at every other voxel, and this affects all the pixels. To make
calculations numerically efficient, we approximate (A26). The approximation assumes that relative
to other components in the Jacobian, Id is less sensitive to a differential changes in the microphysical
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properties at voxel g. Thus, (A26) is approximated by keeping Id independent of Θ for a single iteration
of the gradient computation, that is,

∂gId≈0 . (A27)

The second term in (A26) is based on differentiation of the direct component. This is
straight-forward to compute using (A19). Consequently, using Equation (A27) and the definition
of ISingle (xSun→x′→xk) in (16), the term A4 in (A26) is approximated by

A4 ≈ Ã4 =
[
∂gβ
] xk∫

x0

`g
(
xSun→x′

)
ISingle

(
xSun→x′→xk

)
dx′. (A28)

The term `g (xSun→x′) in (A28) contributes to voxels outside of the LOS. The integral in Ã4 is computed
with a broken-ray [104] path xk→x′→xSun, as illustrated in Figure 4.

Using Equations (8), (A19), (A20) and (A25), A1 and A6 are combined to

A1,6 = A1 + A6 = −
[
∂gβ
]

I
(
xg, ωk

)
. (A29)

Overall, in our iterative procedure, we approximate the Jacobian in (35) by

∂gI[k] = A1,6 + A2 + A3 + Ã4 + A5. (A30)

Equations (A20)–(A28) formulate the Jacobian in terms of a voxel grid (zero-order interpolation).
However, in practice we use a trilinear interpolation kernel K in (18), consistent with vSHDOM
internal interpolation [59].

Appendix C. Measurement Noise

The inverse problem defined in the main text is formulated in terms of measured Stokes vectors
(Equation 21). However, Stokes vectors are not measured directly. Rather, they are derived from
intensity measurements taken through filters. The raw intensity measurements are noisy. Noise
is dominated by Poisson photon noise, which is independent across different raw measurements.
However, the estimation of Stokes components from independent intensity measurements yields noise
which is correlated across the components of the Stokes vector, per-pixel. In this section, we describe
the synthesis model we employ to generate realistic noise in simulations. Our synthesis is based on
the AirMSPI [105] sensor model. Furthermore, we derive the expression for R, which we use in the
recovery process (Equation (27) in the main text).

AirMSPI measures a modulated intensity signal at Nsub=23 subframes. Define a normalized
frame which spans the unitless integration time interval ψ ∈ [−0.5, 0.5]. Denote the temporal center
and span of each subframe as ψl and ∆ψ = 1/Nsub, respectively (Figure A1). Based on the sensing
process described in Ref. [105], define the following modulation function, whose parameters are given
in Table A1:

M[l] = J0[κ(ψl)] +
1
3

(
π∆ψ

2

)2
γ2

0(λ)

{
J2[κ(ψl)]− cos[2(πψl − η)]J0[κ(ψl)]

}
, (A31)

with
κ(ψl) = −2γ0(λ) sin(πψl − η)

√
1 + cot2(πψl − η). (A32)



Remote Sens. 2020, 12, 2831 25 of 32

Table A1. Modulation parameters [105] used for synthesis of AirMSPI measurements.

γ0(470 nm) γ0(660 nm) γ0(865 nm) ξ(470 nm) ξ(660 nm) ξ(865 nm) η

4.472 3.081 2.284 1.0 0.27 0.03 0.009

−0.5

ψlψ0

0.5∆ψ = 1/Nsub

Figure A1. A normalized frame spans the interval [−0.5, 0.5], evenly divided into Nsub subframes.

Here J0, J2 are the Bessel functions of the first kind of order 0 and 2, respectively. Denote by ξ(λ)

a wavelength-dependent ratio, which is drawn from quantum efficiencies and spectral bandwidths of
each AirMSPI band (Table A1). For the exact calculation of the ratio see Equation (24) of [105]. Using
simulated Stokes vectors derived by vSHDOM, AirMSPI measurements are synthesised as passing
through two polarization analyzing filters [105]. As defined in Equation (11) in the main text, I[k] is
the Stokes vector in pixel k. Correspondingly the intensity is I[k], while Q[k], U[k] are the polarized
components. Measurements l through the two filters of AirMSPI are modeled by

d0[l, k] = ξ(λ)
(

I[k] + M[l]Q[k]
)

(A33)

d45[l, k] = ξ(λ)
(

I[k] + M[l]U[k]
)
, (A34)

where M[l] and ξ(λ) are given in Equation (A31) and Table A1, respectively. The units of d are Watts.
Define d[k] = (d0[1, k], ..., d0[Nsub, k], d45[1, k], ..., d45[Nsub, k])>. In matrix from, the transformations by
Equations (A33) and (A34) are written using a single 46×3 modulation matrix M

d[k] = MI[k]. (A35)

Detection is by a camera which generates photo-electrons in each pixel well. The relation between
d0[l, k] or d45[l, k] and the expected unit-less number of photo-electrons in the pixel is given by a gain
G. The number of photo-electrons is random (Poissonian) around this expected value. The vector of
simulated electron counts is thus synthesized by a Poisson process

e[k] ∼ Poisson
{

round (G · d[k])
}
= Poisson

{
round (G ·MI[k])

}
. (A36)

The gain G is chosen to let the maximum signal at each camera view (i.e. maximum over pixels,
wavelengths and subframe measurements) reach the maximum full-well depth of 200,000 electrons,
consistent with AirMSPI specifications. Equation (A36) synthesizes raw AirMSPI signals including
noise (Figure 8). The synthesized AirMSPI signals, including this noise, are now used as inputs to the
calculation of measured Stokes vectors in each pixel and viewpoint. The vector of electron counts e[k]
in each pixel k is transformed into Stokes synthetic data (Equation (21)) using a 3×46 demodulation
matrix W

yI[k] = (M>M)−1M>e[k] = We[k]. (A37)

The vectors yI[k] form the data for tomographic analysis.
Our tomographic analysis takes into account the noise properties, including noise correlation.

As we now show, the measurement model (A37) yields correlated noise of different Stokes components.
Thus, R−1 (in Equation (27)) is not diagonal. Denote the diagonal co-variance matrix of the
photo-electron readings by C−1

e = diag
(
e
)
. Let I46×46 denote the Identity matrix. The signal is generally

dominated by unpolarized multiply-scattered background light. Relative to it, the magnitude of the
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modulated polarization signal is small. Thus, per pixel k, the diagonal matrix C−1
e [k] is approximately

constant with a global weight
C−1

e [k] ≈ α[k]I46×46. (A38)

Using Equations (A37) and (A38) for each pixel, the Stokes co-variance matrix is

C−1[k] = M>C−1
e [k]M ≈ α[k]M>M. (A39)

A maximum-likelihood estimator corresponding to a Poisson process should have a weight α[k] ∝
1/‖e‖1, to account for higher photon noise in brighter pixels. In simulations, however, we found that
α[k] = 1 worked better. This is perhaps due to richer information carried by denser cloud regions, i.e.
brighter pixels. Overall the expression we minimize in (27) is

Θ̂ = arg min
Θ

Nmeas

∑
k=1

(I[k]− yI[k])
>M>M (I[k]− yI[k]) , (A40)

that is, R−1 = M>M.

Appendix D. Numerical Considerations

In this section we describe numerical considerations that stabilize the recovery.

Appendix D.1. Hyper-Parameters

Our code requires the choice of hyper-parameters for rendering with vSHDOM [106] in Step 1
and optimization with scipy L-BFGS [73,107] in Step 2. Table A2 summarizes the numerical parameters
used in our simulations.

Table A2. Numerical parameters. For vSHDOM parameter definitions, see Ref. [106]. For L-BFGS
parameter definitions, see Ref. [107].

vSHDOM L-BFGS

Nµ Nφ splitting accuracy gtol gtol maxls

8 16 0.1 1× 10−16 1× 10−16 30

Appendix D.2. Preconditioning

Multivariate optimization can suffer from ill-conditioning due to different scales of the sought
variables. This is expected when recovered variables represent different physical quantities with
different units and orders of magnitude. A preconditioning of the update rule in (29) takes the
following form

Θb+1 = Θb − χbΠ−1∇ΘD (IΘ, y) , (A41)

where we apply a diagonal scaling matrix Π (Jacobi preconditioner) to scale the different physical
variables (LWC, re). Thus, Π takes the form

Π = diag
(
ΠLWC, Πre , ...., ΠLWC, Πre

)
. (A42)

In our tests, we use ΠLWC = 15 and Πre = 0.01 to scale the parameters to a similar magnitude and closer
to unity upon initialization.

Appendix D.3. Initialization

The recovery is initialized by the estimation of a cloud voxel mask, which bounds the cloud 3D
shape. The 3D shape bound of the cloud is estimated using Space-Carving [37]. Space-carving is a
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geometric approach to estimate a bound to 3D shape via multi-view images. The following steps are
preformed in our space-carving algorithm

1. Each image is segmented into potentially cloudy and non-cloudy pixels (we use a simple
radiance threshold).

2. From each camera viewpoint, each potentially cloudy pixel back-projects a ray into the 3D domain.
Voxels that this ray crosses are voted as potentially cloudy.

3. Voxels which accumulate “cloudy” votes in at least 8 out of the 9 AirMSPI viewpoints are marked
as cloudy.

Outside of the shape bound, LWC = 0 throughout iterations. Within the estimated cloud-shape bound,
the volume content is initialized as homogeneous with LWC = 0.01 g/m3, re = 12µm and ve = 0.1.
Then, inside of the shape-bound, {LWC,re,ve} change throughout iterations, possibly diminishing LWC
to very small values.

Appendix D.4. Convergence

Our approach alternates between Step 1 (RTE rendering) and Step 2 (approximate gradient)
until convergence (Figure 7). The convergence criteria are dictated by the L-BFGS step: at each iteration,
the relative change to the forward model and its gradient are compared to the ftol and gtol parameters
(see Table A2 for values used). See SciPy documentation [107] for exact description of the L-BFGS
stopping criteria.
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