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CLASSIFICATION OF SOLUTIONS OF AN EQUATION

RELATED TO A CONFORMAL LOG SOBOLEV INEQUALITY

RUPERT L. FRANK, TOBIAS KÖNIG, AND HANLI TANG

Abstract. We classify all finite energy solutions of an equation which arises as the
Euler–Lagrange equation of a conformally invariant logarithmic Sobolev inequality
on the sphere due to Beckner. Our proof uses an extension of the method of moving
spheres from Rn to Sn and a classification result of Li and Zhu. Along the way we
prove a small volume maximum principle and a strong maximum principle for the
underlying operator which is closely related to the logarithmic Laplacian.

1. Introduction

1.1. Main result. The motivation of this paper is Beckner’s logarithmic Sobolev

inequality on Sn with sharp constant [1, 3]. It states that
ĳ

SnˆSn

|vpωq ´ vpηq|2
|ω ´ η|n dω dη ě Cn

ż

Sn

|vpωq|2 ln |vpωq|2|Sn|
}v}22

dω (1)

with

Cn “ 4

n

πn{2

Γpn{2q . (2)

Here and in the following, dω denotes the surface measure induced by the embedding

of Sn in Rn`1, i.e.,
ş

Sn
dω “ |Sn| “ 2π

n`1

2 {Γpn`1

2
q.

Note that, by Jensen’s inequality and convexity of x ÞÑ x ln x, the right side of (1)

is nonnegative and vanishes if and only if |v| is constant. Inequality (1) is a limit-

ing form of the Sobolev inequalities and, in the spirit of these inequalities, it states

that functions with some regularity (quantified by the finiteness of the left side) have

some improved integrabiliy properties (quantified by the finiteness of the right side).

Beckner used inequality (1) to prove an optimal hypercontractivity bound for the Pois-

son semigroup on the sphere. A remarkable feature of inequality (1) is its conformal

invariance, which we will discuss below in detail.
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In [3] Beckner showed that equality holds in (1) if and only if

vpωq “ c

˜

a

1 ´ |ζ |2
1 ´ ζ ¨ ω

¸n{2

(3)

for some ζ P Rn`1 with |ζ | ă 1 and some c P R.

Our goal in this paper is to classify all nonnegative solutions u of the equation

P.V.

ż

Sn

upωq ´ upηq
|ω ´ η|n dη “ Cnupωq lnupωq in S

n. (4)

This equation arises, after a suitable normalization, as the Euler–Lagrange equation

of the optimization problem corresponding to (1).

Because of the principal value in (4) we interpret this equation in the weak sense. The

maximal class of functions for which (1) holds is

D :“

$

’

&

’

%

v P L2pSnq :
ĳ

SnˆSn

|vpωq ´ vpηq|2
|ω ´ η|n dω dη ă 8

,

/

.

/

-

.

We say that a nonnegative function u P D on Sn is a weak solution of (4) if

1

2

ĳ

SnˆSn

pϕpωq ´ ϕpηqq pupωq ´ upηqq
|ω ´ η|n dω dη “ Cn

ż

Sn

ϕpωq upωq lnupωq dω

for every ϕ P D.

Clearly, the constant function u ” 1 is a weak solution of (4). Because of the conformal

invariance, which equation (4) inherits from inequality (1), see Lemma 2, all elements

in the orbit of the constant function u ” 1 under the conformal group are also weak

solutions. One can show that these are precisely the functions of the form (3) with

c “ 1. Our main result is that these are all the finite energy solutions of (4).

Theorem 1. Let 0 ı u P D be a nonnegative weak solution of equation (4). Then

upωq “
˜

a

1 ´ |ζ |2
1 ´ ζ ¨ ω

¸n{2

for some ζ P Rn`1 with |ζ | ă 1.

As we will explain in the next subsection, this result and its proof are in the spirit

of similar classification results for conformally invariant equations. Groundbreaking

results in the local case were obtained by Gidas, Ni and Nirenberg [13] and Caffarelli,

Gidas and Spruck [4]. In the nonlocal case similar results were first obtained by Chen,

Li and Ou [7] and Li [17] and we refer to these works for further references.
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We follow a general strategy that was pioneered by Li and Zhu [19]; see also [18]. The

basic observation there is that a symmetry result together with the conformal invari-

ance of the equation forces the solutions to be of the claimed form. More precisely, the

proof proceeds in two steps. In a first step one uses the method of moving planes or

its variant, the method of moving spheres, in order to show symmetry of positive so-

lutions. The symmetry in question respects the conformal invariance of the equation.

The second step employs a powerful lemma by Li and Zhu [19] which classifies the

sufficently regular functions which have the conformal symmetry property established

in the first step.

The adaptation of these methods to the present setting, however, encounters several

difficulties. One of these comes from the fact that functions in D have only a very

limited regularity. In fact, the left side of (1) is comparable to
´

v,
`

lnp´∆Sn ` 1q
˘

v
¯

with the inner product in L2pSnq, see (13) below. Thus, the linear operator on the

left side of (4) is reminiscent of the logarithmic Laplacian, studied recently in [5] on a

domain in Euclidean space; see also [9] for a related functional. The work [5] contains

some regularity results, but we have not been able to use these to deduce that solutions

u of (4) are continuous. Therefore, we need to perform the method of moving spheres

in the energy space. While this can be carried out in an elegant and concise way in the

case of p´∆q˘s [7], the proof of the corresponding small volume maximum principle

in our setting is rather involved and constitutes one of the main achievements in this

paper; see Section 3. The missing regularity also prevents us from directly applying

the classification lemma by Li and Zhu [19]. Instead, we use its extension in [11] to

measures; see Section 5.

We believe that the techniques that we develop in this paper can be useful in similar

problems and that they illustrate, in particular, how to prove classification theorems in

problems with conformal invariance without first establishing regularity results.

1.2. Background. In order to put this problem into context, let us recall Lieb’s sharp

form [20] of the Hardy–Littlewood–Sobolev inequality, which states that, if 0 ă λ ă n,

then for any f P L2n{p2n´λqpRnq,
ĳ

RnˆRn

fpxq fpyq
|x ´ y|λ dx dy ď Cλ,n

ˆ
ż

Rn

|f |2n{p2n´λq dx

˙p2n´λq{n

(5)

with

Cλ,n “ πλ{2 Γpn´λ
2

q
Γpn` λ

2
q

˜

Γpnq
Γpn

2
q

¸1´λ{n

.
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Moreover, equality in (5) holds if and only if

fpxq “ c

ˆ

2b

b2 ` |x ´ a|2
˙p2n´λq{2

(6)

for some a P Rn, b ą 0 and c P R. The Euler–Lagrange equation of the optimization

problem related to (5) reads, in a suitable normalization,
ż

Rn

fpyq
|x ´ y|λ dy “ |fpxq|´2pn´λq{p2n´λqfpxq in R

n . (7)

Lieb posed the classification of positive solutions of (7) as an open problem, which

was finally solved by Chen, Li and Ou [7] and Li [17]. They showed that the only

positive solutions in L
2n{p2n´λq
loc

pRnq of (7) are given by (6) with a P R
n, b ą 0 and with

a constant c depending only on λ and n.

Writing |x ´ y|´λ in (5) as a constant times
ş

Rn |x ´ z|´pn`λq{2|z ´ y|´pn`λq{2 dz and

recognizing | ¨ |´pn`λq{2 as a constant times the Green’s function of p´∆qpn´λq{4, we see

by duality, putting λ “ n´ 2s, that (5) is equivalent to the sharp Sobolev inequality,

namely, if 0 ă s ă n{2, then for all u P 9HspRnq,

}p´∆qs{2u}2
2

ě Ss,n

ˆ
ż

Rn

|u|2n{pn´2sq dx

˙pn´2sq{n

(8)

with

Ss,n “ p4πqs Γpn`2s
2

q
Γpn´2s

2
q

˜

Γpn
2
q

Γpnq

¸2s{n

“ Γpn`2s
2

q
Γpn´2s

2
q |Sn|2s{n .

Moreover, equality holds if and only if

upxq “ c

ˆ

2b

b2 ` |x´ a|2
˙pn´2sq{2

.

By integrating the Euler–Lagrange equation corresponding to (8) against |x´y|´pn´2sq,

we obtain (7) with f replaced by a multiple of |u|4s{pn´2squ. This leads to a classifica-

tion of all positive solutions in 9HspRnq of the corresponding Euler–Lagrange equation

[7].

A crucial step in Lieb’s proof of the sharp inequality (5) and the classification of its

optimizers was the observation that it is equivalent to the following sharp inequality

on S
n,

ĳ

SnˆSn

gpωq gpηq
|ω ´ η|λ dω dη ď Cλ,n

ˆ
ż

Sn

|g|2n{p2n´λq dω

˙p2n´λq{n

. (9)

In fact, each side of (9) equals the corresponding side in (5) if

fpxq “
ˆ

2

1 ` |x|2
˙p2n´λq{2

gpSpxqq ,
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where S : Rn Ñ Sn is the inverse stereographic projection; see (22) below. This trans-

formation yields also a characterization of optimizers and of positive solutions of the

Euler–Lagrange equation corresponding to (9). The functions f in (6) become

gpxq “ c

˜

a

1 ´ |ζ |2
1 ´ ζ ¨ ω

¸p2n´λq{2

(10)

with ζ P R
n`1 such that |ζ | ă 1. More explicitly, there is a bijection between such ζ and

parameters a P Rn, b ą 0 in (6) given by ζ “ p2η´ b2p1`ηn`1qen`1q{p2` b2p1`ηn`1qq
with η “ Spaq.

Beckner [2, Eq. (19)] observed that, in the same sense as (8) is the dual of (5), the

dual of (9) is
›

›

›
A

1{2
2s v

›

›

›

2

2

ě Ss,n}v}2q (11)

with

A2s “ ΓpB ` 1

2
` sq

ΓpB ` 1

2
´ sq and B “

b

´∆Sn ` pn´1q2

4
. (12)

The operators A2s are special cases of the GJMS operators in conformal geometry

[14]. The duality between (9) and (11) and the known results about the former yield a

characterization of optimizers and of positive solutions of the Euler–Lagrange equation

corresponding to (11).

The relation between these inequalities and classification results and the problem

studied in this paper is as follows. Inequality (11) becomes an equality as s Ñ 0.

Differentiating at s “ 0, Beckner [1] obtained the inequality

´

v,
`

ψpB ` 1

2
q ´ ψpn

2
q
˘

v
¯

ě 1

n

ż

Sn

|vpωq|2 ln |vpωq|2|Sn|
}v}22

dω ,

where ψ “ Γ1{Γ is the digamma function. Using the Funk–Hecke formula one can

show that
´

v,
`

ψpB ` 1

2
q ´ ψpn

2
q
˘

v
¯

“ 1

nCn

ĳ

SnˆSn

|vpωq ´ vpηq|2
|ω ´ η|n dω dη , (13)

which yields (1). Alternatively, one can subtract
ż

Sn

dω

|ω ´ e|λ }g}2
2

(with e P S
n arbitrary) from the left side of (9) and pass to the limit λ Ñ n. From

the characterization of optimizers in (9) or (11) (or by a simple computation), one

finds that the functions in (3) are optimizers in (1). Because of the limiting argument,

however, uniqueness of these optimizers requires a separate argument [3].
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Similarly, characterization of the solutions of the Euler–Lagrange equations corre-

sponding to (9) or (11) does not yield the characterization of solutions of the limiting

equation (4). This is what we achieve in the present paper.

1.3. Notation. For u, v P D, we put

Eru, vs :“ 1

2

ż

Sn

ż

Sn

pupξq ´ upηqqpvpξq ´ vpηqq
|ξ ´ η|n dξ dη .

Moreover, if u is sufficiently regular (for instance, Dini continuous), then we intro-

duce

Hupξq :“ P.V.

ż

Sn

upξq ´ upηq
|ξ ´ η|n dη . (14)

Note that in this case, for any v P D,
ż

Sn

vpξqpHuqpξq dξ “ Erv, us .

2. Preliminaries

In this section we prove conformal invariance of equation (4). Moreover, we introduce

the necessary notation for the conformal maps which our argument relies on, namely

inversion and reflection on Rn and stereographic projection from Sn to Rn.

2.1. Conformal invariance. For a general conformal map Φ : X Ñ Y with deter-

minant JΦpxq :“ | detDΦpxq| and a function u P L2pY q, we define the pullback of u

under Φ by

uΦpxq :“ JΦpxq1{2upΦpxqq, x P X. (15)

This definition is chosen so that }uΦ}L2pXq “ }u}L2pY q.

The following lemma shows that equation (4) is conformally invariant. This is crucial

for our approach.

Lemma 2. Let u, v P D and let Φ be a conformal map on Sn. Then uΦ, vΦ P D and

we have

EruΦ, vΦs “ Eru, vs ` Cn

ż

Sn

uv lnJ
´1{2
Φ´1 dξ (16)

and, in particular, in the weak sense,

HpuΦq “ pHuqΦ ` CnuΦ ln J
1

2

Φ
. (17)

Moreover, if u is a weak solution to (4), then so is uΦ.

To avoid confusion, we emphasize that in the second term on the right side of (16),

Φ´1 denotes the inverse of the map Φ, while J
´1{2
Φ´1 denotes 1{

?
JΦ´1.
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Proof. Step 1. For s ą 0, denote by P2s the operator given by

P2supξq :“ Γpn´2s
2

q
22sπ

n
2 Γpsq

ż

Sn

upηq
|ξ ´ η|n´2s

dη. (18)

This operator fulfills the conformal invariance property

P2s

ˆ

J
n`2s
2n

Φ
u ˝ Φ

˙

“ J
n´2s
2n

Φ
pP2suq ˝ Φ. (19)

Indeed, this follows from a straightforward change of variables together with the trans-

formation rule

JΦpξq 1

n |ξ ´ η|2JΦpηq 1

n “ |Φpξq ´ Φpηq|2, (20)

which holds because Φ is conformal.

We next give the action of P2s on spherical harmonics. We denote by pYl,mq an

orthonormal basis of L2pSnq composed of real spherical harmonics. The index l runs

through N0 and denotes the degree of the spherical harmonic. The index m runs

through a certain index set of cardinality depending on l and labels the degeneracy of

spherical harmonics of degree l.

By the Funk-Hecke formula (see [2, Eq. (17)] and also [12, Corollary 4.3]) we have

P2sYl,m “ Γpl ` n{2 ´ sq
Γpl ` n{2 ` sqYl,m.

Expanding u P L2pSnq in terms of the spherical harmonics,

u “
ÿ

l,m

ul,mYl,m with ul,m “
ż

Sn

uYl,m dη, (21)

by the Funk-Hecke formula (see [12, Corollary 4.3]) we have the representation

P2su “
ÿ

l,m

ul,mP2sYl,m “
ÿ

l,m

ul,m
Γpl ` n{2 ´ sq
Γpl ` n{2 ` sqYl,m .

In passing, we note that the right side is equal to A´1

2s u with the operator A2s from

(12).

We denote by F the space of functions u on Sn such that only finitely many coefficients

ul,m in (21) are nonzero. All the above computations are justified, in particular, for

such functions. Moreover, acting on such functions one has limsÑ0P2s “ 1 “: P0.

Step 2. We now prove (17) for u P F . For such u, we may differentiate the identity

(19) with respect to s at s “ 0. We note that

P0 “ 1 , 9P0 “ ´Γpn
2
q

2π
n
2

H ´
9Γpn

2
q

Γpn
2
q .
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(Here and in the following, we use a dot to denote the derivative with respect to s.)

The latter follows from the identity

Hupξq “ lim
sÑ0

ż

Sn

upξq ´ upηq
|ξ ´ η|n´2s

dη “ 2π
n
2

Γpn
2
q limsÑ0

1

2s

˜

Γpn
2

´ sq
Γpn

2
` sq ´ P2s

¸

u

by expanding the quotient of gamma functions.

For the left side of (19), we obtain

d

ds
P2s

ˆ

J
n`2s
2n

Φ
u ˝ Φ

˙

“ 2 9P2s

ˆ

J
n`2s
2n

Φ
u ˝ Φ

˙

` 1

n
P2s

ˆ

J
n`2s
2n

Φ
lnJΦ u ˝ Φ

˙

and therefore, at s “ 0,

d

ds
|s“0P2s

ˆ

J
n`2s
2n

Φ
u ˝ Φ

˙

“ ´2

˜

Γpn
2
q

2π
n
2

H `
9Γpn

2
q

Γpn
2
q

¸

ˆ

J
1

2

Φ
u ˝ Φ

˙

` 1

n

ˆ

J
1

2

Φ
ln JΦ u ˝ Φ

˙

.

For the right side of (19), we obtain

d

ds
J

n´2s
2n

Φ
pP2suq ˝ Φ “ ´ 1

n
J

n´2s
2n

Φ
ln JΦ pP2suq ˝ Φ ` 2 J

n´2s
2n

Φ

´

9P2su
¯

˝ Φ

and therefore, at s “ 0,

d

ds
|s“0J

n´2s
2n

Φ
pP2suq ˝ Φ “ ´ 1

n
J

1

2

Φ
ln JΦ u ˝ Φ ´ 2 J

1

2

Φ

¨

˝

˜

Γpn
2
q

2π
n
2

H `
9Γpn

2
q

Γpn
2
q

¸

u

˛

‚˝ Φ .

Combining these two identities and recalling uΦ “ J
1{2
Φ
u ˝ Φ, we arrive at equation

(17), understood in a pointwise sense.

Now let v P F , multiply (17) by vΦ and integrate over Sn. After a change of variables

ξ ÞÑ Φpξq on the right hand side, we obtain the desired identity (16) for all u, v P F .

Step 3. We now remove the apriori assumption u, v P F .

From the representation (13) we see that F Ă D is dense in D with respect to the

norm
a

Eru, us ` }u}22.
We need to show that the second term on the right side of (16) is harmless. By the

classification of conformal maps of Sn, we know that JΦ´1pξq “ p
a

1 ´ |ζ |2{p1´ ζ ¨ ξqqn
for some ζ P Rn`1 with |ζ | ă 1. Thus,

JΦ´1pξq ě
˜

a

1 ´ |ζ |2
1 ` |ζ |

¸n

“
ˆ

1 ´ |ζ |
1 ` |ζ |

˙n{2

.

This implies

Cn

ż

Sn

u2 ln J
´1{2
Φ´1 dξ ď nCn

4

ˆ

ln
1 ` |ζ |
1 ´ |ζ |

˙

}u}22 “ CΦ }u}22

and

EruΦ, uΦs ď Eru, us ` CΦ }u}2
2
.
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This bound, together with a standard approximation argument, shows that uΦ P D

whenever u P D and that (16) holds for every u, v P D.

Step 4. To obtain the statement on conformal invariance of equation (4), let ϕ P D

and set v :“ ϕΦ´1. Then we compute, using (16),

Erϕ, uΦs “ ErvΦ, uΦs “ Erv, us ` Cn

ż

Sn

vu lnJ
´1{2
Φ´1 dξ

“ Cn

ż

Sn

vu lnu dξ ` Cn

ż

Sn

vu lnJ
´1{2
Φ´1 dξ “ Cn

ż

Sn

ϕuΦ ln uΦ dξ.

This finishes the proof. �

2.2. Some conformal maps. Our argument will make use of certain one-parameter

families of conformal transformations of Sn. It is natural to define these maps on Rn

and then to lift them to the sphere via a stereographic projection. The families in

questions are inversions in spheres (with fixed center and varying radii) and reflections

in hyperplanes (with fixed normal and varying positions).

Let us set up our notation. On Rn, the inversion about the sphere BBλpx0q with center

x0 P Rn and radius λ ą 0 is given by

Iλ,x0
: Rnztx0u Ñ R

nztx0u , Iλ,x0
pxq “ λ2px´ x0q

|x ´ x0|2
` x0 .

Similarly, if Hα,e :“ tx P Rn : x ¨ e ą αu denotes the halfspace with normal e P Sn´1

and position α P R, the reflection about the hyperplane BHα,e is given by

Rα,e : R
n Ñ R

n , Rα,epxq :“ x` 2pα ´ x ¨ eqe .

The inverse stereographic projection S : Rn Ñ SnztSu, where S “ ´en`1 denotes the

southpole, is given by

pSpxqqi “ 2xi

1 ` |x|2 , i “ 1, ..., n, pSpxqqn`1 “ 1 ´ |x|2
1 ` |x|2 . (22)

Correspondingly, the stereographic projection is given by S´1 : SnztSu Ñ Rn,

pS´1pξqqi “ ξi

1 ` ξn`1

, i “ 1, ..., n.

Using stereographic projection, we now lift the inversions and reflections to Sn. For

any λ ą 0 and ξ0 P SnztSu we set

Φλ,ξ0 :“ S ˝ Iλ,x0
˝ S´1 : Snztξ0, Su Ñ S

nztξ0, Su. (23)

Here and in the following, the relation Spx0q “ ξ0 is understood. The map Φλ,ξ0 is

conformal, being a composition of conformal maps. We abbreviate

Jλ,ξ0pηq :“ | detDΦλ,ξ0pηq| and Σλ,ξ0 :“ SpBλpx0qq .
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Similarly, for any α P R and e P Sn´1 we set

Ψα,e :“ S ˝ Rα,e ˝ S´1 : SnztSu Ñ S
nztSu. (24)

We abbreviate

Jα,epηq :“ | detDΨα,epηq| .

To motivate the following lemma, we recall that when applying the method of moving

planes in Rn in integral form, the following inequality is fundamental,

|x ´ y| ă |x´ R0,epyq| for all x, y P H0,e . (25)

The following lemma yields the corresponding inequalities for the lifted maps Φλ,ξ0

and Ψα,e on Sn.

Lemma 3. (i) Let λ ą 0 and let ξ0 P SnztSu. Then

|Jλ,ξ0pηq|1{2

|ξ ´ Φλ,ξ0pηq|n ´ 1

|ξ ´ η|n ă 0 for all ξ, η P Σλ,ξ0 with ξ ‰ η. (26)

(ii) Let α P R and let e P Sn´1. Then

|Jα,epηq|1{2

|ξ ´ Ψα,epηq|n ´ 1

|ξ ´ η|n ă 0 for all ξ, η P SpHα,eq with ξ ‰ η.

Proof. Inequality (26) is equivalent to the inequality

|ξ ´ η| ă |ξ ´ Φλ,ξ0pηq||Jλ,ξ0pηq|´1{2n for all ξ, η P Σλ,ξ0 . (27)

Our strategy is to deduce this inequality from (25) (with e “ en, say). We observe that

there is a conformal map Bλ,x0
: Rnztx0, x0´λenu Ñ Rnztx0, x0´λenu, which maps the

ball Bλpx0q to the half-space H0,en and which is such that Iλ,x0
“ B´1

λ,x0
˝R0,en ˝ Bλ,x0

.

(See [11, Section 2.2] for details; the map Bλ,x0
is the map B given there, composed

with a dilation and a translation which map Bλpx0q to B1p0q.)

Therefore, letting T “ Tλ,x0
“ Bλ,x0

˝ S´1, we can write Φλ,ξ0 “ T ´1 ˝R0,en ˝ T . If we

use the formula |T pξq ´ T pηq| “ | detDT pξq|1{2n| detDT pηq|1{2n|ξ ´ η| (valid for any

conformal map, see (20)) and the chain rule for the determinantal factors, we get that

(27) is equivalent to

|T pξq´T pηq| ă |T pξq´T pΦλ,x0
pηqq|| detDpT ˝Φλ,x0

˝T ´1qpT pηqq| 1

2n for all ξ, η P Σλ,ξ0 .

Setting x “ T pξq and y “ T pηq and observing that T pΣλ,ξ0q “ H0,en, this simplifies to

|x ´ y| ă |x ´ R0,enpyq|| detDR0,enpyq|1{2n for all x, y P H0,en,

which is just (25) because | detDR0,enpyq| “ 1 for all y P Rn.

The proof of (ii) is similar, but simpler (instead of T one can take simply S´1) and

we omit it. �
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3. Maximum principles for antisymmetric functions

This section serves as a preparation for the moving spheres argument carried out

in Section 4 below. Here we will derive two maximum principles which will be the

technical heart of the moving spheres method. An important point, which makes them

well suited for the moving spheres application, is that both Lemmas 4 and 5 only hold

for antisymmetric functions. Here, with the notation introduced in Section 2, we call

a function w on Sn antisymmetric (with respect to the conformal maps Φλ,ξ0 resp.

Ψα,e) if

wpηq “ ´wΦλ,ξ0
pηq for a.e. η P Σλ,ξ0 ,

respectively,

wpηq “ ´wΨα,e
pηq for a.e. η P SpHα,eq.

The use of maximum principles is fundamental in the method of moving planes and

the role of antisymmetry in these maximum principles becomes particularly important

when applied to nonlocal equations. Antisymmetric maximum principles are implicit,

among others, in [7, 17, 21, 10, 16] and were made explicit in [15, 6, 8]. A particular

feature of our result is that we deal with weak solutions without further regularity

assumptions and with very weak conditions on the potential. This makes, for instance,

the proof of the strong maximum principle from Lemma 5 below considerably more

involved than its counterpart in [6].

For clarity of exposition, we will state and prove the lemmas in this section only for

functions antisymmetric with respect to Φλ,ξ0 . We leave it to the reader to check that

their statements and proofs remain valid when Φλ,ξ0 and Σλ,ξ0 are replaced by Ψα,e

and SpHα,eq.
The first lemma states a maximum principle which is valid for sets of sufficiently small

volume. We recall that the constant Cn was defined in (2).

Lemma 4 (Small volume maximum principle). Let λ ą 0 and ξ0 P SnztSu, let Ω Ă
Σλ,ξ0 be measurable and let V : Ω Ñ R be a measurable function with

ż

Ω

e2V´{Cn ă |Sn| .

If w P D is antisymmetric with respect to Σλ,ξ0 and satisfies

Erϕ,ws `
ż

Ω

ϕV w ě 0 for any 0 ď ϕ P D with ϕ “ 0 on Ωc (28)

and

w ě 0 a.e. on Σλ,ξ0zΩ, (29)

then w ě 0 a.e. on Ω.

We prove Lemma 4 in Section 3.1 below.

The second lemma gives a strong maximum principle.
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Lemma 5 (Strong maximum principle). Let λ ą 0 and ξ0 P SnztSu and let V :

Σλ,ξ0 Ñ R be a measurable function. If w P D is antisymmetric with respect to Σλ,ξ0,

satisfies V` mintw, 1u P L1

loc
pΣλ,ξ0q, as well as

Erϕ,ws `
ż

Σλ,ξ0

ϕV w ě 0 for all 0 ď ϕ P D with ϕ “ 0 on pΣλ,ξ0qc (30)

and

w ě 0 a.e. on Σλ,ξ0 , (31)

then either w ” 0 on Sn or w ą 0 a.e. on Σλ,ξ0.

We prove Lemma 5 in Section 3.3 below.

3.1. Proof of Lemma 4. To prove Lemma 4, we use the following inequality. It is

well known, but we include a proof for the sake of completeness.

Lemma 6. Let f and g be measurable functions on a measured space pX, µq such that

f ě 0 and
ş

X
f dµ “ 1. Assume that

ş

X
fg´ dµ ă 8. Then

ż

X

fg dµ ď
ż

X

f ln f dµ ` ln

ż

X

eg dµ .

Proof. From the elementary inequality eα ě 1 ` α for all α P R, we obtain

eg´ln f´
ş

X
fpg´ln fqdµ ě 1 ` g ´ ln f ´

ż

X

fpg ´ ln fq dµ .

Multiplying this inequality by f and integrating we obtain
ż

X

eg´
ş

X
fpg´ln fqdµ dµ ě 1 ,

which is the claimed inequality. �

Lemma 7. Let λ ą 0 and ξ0 P SnztSu and let w P D be antisymmetric with respect

to Σλ,ξ0. Then v :“ 1Σλ,ξ0
w´ P D and

Erv, vs ď ´Erv, ws .

Proof. For ǫ ą 0 set

Eǫ :“ tpξ, ηq P Σλ,ξ0 ˆ Σλ,ξ0 : |ξ ´ η| ă ǫu Y tpξ, ηq P Σλ,ξ0 ˆ Σc
λ,ξ0

: |ξ ´ Φλ,ξ0pηq| ă ǫu
Y tpξ, ηq P Σc

λ,ξ0
ˆ Σλ,ξ0 : |Φλ,ξ0pξq ´ η| ă ǫu

Y tpξ, ηq P Σc
λ,ξ0

ˆ Σc
λ,ξ0

: |Φλ,ξ0pξq ´ Φλ,ξ0pηq| ă ǫu ,

kǫpξ, ηq :“ 1Ec
ǫ
pξ, ηq |ξ ´ η|´n

and

Eǫrf, gs :“ 1

2

ż

Sn

ż

Sn

pupξq ´ upηqqpvpξq ´ vpηqqkǫpξ, ηq dξ dη .
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Since kǫ is bounded, both Eǫrv, vs and Eǫrw, vs are finite and we have

Eǫrv, vs ` Eǫrv, ws

“ 1

2

ż

Sn

ż

Sn

`

|vpξq ´ vpηq|2 ` rvpξq ´ vpηqsrwpξq ´ wpηqs
˘

kǫpξ, ηq dξ dη

“
ż

Sn

ż

Sn

`

vpξqpvpξq ` wpξqq ´ vpξqpvpηq ` wpηqq
˘

kǫpξ, ηq dξ dη

“ ´
ż

Sn

ż

Sn

vpξqpvpηq ` wpηqqkǫpξ, ηq dξ dη ,

where we used the fact that vpξqpvpξq ` wpξqq “ 0 on Sn.

By a change of variables and the antisymmetry of w, we have

´
ż

Sn

ż

Sn

vpξqpvpηq ` wpηqqkǫpξ, ηq dξ dη

“ ´
ż

Σλ,ξ0

ż

Σλ,ξ0

wpξq´wpηq`kǫpξ, ηq dξ dη `
ż

Σc
λ,ξ0

ż

Σλ,ξ0

wpξq´wpηq´kǫpξ, ηq dξ dη

´
ż

Σc
λ,ξ0

ż

Σλ,ξ0

wpξq´wpηq`kǫpξ, ηq dξ dη

“ ´
ż

Σλ,ξ0

ż

Σλ,ξ0

wpξq´wpηq`

´

kǫpξ, ηq ´ Jλ,ξ0pηq1{2kǫpξ,Φλ,ξ0pηqq
¯

dξ dη

´
ż

Σc
λ,ξ0

ż

Σλ,ξ0

wpξq´wpηq`kǫpξ, ηq dξ dη .

The second double integral on the right side is clearly nonnegative. Moreover, it follows

from Lemma 3 and the choice of Eǫ (more precisely, the fact that pξ,Φpηqq P Eǫ implies

pξ, ηq P Eǫ) that

kǫpξ, ηq ´ Jλ,ξ0pηq1{2kǫpξ,Φλ,ξ0pηqq ě 0 for all ξ, η P Σλ,ξ0 .

Therefore also the first double integral on the right side is nonnegative and we conclude

that

Eǫrv, vs ` Eǫrv, ws ď 0 . (32)

By the Schwarz inequality, we have ´Eǫrv, ws ď
a

Eǫrv, vs
a

Eǫrw,ws and therefore the

previous inequality implies that

Eǫrv, vs ď Eǫrw,ws .

Since Eǫrw,ws ď Erw,ws ă 8, we can let ǫ Ñ 0 and use monotone convergence to

deduce that Erv, vs ă 8, that is, v P D. With this information we can return to (32)

and let ǫ Ñ 0 to obtain the inequality in the lemma. �

Now we can give the proof of the small volume maximum principle.
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Proof of Lemma 4. Let λ, ξ0, w and Ω be as in the assumptions and denote v “ 1Ωw´.

Assumption (29) implies that v “ 1Σλ,ξ0
w´ and therefore, by Lemma 7, v P D and

Erv, vs ď Erv, ws. Combining this with assumption (28) (with ϕ “ v), we obtain

Erv, vs ď ´Erv, ws ď
ż

Ω

vV w “ ´
ż

Ω

V w2

´ ď
ż

Ω

V´w
2

´ . (33)

On the other hand, by Beckner’s inequality (1),

Erv, vs “ 1

2

ż

Sn

ż

Sn

|vpξq ´ vpηq|2
|ξ ´ η|n dξ dη ě Cn

2

ż

Ω

w2

´ ln
w2

´|Sn|
}w´1Ω}2

2

dη. (34)

We now argue by contradiction and assume that v ı 0. Then we may define ρ “
}w´1Ω}´2

2 1Ωw
2

´ and rewrite inequalities (33) and (34) as
ż

Ω

ρ ln ρ dη ` ln |Sn| ď 2

Cn

ż

Ω

V´ρ dη. (35)

Notice that ρ ě 0 and
ş

Sn
ρ “ 1. Therefore we may apply Lemma 6 with f “ ρ,

g “ 2

Cn
V´ and X “ Ω to (35) and deduce that

|Sn| ď
ż

Ω

e
2V´

Cn dη .

This contradicts the assumption of the lemma and therefore we conclude that v ” 0,

that is, w ě 0 a. e. on Ω. �

3.2. A general form of the strong maximum principle. We deduce Lemma 5

from the following strong maximum principle, which holds for a general interaction

kernel k and arbitrary, not necessarily antisymmetric, functions w.

More precisely, let pX, d, µq be a metric measure space and suppose that the kernel

k : X ˆ X Ñ p0,8q Y t8u is such that
ĳ

KˆX

kpx, yqdpx, yq2 dµpxq dµpyq ă 8 for any compact K Ă X . (36)

For simplicity of notation, we will also assume that kpx, yq “ kpy, xq for all x, y P X,

although this is not really necessary. For a measurable function u on X, let

Irws :“ 1

2

ĳ

XˆX

kpx, yqpwpxq ´ wpyqq2 dµpxq dµpyq

and set

DpIq :“ tw : X Ñ R : w measurable , Irws ă 8u.
Moreover, for v, w P DpIq, let

Irv, ws :“ 1

2

ĳ

XˆX

kpx, yqpvpxq ´ vpyqqpwpxq ´ wpyqq dµpxq dµpyq .

With this notation, we can state the following general strong maximum principle.
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Proposition 8. Let k satisfy (36) and let U be a measurable function on X. Assume

that 0 ď v P DpIq satisfies U` mintv, 1u P L1

loc
pXq and

Irϕ, vs `
ż

X

ϕUv dµ ě 0 for all 0 ď ϕ P DpIq with compact support . (37)

Then either v ” 0 or v ą 0 a.e. on X.

In the proof of Lemma 5, we will use this proposition in a setting where in fact U`v P
L1

loc
pXq. While this may at first look less natural than the assumption U` P L1

loc
pXq,

the difference is crucial in our application, where U depends in a nonlinear fashion on

v.

We begin with a technical lemma about the form domain DpIq.

Lemma 9. Let k satisfy (36) and let w P DpIq.

(a) If w ě 0, then pw ` ǫq´1 P DpIq for all ǫ ą 0.

(b) If w is bounded and ζ is Lipschitz function on X with compact support, then

ζw P DpIq.

Proof of Lemma 9. To prove (a), we write

ˆ

1

wpxq ` ǫ
´ 1

wpyq ` ǫ

˙2

“ pwpxq ´ wpyqq2
pwpxq ` ǫq2pwpyq ` ǫq2 ď 1

ǫ4
pwpxq ´ wpyqq2 .

Thus,

Irpw ` ǫq´1s ď ǫ´4 Irws .

To prove (b), we first note that Irζs ă 8. Indeed, if K :“ supp ζ and L is the

Lipschitz constant of ζ , then

Irζs ď
ż

K

ż

X

`

ζpxq ´ ζpyq
˘2
kpx, yq dµpyq dµpxq

ď L2

ż

K

ż

X

dpx, yq2kpx, yq dµpyq dµpxq ă 8

by (36). Now we bound
ˇ

ˇζpxqwpxq ´ ζpyqwpyq
ˇ

ˇ ď }ζ}8

ˇ

ˇwpxq ´ wpyq
ˇ

ˇ ` }w}8

ˇ

ˇζpxq ´ ζpyq
ˇ

ˇ

and obtain

Irζws ď }ζ}28 Irws ` }w}28 Irζs ` 2}ζ}8}w}8

a

Irws Irζs .

This proves the lemma. �
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Proof of Proposition 8. Let ζ be a Lipschitz function on X with compact support. By

the first part of Lemma 9, the function pv ` ǫq´1 belongs to DpIq and is bounded,

so by the second part, with ζ replaced by ζ2, the function ϕ “ ζ2{pv ` ǫq belongs to

DpIq.

We write
`

ϕpxq ´ ϕpyq
˘ `

vpxq ´ vpyq
˘

“ ´pζpxqvpyq ´ ζpyqvpxqq2 ` vpxqvpyqpζpxq ´ ζpyqq2 ` ǫpvpxq ´ vpyqqpζpxq2 ´ ζpyq2q
pvpxq ` ǫqpvpyq ` ǫq .

Using also
ż

X

ϕUv ď
ż

X

U`ζ
2

v

v ` ǫ
,

we obtain from (37) that

1

2

ĳ

XˆX

pζpxqvpyq ´ ζpyqvpxqq2
pvpxq ` ǫqpvpyq ` ǫq kpx, yq dµpxq dµpyq ď

3
ÿ

k“1

Ikpǫq (38)

with

I1pǫq “
ż

X

U`ζ
2

v

v ` ǫ
,

I2pǫq “ 1

2

ĳ

XˆX

vpxqvpyqpζpxq ´ ζpyqq2
pvpxq ` ǫqpvpyq ` ǫq kpx, yq dµpxq dµpyq ,

I3pǫq “ 1

2

ĳ

XˆX

ǫpvpxq ´ vpyqqpζpxq2 ´ ζpyq2q
pvpxq ` ǫqpvpyq ` ǫq kpx, yq dµpxq dµpyq .

We bound the left side of (38) from below. Setting Z :“ tv “ 0u, we have

1

2

ĳ

XˆX

pζpxqvpyq ´ ζpyqvpxqq2
pvpxq ` ǫqpvpyq ` ǫq kpx, yq dµpxq dµpyq

ě
ĳ

ZcˆZ

pζpxqvpyq ´ ζpyqvpxqq2
pvpxq ` ǫqpvpyq ` ǫq kpx, yq dµpxq dµpyq

“ ǫ´1

ż

Zc

vpxq2
vpxq ` ǫ

κpxq dµpxq

with

κpxq :“
ż

Z

ζpyq2kpx, yq dµpyq .

By dominated convergence, we have

lim
ǫÑ0

ż

Zc

vpxq2
vpxq ` ǫ

κpxq dµpxq “
ż

Zc

vpxqκpxq dµpxq ,
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and therefore, by (38),

ż

Zc

vpxqκpxq dµpxq ď lim inf
ǫÑ0

3
ÿ

k“1

ǫIkpǫq . (39)

Let us show that limǫÑ0 ǫIkpǫq “ 0 for k “ 1, 2, 3. We write the integrand of ǫI1pǫq as

U`ζ
2mintv, 1u

ˆ

ǫ

v ` ǫ
1t0ăvă1u ` ǫ

v

v ` ǫ
1tvě1u

˙

.

By assumption, the product in front of the parentheses is integrable. The factor in

parentheses is ď 1 if ǫ ď 1 and tends to zero pointwise. Therefore, by dominated

convergence, ǫI1pǫq Ñ 0. Moreover, we can simply bound I2pǫq ď Irζs, which is finite

as shown in the proof of Lemma 9. Thus, ǫI2pǫq Ñ 0. Finally, the integrand of ǫI3pǫq
is bounded, in absolute value, by

2}ζ}8|vpxq ´ vpyq||ζpxq ´ ζpyq|kpx, yq ,

which is integrable. Moreover, this integrand tends pointwise to zero. Thus, by

dominated convergence, ǫI3pǫq Ñ 0.

Returning to (39), we infer that
ż

Zc

vpxqκpxq dµpxq “ 0 . (40)

Assume now that Z has positive measure. Then we can choose the function ζ in such

a way that ζ21Z is not identically zero. Then, since k ą 0 on X ˆ X, we have κ ą 0

on X. Thus, by (40), |Zc| “ 0, that is, v ” 0. This completes the proof. �

Remark 10. There is also a global version of Proposition 8. Namely, the same con-

clusion holds without an underlying metric and without assumption (36), provided one

has the global integrability U` mintv, 1u P L1pXq and the compact support condition in

(37) is dropped. This follows by the same proof with ζ ” 1.

3.3. Proof of Lemma 5. It remains to reduce Lemma 5 to the general maximum

principle from Proposition 8 from the previous subsection. To do so, we use antisym-

metry of w to express the quadratic form Erϕ,ws as a double integral over the region

Σλ,ξ0 , plus a multiplicative term. We drop in the following the subscript from Σλ,ξ0

and Φλ,ξ0 to ease notation. Moreover, we set

lpξ, ηq :“ 1

|ξ ´ η|n ´ J
1{2
Φ

pηq
|ξ ´ Φpηq|n .

Notice that lpξ, ηq ą 0 for every ξ, η P Σ by Lemma 3. Moreover, by (20), we have

lpξ, ηq “ lpη, ξq for all ξ, η P Σ. For functions u, v on Σ, we define the quadratic
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form

Ẽru, vs :“ 1

2

ĳ

ΣˆΣ

lpξ, ηqpupξq ´ upηqqpvpξq ´ vpηqq dξ dη (41)

on the domain

D̃ :“ tu P L2pΣq : Ẽru, us ă 8u.

Lemma 11. Let w P D be antisymmetric with respect to Φ and let ϕ P D with ϕ “ 0

on Σc. Then

Erϕ,ws “ Ẽrϕ,w|Σs `
ż

Σ

ϕpξqṼ pξqwpξq dξ,

with

Ṽ pξq “
ż

Σ

JΦpηq1{2

|ξ ´ Φpηq|n p1 ` JΦpηq1{2q dη.

Proof. We write

Erw, ϕs “ 1

2

ĳ

ΣˆΣ

pϕpξq ´ ϕpηqqpwpξq ´ wpηqq
|ξ ´ η|n dξ dη `

ĳ

ΣˆΣc

ϕpξqpwpξq ´ wpηqq
|ξ ´ η|n dξ dη .

(42)

The second integral on the right side is a sum of two terms, corresponding to wpξq
and wpηq, respectively. Since

ż

Σc

dη

|ξ ´ η|n “
ż

Σ

JΦpηq dη
|ξ ´ Φpηq|n ,

the first term becomes
ĳ

ΣˆΣc

ϕpξqwpξq
|ξ ´ η|n dξ dη “

ż

Σ

ϕpξqwpξq
ˆ
ż

Σ

JΦpηq dη
|ξ ´ Φpηq|n

˙

dξ .

This is one contribution of the Ṽ term.

Let us discuss the second contribution coming from the second integral on the right

side of (42). By antisymmetry and a change of variables, we have
ż

Σc

wpηq
|ξ ´ η|n dη “ ´

ż

Σ

JΦpηq1{2

|ξ ´ Φpηq|nwpηq dη ,

and therefore, by symmetry,
ĳ

ΣˆΣc

ϕpξqwpηq
|ξ ´ η|n dξ dη “ ´1

2

ĳ

ΣˆΣ

JΦpηq1{2

|ξ ´ Φpηq|n
`

ϕpξqwpηq ` ϕpηqwpξq
˘

dξ dη

“ 1

2

ĳ

ΣˆΣ

JΦpηq1{2

|ξ ´ Φpηq|n pϕpξq ´ ϕpηqqpwpξq ´ wpηqq dξ dη

´ 1

2

ĳ

ΣˆΣ

JΦpηq1{2

|ξ ´ Φpηq|n
`

ϕpξqwpξq ` ϕpηqwpηq
˘

dξ dη .
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In this expression, the first double integral combines with the first double integral on

the right side of (42) to give the term Ẽrϕ,w|Σs in the lemma. Moreover, by symmetry

the second double integral equals

1

2

ĳ

ΣˆΣ

JΦpηq1{2

|ξ ´ Φpηq|n
`

ϕpξqwpξq ` ϕpηqwpηq
˘

dξ dη “
ż

Σ

ϕpξqwpξq
˜

ż

Σ

JΦpηq1{2 dη

|ξ ´ Φpηq|n

¸

dξ ,

which is the remaining contribution to the Ṽ term. Collecting all terms we arrive at

the formula in the lemma. �

Proof of Lemma 5. We are going to apply Lemma 8 with I “ Ẽ , k “ l, X “ Σλ,ξ0 and

U “ V ` Ṽ . Let us check that the assumptions of Lemma 8 are satisfied.

By Lemma 11, we have, for any 0 ď ϕ P D with ϕ “ 0 on pΣλ,ξ0qc,

Ẽrϕ,ws `
ż

Σλ,ξ0

ϕpξqUpξqwpξq dξ ě 0 . (43)

Next, we observe that for any compact subset C Ă Σλ,ξ0 , there is M ą 0 such that we

have the uniform bound

|ξ ´ Φpηq|´n ď M for ξ P C, η P Σλ,ξ0 , (44)

This has two consequences. First, if ϕ is compactly supported on Σλ,ξ0 , it is easy

to deduce from (44) that ϕ P D if and only if ϕ P D̃. Therefore, (43) holds for all

compactly supported ϕ P D̃.

Second, it follows from (44) that Ṽ is bounded on C and hence Ṽ mintv, 1u P L1pCq.
Since, moreover, V` mintw, 1u P L1pCq by assumption, we have U` mintw, 1u P L1pCq
for every compact C Ă Σλ,ξ0 .

Thus, all the assumptions of Lemma 8 are satisfied and we conclude by that lemma. �

4. Symmetry by the method of moving spheres

In this section, we prove a symmetry result for solutions of (4). We will deduce this by

the method of moving spheres using the preliminaries introduced so far, in particular

the maximum principles from Section 3.

The method of moving spheres is well-established on Rn and consists in comparing

the values of a solution to some equation with its (suitably defined) inversion about a

certain sphere BBλpx0q Ă R
n. Using stereographic projection, we lift this procedure to

Sn. Namely, for any solution to (4) and λ ą 0, ξ0 P SnztSu, we will compare u on the

set Σλ,ξ0 “ SpBλpS´1pξ0qqq with its reflected version uΦλ,ξ0
. Recall that the map Φλ,ξ0

has been introduced in (23) and the definition of uΦ has been given in (15).
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At the same time we need to consider the reflection of u about (stereographically

projected) planes, i.e., uΨα,e
for e P Sn´1, α P R, with Ψα,e defined in (24).

The following is the main result of this section.

Theorem 12. Let u ě 0 be a weak solution to (4). Then the following holds.

(i) For every ξ0 P SnztSu, there is a λ0 “ λ0pξ0q ą 0 such that uΦλ0,ξ0
” u.

(ii) For every e P Sn´1, there is a “ apeq P R such that uΨα,e
” u.

As in Section 3, since the arguments to prove parts (i) and (ii) are very similar and

of comparable difficulty, for clarity of exposition we focus in the following on proving

part (i) of Theorem 12. The reader is invited to check that all arguments given in the

rest of the present section remain valid when Φλ,ξ0 is replaced by Ψα,e and therefore

yield a proof of part (ii) as well.

4.1. The moving spheres argument. In this subsection, we fix ξ0 P S
nztSu and let

λ ą 0 vary. We abbreviate

uλ,ξ0 :“ uΦλ,ξ0
.

We will prove Theorem 12 by analyzing the positivity of the difference

wλ,ξ0 :“ uλ,ξ0 ´ u

on Σλ,ξ0 . Since Φ2

λ,ξ0
“ idSnztξ0,Su, the function wλ,ξ0 is antisymmetric with respect to

Φλ,ξ0 . By the conformal invariance proved in Lemma 2, both u and uλ,ξ0 are weak

solutions of (4) and therefore the function wλ,ξ0 satisfies

Erϕ,wλ,ξ0s “
ż

Sn

ϕpξqhpξqwλ,ξ0pξq dξ for all ϕ P D (45)

with

hpξq :“

$

&

%

gpuλ,ξ0
pξqq´gpupξqq

uλ,ξ0
pξq´upξq

if uλ,ξ0pξq ‰ upξq ,
g1pupξqq if uλ,ξ0pξq “ upξq ,

and gpuq :“ Cnu lnu .

Convexity of g implies that

hpξqwλ,ξ0pξq ě g1pupξqqwλ,ξ0pξq if uλ,ξ0pξq ď upξq
and a simple computation shows that

hpξqwλ,ξ0pξq ě ´e´1 if uλ,ξ0pξq ě upξq .
Thus, setting

Σ´
λ,ξ0

:“ tη P Σλ,ξ0 : wλ,ξ0pηq ă 0u,
and

V pξq :“ ´g1pupξqq 1
Σ

´

λ,ξ0

pξq ` pewλ,ξ0pξqq´1
1

Σλ,ξ0
zΣ´

λ,ξ0

pξq ,
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we have hwλ,ξ0 ě ´V wλ,ξ0 on Σλ,ξ0 and, consequently,

Erϕ,wλ,ξ0s ` xϕ, V wλ,ξ0y ě 0 for all 0 ď ϕ P D with ϕ “ 0 on pΣλ,ξ0qc . (46)

The first step in the method of moving spheres is the following application of the small

volume maximum principle from Lemma 4.

Lemma 13 (Starting the sphere). Let ξ0 P SnztSu be fixed. Then for every λ ą 0

small enough, we have wλ,ξ0 ě 0 a.e. on Σλ,ξ0.

Proof. We will apply Lemma 4 with Ω “ Σ´
λ,ξ0

. As remarked before, wλ,ξ0 is antisym-

metric. Assumption (28) follows from (46) and Assumption (29) follows by definition

of Ω “ Σ´
λ,ξ0

. Finally,
ż

Ω

e2V´{Cn “ e2
ż

tuąe´1uXΣ
´

λ,ξ0

u2 ď e2
ż

Σ
´

λ,ξ0

u2 .

Since 1
Σ

´

λ,ξ0

Ñ 0 a.e. as λ Ñ 0 and u P L2pSnq, we deduce from dominated convergence

that
ż

Ω

e2V´{Cn ă |Sn| for all sufficiently small λ ą 0 .

Thus, Lemma 4 implies that wλ,ξ0 ě 0 a.e. on Σ´
λ,ξ0

, so |Σ´
λ,ξ0

| “ 0, which is the

assertion of the lemma. �

Due to Lemma 13, the ‘critical scale’ associated to ξ0,

λ0pξ0q :“ sup
 

λ ą 0 : wµ,ξ0pηq ě 0 for all 0 ă µ ă λ and almost every η P Σµ,ξ0

(

,

(47)

is well-defined with λ0pξ0q P p0,8s.

Proof of Theorem 12. We recall that ξ0 P SnztSu is fixed.

First, let us prove λ0pξ0q ă 8 by contradiction. Assuming that λ0pξ0q “ `8, we can

choose λi ą 0 with λi Ñ `8 and uλi,ξ0 ´ u “ wλi,ξ0 ě 0 a.e. on Σλi,ξ0. Integrating

over Σλi,ξ0 and changing variables, we obtain
ż

Σλi,ξ0

upηq2 dη ď
ż

Σλi,ξ0

Jλi,ξ0pηqupΦλi,ξ0ηq2 dη “
ż

SnzΣλi,ξ0

upηq2 dη ,

that is,
ż

SnzΣλi,ξ0

upηq2 dη ě 1

2

ż

Sn

upηq2 dη .

Since 1SnzΣλ,ξ0
Ñ 0 a.e. as λ Ñ 0 and u P L2pSnq, dominated convergence implies that

the left side tends to zero as i Ñ 8. This contradicts the assumption u ı 0. Thus,

we have shown that λ0 :“ λ0pξ0q ă 8.
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Next, we prove that wλ0,ξ0 ě 0 a.e. on Σλ0,ξ0. By continuity of the map λ ÞÑ wλ,ξ0 into

L2pSnq, we have, up to a subsequence, that wλ,ξ0 Ñ wλ0,ξ0 a.e. on Σλ0,ξ0 as λ Õ λ0
from below. Consequently, by the definition of λ0 we have wλ0,ξ0 ě 0 a.e. on Σλ0,ξ0.

Next, we claim that either wλ0,ξ0 ” 0 or wλ0,ξ0 ą 0 a.e. on Σλ0,ξ0. We will deduce

this from Lemma 5. Assumption (30) follows from (46) and we have already verified

assumption (31). Finally, V`wλ0,ξ0 ď e´1 is bounded. Therefore Lemma 5 is applicable

and yields the claimed dichotomy.

Finally, in order to show that wλ0,ξ0 ” 0, we argue by contradiction and assume that

wλ0,ξ0 ą 0 a.e. on Σλ0,ξ0. Similarly as in the proof of Lemma 13 we choose Ω “ Σ´
λ,ξ0

and bound, for λ ą λ0,
ż

Ω

e2V´{Cn ď e2
ż

Σλ0,ξ0
Xtwλ,ξ0

ă0u

u2 ` e2
ż

Σλ,ξ0
zΣλ0,ξ0

u2 .

Since wλ,ξ0 Ñ wλ0,ξ0 a.e. on Σλ0,ξ0 as λ Ñ λ0 and wλ0,ξ0 ą 0 a.e. on Σλ0,ξ0, we have

1twλ,ξ0
ă0u Ñ 0 a.e. on Σλ0,ξ0 as λ Ñ λ0. Moreover, clearly, 1Σλ,ξ0

zΣλ0,ξ0
Ñ 0 a.e. as

λ Œ λ0. By dominated convergence these facts, together with u P L2pSnq, imply that
ż

Ω

e2V´{Cn ă |Sn| for all sufficiently small λ ´ λ0 ą 0 .

The small volume maximum principle from Lemma 4 therefore implies that wλ,ξ0 ě 0

a.e. on Σλ,ξ0 for all sufficiently small λ ´ λ0 ą 0. This contradicts the definition of

λ0pξ0q from (47) and therefore proves that wλ0,ξ0 ” 0, as claimed. �

5. Proof of the main result

In this section we use the symmetry of u derived in Theorem 12 via the method of

moving spheres in order to deduce that u must be of the form claimed in Theorem 1.

This will be a consequence of the symmetry result of Li and Zhu [19] in the generalized

form stated in [11]. Actually, the theorem in [11] is for arbitrary finite measures, but

we shall only quote a version for the case of measures which are absolutely continuous

with respect to Lebesgue measure; see the remark after [11, Theorem 1.4].

Theorem 14 ([11, Theorem 1.4]). Let v P L2pRnq be nonnegative. Assume that for

any x0 P Rn there is a λ ą 0 such that

vpxq “ vIλ,x0 pxq for almost every x P R
n (48)

and for any e P Sn´1 there is an α P R such that

vpxq “ vRα,e
pxq for almost every x P R

n. (49)

Then there are a P Rn, b ą 0 and c ě 0 such that

vpxq “ c

ˆ

2b

b2 ` |x ´ a|2
˙n{2

. (50)
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We can now give the proof of our main result.

Proof of Theorem 1. From Theorem 12 we deduce immediately that the function v “
uS (in the notation of (15)) satisfies the assumptions of Theorem 14. Therefore, v is

of the form (50) for some a P Rn, b ą 0 and c ě 0. A computation shows that

upωq “ c

˜

a

1 ´ |ζ |2
1 ´ ζ ¨ ω

¸n{2

with a certain ζ P Rn`1 with |ζ | ă 1 which is given explicitly in terms of a and b; see

the discussion after (10). Thus, there is a conformal mapping Φ on Sn (corresponding

via stereographic projection to translation by a and dilation by b on Rn) such that

u “ cJ
1{2
Φ

“ c1Φ .

Here 1 is the function on S
n which is constant one and 1Φ refers to notation (15). By

equation (4) and its conformal invariance given in (17), we have

Cnu lnu “ Hu “ cH1Φ “ c
´

pH1qΦ ` Cn1Φ ln J
1{2
Φ

¯

“ Cnu ln
u

c
.

This implies c “ 1 and concludes the proof of the theorem. �
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