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Short proofs of some extremal results III

David Conlon∗ Jacob Fox† Benny Sudakov‡

Abstract

We prove a selection of results from different areas of extremal combinatorics, including complete

or partial solutions to a number of open problems. These results, coming mainly from extremal

graph theory and Ramsey theory, have been collected together because in each case the relevant

proofs are reasonably short.

1 Introduction

We study several questions from extremal combinatorics, a broad area of discrete mathematics which

deals with the problem of maximizing or minimizing the cardinality of a collection of finite objects

satisfying certain properties. The problems we consider come mainly from the areas of extremal graph

theory and Ramsey theory, though they also touch upon additive combinatorics and random graphs.

In many cases, they give complete or partial solutions to open problems posed by other researchers.

While each of the results in this paper is interesting in its own right, the proofs are all quite short.

Accordingly, in the spirit of Alon’s ‘Problems and results in extremal combinatorics’ papers [3, 4, 5]

and our own earlier papers [23, 25], we have combined them. We describe the results in brief below,

though we refer the reader to the relevant section for full details on each topic. Each section is intended

to be self-contained and may be read separately from all others.

In Section 2, we study the extremal problem of how sparse a graph must be to guarantee that there is

an independent set of order k whose vertices form an arithmetic progression and present applications

of our result to several questions in Ramsey theory. In Section 3, we answer a question of Mubayi [55]

about the interplay between the local and global counts of copies of the clique Kr in graphs with

at least the extremal number of edges. In Section 4, we study the distribution of edges in infinite

Ks,t-free graphs, solving a problem posed by Cilleruelo [17]. Section 5 contains a short study of the

concentration of Ramsey numbers of random graphs, while, in Section 6, we show that the Ramsey

multiplicity of a graph may change substantially when we increase the number of colors from two

to three. Finally, we partially answer a Ramsey problem of Füredi, Gyárfás and Simonyi [40] on

connected matchings in Section 7.

All logarithms are base 2 unless otherwise stated. For the sake of clarity of presentation, we system-

atically omit floor and ceiling signs whenever they are not crucial. We also do not make any serious

attempt to optimize absolute constants in our statements and proofs.
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2 Independent arithmetic progressions

A classical theorem of Turán [61] shows that any graph on n vertices with less than n(n−k+1)
2(k−1) edges

contains an independent set of order k. The celebrated Szemerédi’s theorem [59] states that for δ > 0,

k ∈ N, and n sufficiently large in terms of k and δ, any subset of [n] = {1, . . . , n} of order at least

δn contains a k-term arithmetic progression. Here we marry the themes of these results and deduce

as consequences bounds on three other well-studied problems on rainbow arithmetic progressions and

set mappings.

Given a graph with vertex set [n], a k-term arithmetic progression is said to be independent if it is

an independent set in the graph. Our main result is a Turán-type theorem, showing that any sparse

graph on vertex set [n] contains an independent arithmetic progression. Before proving this result, we

need a standard estimate from number theory. Note that all logs will be taken to base e.

Lemma 2.1 There is a positive constant η such that, for all n ≥ η−1k log k, the number of integers

from [n] which are relatively prime to 1, 2, . . . , k is at least ηn/ log k.

Proof: Writing Φ(x, y) for the number of integers less than or equal to x all of whose prime factors

are greater than y, a result of Buchstab (see Section 7.2 of [54]) says that

Φ(x, y) =
w(u)x

log y
− y

log y
+O

(

x

log2 x

)

,

where u is defined by y = x1/u and w(u) is the Buchstab function, equal to 1/u for 1 < u ≤ 2 and

asymptotic to e−γ , with γ the Euler–Mascheroni constant, as u tends to infinity. For k sufficiently

large, say k ≥ k0, and n ≥ k log k, the required estimate with η = 1/10 easily follows by applying

this result with x = n and y = k. For k < k0, the estimate follows by choosing η such that η−1 ≥
max(20 log k0, k0 log k0). Then n ≥ k0 log k0, so that Φ(n, k) ≥ Φ(n, k0) ≥ n/10 log k0 ≥ ηn/ log k. ✷

Our main result, which is tight up to the logarithmic factor, is now as follows.

Theorem 2.2 There is a positive constant ε such that any graph G on [n] with fewer than ε n2

k2 log k

edges contains a k-term independent arithmetic progression.

Proof: We split into two cases, depending on the size of n. For n ≥ 2η−1k2 log k, where η is as in

Lemma 2.1, we consider the set of integers X which are relatively prime to 1, 2, . . . , k and let A be

the set of k-term arithmetic progressions in [n] whose difference is in X. We can form an arithmetic

progression in A by choosing the first term from [n/2] and the common difference from X ∩ [n/2k].

Therefore, since n/2k ≥ η−1k log k, Lemma 2.1 applies to show that |A| ≥ ηn2/4k log k. Each pair of

integers are in arithmetic progressions with at most one common difference in X and, hence, are in

at most k − 1 arithmetic progressions in A. Thus, the number of arithmetic progressions in A which

contain an edge of G is at most e(G)k. Taking ε < η/8, we have that e(G)k < ε n2

k log k < |A|, so there

is an arithmetic progression in A which forms an independent set.

For the second case, when n < 2η−1k2 log k, we let B be the set of k-term arithmetic progressions in [n]

whose difference is a prime. By the same argument as in the previous case, the number of arithmetic
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progressions in B which contain an edge of G is at most e(G)k < ε n2

k log k . On the other hand, the

number of progressions in B is at least π(n/2k)n/2, where π(x) is the prime counting function. Since

there exist positive constants a and C such that π(x) > a x
log x and 2η−1k2 log k < kC , we have that

π(n/2k)n/2 > a
4C

n2

k log k . Therefore, for ε < a/(4C), there is an independent arithmetic progression. ✷

In a coloring of [n], an arithmetic progression is rainbow if its elements are all different colors. The

sub-Ramsey number sr(m,k) is the minimum n such that every coloring of [n] in which no color is used

more than m times has a rainbow k-term arithmetic progression. Alon, Caro, and Tuza [6] proved

that there are constants c, c′ > 0 such that

c′
mk2

logmk
≤ sr(m,k) ≤ cmk2 log(mk).

They also showed that there is an upper bound on sr(m,k) which is linear in m but with a worse

dependence on k, namely, sr(m,k) ≤ cmk3. The lower bound was later improved by Fox, Jungić, and

Radoičić [34] to sr(m,k) ≥ c′mk2. Here we improve on the upper bound of Alon, Caro, and Tuza [6].

Corollary 2.3 There is a constant c such that the sub-Ramsey number satisfies

sr(m,k) ≤ cmk2 log k.

Proof: Consider a coloring of [n] with n = ε−1mk2 log k, with ε as in Theorem 2.2, where no color

appears more than m times. Define a graph on [n] where two integers are adjacent if they receive the

same color. The graph consists of a disjoint union of cliques of order at most m. Since the maximum

of
∑

i

(xi
2

)

under the constraint
∑

i xi = n occurs when each term is as large as possible, the number of

edges in this graph is at most n
m

(m
2

)

< nm
2 . Therefore, by our choice of n, the number of edges is such

that Theorem 2.2 applies to give an independent k-term arithmetic progression, which is a rainbow

arithmetic progression in our coloring of [n]. ✷

Let Tk denote the smallest positive integer t such that for every positive integer m, every equinumerous

t-coloring of [tm] contains a rainbow k-term arithmetic progression. Jungić et al. [46] proved that there

are positive constants c, c′ such that

c′k2 ≤ Tk ≤ ck3.

They conjectured that the lower bound is correct, that is, Tk = Θ(k2), a problem which was reiterated

in the survey [47]. Here we make progress on this conjecture, improving the upper bound to ck2 log k.

Note that an equinumerous t-coloring of [tm] uses each color exactly m times, so Tk is at most the

maximum of sr(m,k)/m over all positive integers m. Hence, by Corollary 2.3, we obtain the following

corollary.

Corollary 2.4 There is a constant c such that

Tk ≤ ck2 log k.

Motivated by the set mapping problem of Erdős and Hajnal, Caro [16] proved that for every positive

integer k, there is a minimum integer n0 = n0(k) such that, for all n ≥ n0 and every permutation
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π : [n] → [n], there is a k-term arithmetic progression A such that π(i) 6∈ A for all i ∈ A. Moreover,

he showed that there are constants c, c′ > 0 such that c′k2/ log k ≤ n0(k) ≤ k22c log k/ log log k. Alon et

al. [6] used the same methods they had used to bound sr(m,k) to improve the earlier upper bound to

n0(k) ≤ ck2 log k. Our result gives a simple alternative proof of this.

Corollary 2.5 There is a constant c such that

n0(k) ≤ ck2 log k.

Proof: Consider the graph on [n] with edges (i, π(i)) for i ∈ [n]. This graph has at most n edges.

By choosing c large enough, we can make the number of edges such that Theorem 2.2 applies to give

an independent arithmetic progression in this graph. This arithmetic progression has the required

property. ✷

3 Joints and cliques

Let tr(n) denote the number of edges in the balanced complete r-partite graph Tn,r with n vertices (so

parts differ in size by at most one). Turán’s theorem [61] says that the maximum possible number of

edges in a Kr+1-free graph on n vertices is tr(n), with equality if and only if the graph is Tn,r. Hence,

a graph on n vertices with at least tr(n) edges which is not Tn,r must have at least one Kr+1. Must

it have many (r + 1)-cliques? Must there be an edge in many (r + 1)-cliques? Questions of this sort

have been studied since the early days of extremal graph theory.

Rademacher, in unpublished work from 1950, proved that every graph on n vertices with t2(n) + 1

edges contains at least ⌊n/2⌋ triangles, which is tight by adding an edge in a largest part of a balanced

complete bipartite graph. Erdős [28] extended this to graphs with a linear number of added edges

and in [29] proved an analogous result for larger cliques. The general Erdős–Rademacher problem, to

determine how many copies of Kr+1 must be in every graph on n vertices with m edges, has a long

and rich history (see, for instance, the recent paper [51] and its references).

An r-joint is a collection of copies of Kr in a graph that share a common edge. The joint number

jr(G) is the size of the largest r-joint in a graph G. Erdős [28] proved that every graph G on n

vertices with more than t2(n) edges satisfies j3(G) ≥ n/6−O(1) and conjectured that the O(1) term

can be removed. This conjecture, which is tight, was later proved by Edwards and, independently,

Khadžiivanov and Nikiforov [49]. For r > 2, the minimum value of jr+1(G) over all graphs G on n

vertices with more than tr(n) edges is not well understood. Progress on this problem was made by

Erdős [30] in 1969 and, more recently, by Bollobás and Nikiforov (see [11, 12, 13]).

Mubayi introduced and studied a natural problem which looks at the interplay between the two

questions above. Namely, how many triangles must be in every n-vertex graph G with more than

t2(n) edges if no edge is in more than j triangles? Denote this number by t(n, j). Mubayi [55] showed

that t(n, j) jumps from quadratic to cubic in n when j goes below the threshold n/4. In [26], we studied

this problem in more detail and proposed a precise conjecture that states that if n/6 ≤ j ≤ n/4, then

every graph on n vertices with at least ⌊n2/4⌋ edges and no edge in more than j triangles which is

not the Turán graph Tn,2 has at least j2(n − 4j) triangles. Moreover, we conjectured that equality
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holds if and only if the graph is Sj,n, a blow-up of the 3-prism graph, the graph on six vertices which

consists of two disjoint triangles with a perfect matching between them, with the parts corresponding

to one of the matching edges of size ⌊(n − 4j)/2⌋ and ⌈(n− 4j)/2⌉ and the other four parts of size j.

We proved this conjecture at the two extremes, if j = n/6 or if .2495n ≤ j ≤ n/4.

Here we consider the generalization of Mubayi’s problem to larger cliques. This question was raised

by Mubayi [55] and again recently by the authors [26]. Let t(n, j, r) be the minimum number of

copies of Kr in every graph G with n vertices, more than tr−1(n) edges and jr(G) ≤ j. Extending

Mubayi’s result, we prove that t(n, j, r + 1) has a phase transition from Θ(nr) to Θ(nr+1) when

j ≈
(

r−1
r2

)r−1
nr−1.

Theorem 3.1 For each integer r ≥ 2 and η > 0, there is δ > 0 such that the following holds. Let G

be a graph on n vertices with at least tr(n) edges. Then either G is the Turán graph Tn,r or G has at

least δnr+1 copies of Kr+1 or G has an edge in at least (1− η)
(

r−1
r2

)r−1
nr−1 copies of Kr+1.

A weaker result on this problem was proved earlier by Allen et al. ([2], Lemma 8), who used it to

study Turán-type problems in random hypergraphs.

To see that the bound on the joint number in Theorem 3.1 is asymptotically tight, consider a graph

G = Gn,r on n vertices with vertex partition V (G) = V0 ∪ V1 ∪ . . . ∪ Vr, where V0 = {v} consists of a

single vertex, all other parts are of size ⌊n−1
r ⌋ or ⌈n−1

r ⌉, there is a complete bipartite graph between Vi

and Vj for all 1 ≤ i < j ≤ r and v is adjacent to ⌊ r−1
r2 (n− 1)⌋ or ⌈ r−1

r2 (n− 1)⌉ vertices in each part so

that the total number of edges is tr(n). For simplicity of the analysis, assume n ≡ 1 (mod r2), so the

number of copies of Kr+1 in G is
(

r−1
r2

)r
(n−1)r and the joint number is jr+1(G) =

(

r−1
r2

)r−1
(n−1)r−1.

Observe that one can add o(n) additional edges from v to get more than tr(n) edges, while the number

of copies of Kr+1 and the joint number jr+1(G) will be asymptotically unchanged.

More generally, we can define graphs G = Gn,r(s) for which Gn,r is the case s = 1 and such that as

we increase s from 1, the joint number jr+1(G) decreases, but the number of copies of Kr+1 increases.

It also generalizes the construction that is conjectured by the authors in [26] to be tight for r = 2

and may give an asymptotically tight bound for general r. The graph G has n vertices and a vertex

partition into r+1 parts V0, V1, . . . , Vr, with V0 of size s and all the other parts of size ⌊n−s
r ⌋ or ⌈n−s

r ⌉.
Each Vi for 0 ≤ i ≤ r has an equitable partition into r parts, Vi = Vi,1 ∪ · · · ∪ Vi,r. The induced

subgraph of G on V (G) \ V0 is complete r-partite with parts V1, . . . , Vr. The induced subgraph of G

on V0 is a balanced complete r-partite graph with parts V0,1, V0,2, . . . , V0,r. For 1 ≤ i ≤ r, we have V0,j

complete to Vi,j′ if j 6= j′ and otherwise V0,j empty to Vi,j.

To prove Theorem 3.1 we need several lemmas. The first one is the celebrated graph removal lemma,

which shows that if a graph has relatively few copies of a graph H, then it can be made H-free by

removing a relatively small number of edges. This lemma was already used by Mubayi, who also

remarked that it can be applied to study the case of larger cliques.

Lemma 3.2 (Graph Removal Lemma) For each ǫ > 0 and graph H on k vertices, there is δ > 0

such that every graph with n vertices and at most δnk copies of H can be made H-free by removing at

most ǫn2 edges.

We will also use the following stability result of Füredi.
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Lemma 3.3 (Füredi [39]) Any Kr+1-free graph on n vertices with tr(n) − m edges can be made

r-partite by removing at most m edges.

We have the following corollary of Lemmas 3.2 and 3.3 (replacing ǫ by ǫ/2 in the application of the

graph removal lemma, Lemma 3.2). It gives a stability version of Turán’s theorem, showing that any

graph for which the number of edges is at least the extremal number for a clique Kr+1 either contains

many Kr+1 or is close to being r-partite.

Corollary 3.4 For each ǫ > 0 and positive integer r, there is δ > 0 such that if a graph on n vertices

with at least tr(n) edges has at most δnr+1 copies of Kr+1, then it can be made r-partite by removing

at most ǫn2 edges.

The proof of Corollary 3.4 described above gives a poor bound for δ in terms of ǫ due to the application

of the graph removal lemma. Alternative proofs with a much better, polynomial dependence are known,

such as by using the Moon–Moser inequalities (see, e.g., Section 4.3 of Shapira’s lecture notes [57]) or

through a sampling argument.

We will also make repeated use of the following lemma, which says that if you decrease the sum of

some positive numbers by a small amount and do not increase any of the numbers, then, to minimize

the product of the numbers, only the smallest of the numbers should be decreased.

Lemma 3.5 Suppose 0 ≤ x1 ≤ x2 ≤ . . . ≤ xs and 0 ≤ yi ≤ xi for 1 ≤ i ≤ s. If α :=
∑s

i=1(xi − yi),

then
∏s

i=1 yi ≥ (x1 − α)
∏s

i=2 xi.

Proof: As the derivative of
∏s

i=1 xi with respect to xi is the product of the other variables, the

derivative is maximized when i = 1. To minimize the product, we should thus delete as much from x1
as possible, establishing the lemma. ✷

The next lemma shows that, for a graph G on n vertices with at least tr(n) edges, if in addition to

assuming G has few copies of Kr+1, we also assume no edge is in too many Kr+1, then there is an

almost spanning r-partite induced subgraph which is nearly balanced and nearly complete.

Lemma 3.6 For each ǫ > 0 and positive integer r, there is δ > 0 such that if a graph G on n vertices

with at least tr(n) edges has at most δnr+1 copies of Kr+1 and each edge is in at most (1− c)
(

n
r

)r−1

copies of Kr+1 where c = 2(r2 + r)ǫ1/2, then there is a set S of at most ǫ1/2n vertices whose deletion

makes the remaining induced subgraph r-partite with each part of size at most n
r +2ǫ1/2n and at most

ǫn2 missing edges between the parts.

Proof: Let δ be as in Corollary 3.4 or ǫr+1, whichever is smaller. If ǫ < 1/n, then from the assumption

of the lemma, the graph G has at most δnr+1 < 1 copies of Kr+1 and hence is Kr+1-free and, therefore,

must be the Turán graph. We could then take S to be the empty set. So we may assume ǫ ≥ 1/n.

By Corollary 3.4, G has a subgraph G′ formed by removing at most ǫn2 edges which is r-partite. Let

U1, . . . , Ur be the r parts. Since the number of possible edges across the r parts is at most tr(n), there

are at most ǫn2 nonadjacent pairs of vertices across the parts.
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Let c′ = 2
√
ǫ. Call a vertex v ∈ Ui of G normal if it is adjacent to all but at most c′n vertices in

V (G)\Ui and abnormal otherwise. So the total number of abnormal vertices is at most 2 · ǫn2/(c′n) =
(2ǫ/c′)n = ǫ1/2n. Let S be the set of abnormal vertices, so that U ′

i := Ui \ S is the set of normal

vertices in Ui. It suffices now to prove that each U ′
i is an independent set (the fact that it has the

correct size will fall out in the next paragraph as a byproduct of our argument).

Suppose for the sake of contradiction that there is an adjacent pair u, v ∈ U ′
i for some i. Then u, v are

adjacent to all but at most 2c′n vertices not in Ui. We have
∣

∣|Uj | − n
r

∣

∣ ≤ 2
√
ǫn for each j, as otherwise

the total number of edges of G is at most

ǫn2 +

(

n

2

)

−
r
∑

j=1

(|Uj |
2

)

=

(

1

2
− 1

2r
+ ǫ

)

n2 − 1

2

r
∑

j=1

(

|Uj| −
n

r

)2
<

(

1

2
− 1

2r
− ǫ

)

n2

≤ r − 1

2r
n2 − n < tr(n),

contradicting that G has at least tr(n) edges. The last inequality giving a lower bound on the num-

ber of edges of the balanced complete r-partite graph on n vertices follows from a straightforward

computation.

We next provide a lower bound on the number of Kr+1 that (u, v) is in by giving a lower bound on the

number of such cliques with one vertex in each Uj with j 6= i. If these r−1 vertex subsets were complete

to each other, we would get
∏

j 6=i |Uj ∩N(u) ∩N(v)| such cliques. Using that
∣

∣|Uj | − n
r

∣

∣ ≤ 2
√
ǫn for

each j and
∑

j 6=i

|Uj ∩N(u) ∩N(v)| ≥
∑

j 6=i

|Uj | − 2c′n =
∑

j 6=i

|Uj | − 4
√
ǫn,

this product is at least

(n

r
− 6

√
ǫn
)

·
(n

r
− 2

√
ǫn
)r−2

, (1)

which follows from Lemma 3.5 by taking s = r − 1, xj = |Uj | and yj = |Uj ∩ N(u) ∩ N(v)| and
relabeling so that the labels are 1, . . . , r − 1 and the xj are in increasing order.

Relabel again so that y1, . . . , yr−1 are in increasing order. For each pair of vertices, one in some

Uj ∩N(u) ∩N(v) and the other in Uj′ ∩N(u) ∩N(v), the number of (r − 1)-tuples they are in with

one vertex in each Uℓ ∩N(u) ∩N(v) with ℓ 6= i, j, j′ is
∏

ℓ 6=i,j,j′ |Uℓ ∩N(u) ∩N(v)| =∏ℓ 6=i,j,j′ yℓ. Let

m denote the number of nonadjacent pairs of vertices with one vertex in some Uj ∩N(u) ∩N(v) and

the other in some Uj′ ∩N(u) ∩N(v) with j, j′, i distinct. So m ≤ ǫn2.

Summing over all m nonadjacent pairs with vertices in different parts, the number of (r − 1)-tuples

with one vertex in each Uℓ ∩N(u)∩N(v) with ℓ 6= i which is not a clique is at most m
∏r−1

j=3 yj. Thus,

the number of cliques Kr+1 that (u, v) is in with one vertex in each Uj with j 6= i is at least

(y1y2 −m)
r−1
∏

ℓ=3

yℓ =

(

1− m

y1y2

) r−1
∏

ℓ=1

yℓ ≥
(

1− m

y1y2

)

(n

r
− 6

√
ǫn
)(n

r
− 2

√
ǫn
)r−2

≥
((n

r
− 6

√
ǫn
)(n

r
− 2

√
ǫn
)

−m
)

·
(n

r
− 2

√
ǫn
)r−3

,

where the first inequality is by (1) and the second inequaity uses y1y2 ≥
(

n
r − 6

√
ǫn
) (

n
r − 2

√
ǫn
)

.
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This lower bound on the number of Kr+1 containing the pair u, v is more than

(

1− 2(r2 + r)
√
ǫ
)

(n

r

)r−1
= (1− c)

(n

r

)r−1
,

contradicting the assumption of the lemma and completing the proof. ✷

We will also use a few simple inequalities involving real numbers in [0, 1].

Lemma 3.7 Suppose 0 ≤ a1 ≤ a2 ≤ . . . ≤ ar ≤ 1 and
∑

i ai ≥ r − 1. Then
∏r

i=2 ai ≥
(

r−1
r

)r−1
with

equality if and only if all ai are equal to (r − 1)/r.

Proof: By scaling each ai by a factor (r−1)/
∑r

i=1 ai, we may assume
∑r

i=1 ai = r−1. By averaging,

we must have a1 ≤ (r − 1)/r < 1. If a1 = 0, then a2 = a3 = . . . = ar, in which case
∏r

i=2 ai = 1.

Hence, we may assume 0 < a1 < 1.

Thus, there is a positive integer j ≤ r − 1 such that j−1
j < a1 ≤ j

j+1 . Fixing a1, by concavity of the

function x(C − x) for any fixed C, the product
∏r

i=2 ai is minimized when a1 = a2 = · · · = aj and

ai = 1 for i > j + 1, in which case aj+1 = j(1 − a1) and
∏r

i=2 ai = aj−1
1 j(1 − a1). The derivative of

this function with respect to a1 is negative in this range and hence the function is minimized when

a1 =
j

j+1 , in which case
∏r

i=2 ai =
(

j
j+1

)j
. This is a decreasing function of j, so it is minimized when

j = r − 1 and we get
∏r

i=2 ai ≥
(

r−1
r

)r−1
. ✷

We have the following corollary.

Corollary 3.8 Suppose 0 ≤ a1 ≤ a2 ≤ . . . ≤ ar ≤ 1 and
∑

i ai ≥ r − 1. Suppose 0 ≤ bi ≤ ai for

1 ≤ i ≤ r and α :=
∑r

i=1(ai − bi) ≤ 1/4. Then
∏r

i=2 bi ≥ (1− 2α)
(

r−1
r

)r−1
.

Proof: As
∑

i ai ≥ r − 1, a1 ≤ a2 and each ai ≤ 1, it follows that a2 ≥ 1/2. As α ≤ 1/4, we have

a2 − α ≥ (1 − 2α)a2. We have
∏r

i=2 bi ≥ (a2 − α)
∏

i≥3 ai ≥ (1 − 2α)
∏

i≥2 ai ≥ (1 − 2α)
(

r−1
r

)r−1
,

where the first inequality is by Lemma 3.5 and the last inequality is by the previous lemma. ✷

Proof of Theorem 3.1: We may suppose r ≥ 3 since the case r = 2 is handled in [26] and [55]. Let

ǫ =
( η
20r2

)2
(so η = 20r2ǫ1/2) and let δ = δ(r, ǫ) be a constant satisfying the assertion of Lemma 3.6. If

G has at least δnr+1 copies of Kr+1 or an edge contained in at least
(

1− 2(r2 + r)ǫ1/2
) (

n
r

)r−1
copies

of Kr+1, then we are done. Otherwise, by Lemma 3.6, we may assume that G has a vertex partition

V (G) = S ∪ V1 ∪ . . . ∪ Vr where |S| ≤ ǫ1/2n, each Vi is an independent set with |Vi| ≤ n
r + 2ǫ1/2n and

there are at most ǫn2 missing edges between (but not inside) the parts V1, . . . , Vr.

If there is i ∈ [r] and a vertex in S not adjacent to any vertex in Vi, then move this vertex from S to

Vi. Letting V1 be the part of minimum order, if there is a vertex v in S of degree less than
∑r

i=2 |Vi|,
then we move v to V1 and replace its neighborhood by

⋃r
i=2 Vi. This increases the number of edges

while guaranteeing that v participates in zero copies of Kr+1, but also maintains the conditions of the

lemma and partition (aside from possibly increasing the order of V1). If there is a vertex u in some

Vi nonadjacent to more than |S| vertices in
⋃

j 6=i Vj , then we can delete its edges to S and make it

complete to
⋃

j 6=i Vj . This increases the number of edges while guaranteeing that u is not in any copy

of Kr+1 and again maintains the conditions of the lemma and partition.
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We repeat the above operations until no such vertex remains. We arrive at a graph (which we again

call G) on n vertices with at least tr(n) edges and a vertex partition V (G) = S ∪ V1 ∪ . . . ∪ Vr (which

we relabel if necessary) satisfying

• |V1| ≤ |V2| ≤ · · · ≤ |Vr|, each Vi is an independent set and has size at most n
r + 3ǫ1/2n .

• |S| ≤ ǫ1/2n, each vertex in S has a neighbor in every Vi and has degree at least
∑r

i=2 |Vi|.

• Each vertex in Vi for i ∈ [r] is adjacent to all but at most |S| vertices in
⋃

j 6=i Vj and there are

at most ǫn2 missing edges between (but not inside) the parts V1, . . . , Vr.

If S is empty, then G is r-partite and, since it has at least tr(n) edges, G must be the balanced

complete r-partite graph. So we can assume S is nonempty.

Since S is nonempty, there is a vertex v ∈ S which has a neighbor in each Vi. Let i0 be such

that |N(v) ∩ Vi0 | is minimum and let w ∈ N(v) ∩ Vi0 . We claim that the edge (v,w) is in at least

(1 − β)
((

r−1
r2

)

n
)r−1

copies of Kr+1. Indeed, as discussed above, w is adjacent to all but at most |S|
vertices in

⋃

i 6=i0
Vi. The number of vertices in

⋃

i Vi the vertex v is adjacent to is at least

∑

i≥2

|Vi| − |S| ≥
(

1− 1

r

)

(n− |S|)− |S| ≥
(

1− 1

r

)

n− 2|S|.

Let ai = |N(v) ∩ Vi|/|Vr|, so 0 < ai ≤ 1 for each i and ai0 is the minimum ai. Observe that

|Vr|
∑

i

ai ≥
(

1− 1

r
− 2ǫ1/2

)

n ≥
(

1− 1

r
− 2ǫ1/2

)

|Vr|/
(

1

r
+ 3ǫ1/2

)

≥
(

r − 1− 4r2ǫ1/2
)

|Vr|.

Let bi = |N(v) ∩N(w) ∩ Vi|/|Vr| for i 6= i0 and bi0 = ai0 , so
∑

i

bi ≥
∑

i

ai − |S|/|Vr| ≥
∑

i

ai − r|S|/(n − |S|) ≥
∑

i

ai − 2rǫ1/2.

By possibly increasing some of the ai, keeping their order and keeping each at most 1, we can guarantee

that their sum is increased by at most 4r2ǫ1/2 and is at least r − 1. Then the difference between the

sum of the new ai and the sum of the bi is at most 2rǫ1/2 + 4r2ǫ1/2 ≤ 5r2ǫ1/2 =: α. Hence, it follows

from Corollary 3.8 that
∏

i 6=i0
bi ≥ (1− 2α)

(

r−1
r

)r−1
. For i 6= i0, let Ai = N(v) ∩N(w) ∩ Vi, so the

r − 1 parts Ai with i 6= i0 form a complete (r − 1)-partite subgraph apart from at most ǫn2 missing

edges. We have

∏

i 6=i0

|Ai| =
∏

i 6=i0

bi|Vr| = |Vr|r−1
∏

i 6=i0

bi ≥ |Vr|r−1 (1− 2α)

(

r − 1

r

)r−1

.

Each copy of Kr−1 with one vertex in each Ai with i 6= i0 together with v,w forms a copy of Kr+1

containing the edge (v,w). If the (r− 1)-partite graph between the Ai with i 6= i0 was complete, then

we would have that v,w are in at least (1− 2α)
(

r−1
r

)r−1 |Vr|r−1 copies of Kr+1.

If r = 3, each missing edge between different Ai with i 6= i0 decreases the total count ofKr+1 containing

(v,w) by one. Thus, if r = 3, we have that v,w extend to at least

(1− 2α)

(

2

3

)2

|Vr|2 − ǫn2 ≥ (1− 2α)

(

2

3

)2(n− |S|
3

)2

− ǫn2 ≥
(

1− 100ǫ1/2
) 4

81
n2
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copies of K4.

If r > 3, as |Ai| ≤ |Vi| ≤ |Vr|, each missing edge between different Ai with i 6= i0 decreases the total

count of Kr+1 containing the edge (v,w) by at most |Vr|r−3. Since there are at most ǫn2 such missing

edges, the total count of Kr+1 containing the edge (v,w) is at least

(1− 2α)

(

r − 1

r

)r−1

|Vr|r−1 − ǫn2 · |Vr|r−3 =

(

(1− 2α)

(

r − 1

r

)r−1

− ǫn2

|Vr|2

)

|Vr|r−1

≥
(

(1− 2α)

(

r − 1

r

)r−1

− ǫr2n2

(n− |S|)2

)

|Vr|r−1

≥ (1− 3α)

(

r − 1

r

)r−1

|Vr|r−1

≥ (1− 3α)

(

r − 1

r

)r−1

r1−r(n− |S|)r−1

≥ (1− 20r2ǫ1/2)(r − 1)r−1r2−2rnr−1,

completing the proof. ✷

4 Infinite Ks,t-free graphs

A Sidon set is an infinite set of natural numbers such that there are no non-trivial solutions to the

equation a + b = c + d. It is well known that there are Sidon sets S for which the intersection of S

with {1, 2, . . . , n} is of order (1+ o(1))
√
n. However, a result of Erdős (see [44, Chapter II, §3]) shows

that, for any fixed Sidon set S,

lim inf
n→∞

|S ∩ {1, 2, . . . , n}|
√

n/ log n
< ∞,

where we will take log to be the natural logarithm for the remainder of this section. On the other

hand, a remarkable construction due to Ruzsa [56] shows that there are Sidon sets S such that

|S ∩ {1, 2, . . . , n}| ≥ n
√
2−1+o(1) for all n.

In graphs, the natural analogue of a Sidon set is a C4-free graph. However, it is easy to construct

C4-free graphs on vertex set N such that the induced subgraph on {1, 2, . . . , n} has Ω(n3/2) edges for

all n. For example, one may take the ordered disjoint union of a sequence of C4-free graphs, with

the kth graph having nk = 2k vertices and Ω(n
3/2
k ) edges. But if one changes the question to demand

that the minimum degree of the induced subgraph on {1, 2, . . . , n} is always large, the problem again

becomes a difficult one.

By modifying Ruzsa’s construction, Cilleruelo [17] was able to show that there are graphs G on N

for which the minimum degree of the induced subgraph Gn on {1, 2, . . . , n} is at least n
√
2−1+o(1).

However, it was left open to determine whether lim infn→∞ δ(Gn)/
√
n = 0 for all infinite countable

C4-free graphs G. We answer this question by proving a graph-theoretic analogue of Erdős’ result,

saying that if G is a C4-free graph on N, then

lim inf
n→∞

δ(Gn)
√

n/ log n
< ∞.
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In fact, we will prove a more general result, which applies to Ks,t-free graphs for any 2 ≤ s ≤ t.

Here it is known [53] that if t is sufficiently large compared to s, then there are Ks,t-free graphs on

n vertices with Ω(n2−1/s) edges and this can again be lifted to show that there are graphs on N such

that the induced subgraph on {1, 2, . . . , n} has Ω(n2−1/s) edges for all n. Our result says that one

cannot guarantee that the minimum degree of these induced subgraphs is Ω(n1−1/s) for all n.

Theorem 4.1 Suppose that 2 ≤ s ≤ t and G is a Ks,t-free graph on N. Then

lim inf
n→∞

δ(Gn)

n1−1/s/(log n)1/s
< ∞,

where Gn denotes the induced subgraph of G on {1, 2, . . . , n}.

Proof: Fix a large integer n and, for each natural number ℓ, let Iℓ = ((ℓ−1)n, ℓn] and Jℓ =
⋃ℓ

j=1 Ij =

[1, ℓn]. Our aim will be to show that for some ℓ ≤ n, there exists a vertex v ∈ I1 whose degree in Jℓ is

less than 16t1/ss|Jℓ|1−1/s/(log n)1/s. For the sake of contradiction, we will assume that this is not the

case.

For each ℓ, let Eℓ denote the number of edges between I1 and Iℓ (for ℓ = 1, this counts all edges in

the graph induced on I1 twice) and let Fℓ =
∑ℓ

j=1Ej . For each vertex v, let dv be the number of

neighbors of v in I1. Note that
∑

v∈Jn

(

dv
s

)

≤ (t− 1)

(

n

s

)

.

Otherwise, there would be s vertices in I1 whose joint neighborhood contained at least t elements,

thus forming a Ks,t. By convexity, we have

∑

v∈Ij

(

dv
s

)

≥ n

(

Ej/n

s

)

=
Ej(Ej − n) · · · (Ej − (s− 1)n)

s!ns−1

and, therefore,

n
∑

j=1

[Ej(Ej − n) · · · (Ej − (s− 1)n)]+
s!ns−1

≤
∑

v∈Jn

(

dv
s

)

≤ (t− 1)

(

n

s

)

,

where x+ = max{0, x}. If Ej ≥ sn, we have Ej(Ej − n) · · · (Ej − (s− 1)n) ≥ s!Es
j/s

s. Thus,

n
∑

j=1

Es
j ≤

∑

{j:Ej<sn}
(sn)s +

∑

{j:Ej≥sn}
Es

j ≤ ssns+1 +
ss

s!

n
∑

j=1

[Ej(Ej − n) · · · (Ej − (s− 1)n)]+ ≤ tssn2s−1.

By Hölder’s inequality,

n
∑

j=1

Ej

j(s−1)/s
≤





n
∑

j=1

Es
j





1/s



n
∑

j=1

1

j





(s−1)/s

< 2t1/ssn2−1/s(log n)(s−1)/s.

On the other hand,

n
∑

j=1

Ej

j(s−1)/s
=

n
∑

j=1

Fj − Fj−1

j(s−1)/s
=

n−1
∑

j=1

Fj

(

1

j(s−1)/s
− 1

(j + 1)(s−1)/s

)

+
Fn

n(s−1)/s
≥

n−1
∑

j=1

Fj

2(j + 1)2−1/s
,

11



where we used that

(j + 1)(s−1)/s − j(s−1)/s = j(s−1)/s

(

(

1 +
1

j

)(s−1)/s

− 1

)

≥ j(s−1)/s

(

1 +
s− 1

sj
− 1

)

≥ 1

2j1/s
.

Since we are assuming that every vertex in I1 has degree at least 16t1/ss|Jj |1−1/s/(log n)1/s in Jj and

|I1| = n and |Jj | = jn, this implies that

n
∑

j=1

Ej

j(s−1)/s
≥

n−1
∑

j=1

Fj

2(j + 1)2−1/s
≥

n−1
∑

j=1

n · 16t1/ss(jn)1−1/s/(log n)1/s

2(j + 1)2−1/s
≥ 16t1/ssn2−1/s

(log n)1/s

n−1
∑

j=1

j1−1/s

2(j + 1)2−1/s

≥ 4t1/ssn2−1/s

(log n)1/s

n−1
∑

j=1

1

j + 1
≥ 2t1/ssn2−1/s(log n)(s−1)/s.

But this is a contradiction, completing the proof. ✷

A natural generalization of this problem is to consider what happens for infinite H-free graphs when

H is a fixed bipartite graph. Given a bipartite graph H whose Turán number ex(n,H) is Θ(n1+α), it

is reasonable to ask whether, for any infinite H-free graph G,

lim inf
n→∞

δ(Gn)

nα
= 0.

Our result proves that this is the case when H = Ks,t. It would be interesting to find other examples

of bipartite graphs H where it holds. For instance, a particular case where we believe that the limit

should be zero is when H = C2k for k ≥ 3. In the other direction, it would be interesting to find

examples of bipartite graphs where the limit above is constant.

5 Concentration for Ramsey numbers of random graphs

The Ramsey number r(H) of a graph H is the smallest natural number n such that any two-coloring

of the edges of Kn contains a monochromatic copy of H. Our interest here will be in the behavior of

this function for random graphs. That is, what can we say about the Ramsey number of the binomial

random graph Gn,p, where each edge in an n-vertex graph is chosen independently with probability

p? While the Ramsey properties of random graphs have been studied in great detail (see [21] and

its references), the problem of estimating Ramsey numbers of random graphs themselves has received

surprisingly scant attention (though see [20, 37] for some results). Our main result here is to show that

these Ramsey numbers are well concentrated, reducing the problem, at least in first approximation,

to the study of E(log r(Gn,p)).

Theorem 5.1 For any p := p(n),

P[| log r(Gn,p)− E(log r(Gn,p))| = ω(
√
n log n)] = o(1).

That is, there exists a function f(n, p) such that r(Gn,p) = 2f(n,p)±ω(
√
n logn) with high probability.

A reasonable conjecture is that f(n, p) = c(p)n for some function c(p), perhaps even linear in p, but

proving this seems well beyond current methods.

The proof of Theorem 5.1 relies on the following simple lemma. Note that we write v(H) for the

number of vertices in H.

12



Lemma 5.2 For any graph H and any graph H ′ obtained from H by removing a single vertex,

r(H ′) ≤ r(H) ≤ 2v(H ′)r(H ′).

Proof: Suppose that we have a complete graph with 2v(H ′)r(H ′) vertices whose edges have been

colored red and blue. Fix a vertex v. By the pigeonhole principle, v has at least v(H ′)r(H ′) neighbors
in one color, say red. Call this set of neighbors X. If there is a vertex w with at least r(H ′) blue

neighbors in X, then this neighborhood contains a monochromatic copy of H ′, which can be extended

to a monochromatic copy of H by adding either v or w. Otherwise, the induced graph on vertex set

X has blue degree at most r(H ′)− 1, so any v(H ′)− 1 vertices in X have a red common neighbor in

X. Hence, X contains a red copy of H ′, which together with v gives a red copy of H. ✷

We also need the following variant of the Azuma–Hoeffding inequality [62, Theorem 1.2].

Lemma 5.3 Let X1, . . . ,Xn be independent random variables with Xi taking values in the set Λi. Let

Γ ⊆∏i Λi be an event and assume that f :
∏

i Λi → R satisfies the following Lipschitz condition: there

are numbers ci ≤ di for 1 ≤ i ≤ n such that, whenever x, x′ ∈ ∏i Λi differ only in the kth coordinate,

then |f(x)− f(x′)| ≤ ck if x ∈ Γ and |f(x)− f(x′)| ≤ dk otherwise. Then, for any numbers 0 < γk ≤ 1

and t ≥ 0,

P[|f(x)− Ef(x)| > t] ≤ 2 exp

(

− t2

2
∑

i(ci + γi(di − ci))2

)

+ 2P[x 6∈ Γ]
∑

i

γ−1
i .

Proof of Theorem 5.1: We encode the edges of the random graph Gn,p in a sequence of independent

random variables X1, . . . ,Xn, where Xi ∈ Λi = {0, 1}i−1 records the edges between the ith vertex and

the preceding vertices 1, 2, . . . , i−1. Let f(G) = log r(Gn,p). Then, by Lemma 5.2, for any two graphs

G, G′ which differ only in the edges incident with the ith vertex we have |f(G)− f(G′)| ≤ 2 log(2n) ≤
4 log n = ci (the factor of 2 comes from the fact that in order to change the edges incident with the

ith vertex, we first remove and then add edges). By taking ci = di and Γ =
∏

i Λi in Lemma 5.3, we

conclude that

P[| log r(Gn,p)− E(log r(Gn,p))| > t] ≤ 2 exp

(

− t2

32n log2 n

)

.

Taking t = ω(
√
n log n) then implies the result. ✷

Theorem 5.1 is not entirely satisfying, since it seems very likely that the log factor is unnecessary.

Such a statement would immediately follow if we could establish the following feasible conjecture.

Conjecture 5.1 There exists an absolute constant c such that for any graph H and any graph H ′

obtained from H by removing a single vertex,

r(H) ≤ c · r(H ′).

For dense H, we can prove this conjecture using the following lemma of Erdős and Szemerédi [31].

Recall that the density of a graph G with e(G) edges is e(G)/
(v(G)

2

)

, the proportion of possible edges

which are actually in the graph.
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Lemma 5.4 (Erdős–Szemerédi [31]) There exists an absolute constant a such that the following

holds: any complete graph whose edges can be two-colored in red and blue so that there is no monochro-

matic copy of Kn and the density of blue edges is at most q ≤ 1/2 has at most 2aq log(1/q)n vertices.

Lemma 5.5 There exists an absolute constant c such that for any graph H of density at least d and

any graph H ′ obtained from H by removing a single vertex,

r(H) ≤ c
log(1/d)

d
r(H ′).

Proof: Let n be the number of vertices in H and let c be a sufficiently large constant which we choose

later. We first note that a simple application of the probabilistic method implies that r(H ′) ≥ 2c
′dn

for some fixed positive constant c′. Indeed, the number of edges in H ′ is at least m′ = d
(

n
2

)

− (n− 1).

Thus, the probability that a random red/blue edge coloring of the complete graph on N = 2c
′dn

vertices contains a monochromatic copy of H ′ is at most 2Nn−12−m′
< 1 for an appropriate choice of

c′ (e.g., c′ = 1/3 will do). Suppose now that we have a graph with c log(1/d)d r(H ′) vertices containing no

monochromatic copy of H. Fix a vertex v. By the pigeonhole principle, v has at least c
2
log(1/d)

d r(H ′)
neighbors in one color, say red. Call this set of neighbors X. If there is a vertex w with at least

r(H ′) blue neighbors in X, then this neighborhood contains a monochromatic copy of H ′, which can

be extended to a monochromatic copy of H by adding either v or w. Otherwise, the set X has blue

density at most q = 2
c

d
log(1/d) . By choosing c sufficiently large, we can guarantee that aq log(1/q) < c′d.

Since the size of X is at least r(H ′) ≥ 2c
′dn, an application of Lemma 5.4 implies that X contains a

monochromatic copy of Kn and, hence, of H. ✷

In particular, we have that r(Kn+1) ≤ c · r(Kn) for some absolute constant c, which seems not to have

been remarked before, though there is work of Burr, Erdős, Faudree and Schelp [14] in the opposite

direction, giving lower bounds on the differences between consecutive Ramsey numbers. More on

point, we may use Lemma 5.5 to improve Theorem 5.1 when p is a fixed positive constant.

Theorem 5.6 For p a fixed positive constant,

P[| log r(Gn,p)− E(log r(Gn,p))| = ω(
√
n)] = o(1).

Proof: We follow the proof of Theorem 5.1. Let X1, . . . ,Xn be the same random variables defined

there, encoding the edges of the random graph Gn,p. Let Γ be the event that the density of Gn,p is at

least p/2. By the standard Chernoff estimates for the binomial random variable, the probability that

Γ does not hold is at most e−Ω(pn2). As before, we have that |f(G)− f(G′)| ≤ 4 log n = di for any two

graphs G, G′ which differ only in the edges incident with the ith vertex. On the other hand, since p is

a constant, we can use Lemma 5.5 to conclude that if G ∈ Γ then |f(G)− f(G′)| ≤ O(1) = ci for any

two G, G′ as above. Define γi = 1/n and note that
∑

i(ci + γi(di − ci))
2 = O(n). Therefore, taking

t = ω(
√
n) and using Lemma 5.3, we have that

P[| log r(Gn,p)− E(log r(Gn,p))| > t] ≤ 2e−Ω(t2/n) + 2n2e−Ω(pn2) = o(1),

completing the proof. ✷
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One might also ask whether results like Theorems 5.1 and 5.6 hold for variants of the Ramsey number.

For many natural variants, including the induced Ramsey number and the size Ramsey number,

we were unable to obtain such statements, chiefly because we could not establish an analogue of

Lemma 5.2. Any progress on such questions would be interesting.

In the other direction, one might ask whether the random variable log r(Gn,p) is not too concentrated.

We make the following conjecture along these lines.

Conjecture 5.2 For any fixed 0 < p < 1, log r(Gn,p) is not concentrated with high probability on any

interval of length O(1).

An argument of Alon and Krivelevich [7, Section 4] shows that this conjecture is true on average in

some appropriate sense. First note that for any c, ǫ > 0, there is δ > 0 such that if ǫ ≤ p ≤ 1− ǫ, then

any family of graphs on n vertices whose total probability in G(n, p) is at least 1− δ has probability

at least 2δ in G(n, p + c/n). Defining In,p to be an interval such that log r(Gn,p) lies in this interval

with probability at least 1 − δ, we conclude that In,p overlaps with In,p+c/n whenever ǫ ≤ p ≤ 1 − ǫ.

It follows from the main results in [20] and [58] that there is a constant ǫ > 0 such that, for p ≤ ǫ,

log r(Gn,p) < n/8 with high probability. On the other hand, if p ≥ 1 − ǫ for ǫ > 0 fixed and

sufficiently small, a simple application of the probabilistic method (see the proof of Lemma 5.5)

implies that log r(Gn,p) > n/4 with high probability. Therefore, since the midpoints of the intervals

In,ǫ and In,1−ǫ differ by Ω(n), we must have that the average width of the at most n/c intervals

In,ǫ, In,ǫ+c/n, In,ǫ+2c/n, . . . is Ω(c). A more careful rendering of this argument gives the following

result.

Proposition 5.7 For each 0 < p < 1 and positive integer n, let ℓn,p be such that log r(Gn,p) is with

high probability concentrated in an interval of length ℓn,p. There is a constant 0 < ǫ < 1/2 such that

if ǫ ≤ p ≤ 1− ǫ is taken uniformly at random, then the expected value of ℓn,p is ω(1).

We conclude with one further question, concerning r(Gn,d/n) with d fixed, where the Ramsey number

is known [37] to be linear in n with high probability. It is not clear to us which way the truth should

lie.

Question 5.1 For fixed d, is it the case that

|r(Gn,d/n)− E(r(Gn,d/n))| = o(n)

with high probability?

6 Ramsey multiplicity and the number of colors

The Ramsey multiplicity Mq(H;n) of a graph H is defined to be the minimum number of monochro-

matic copies of H taken over all q-colorings of the edges of the complete graph Kn. If H has a

automorphisms and h vertices, the Ramsey multiplicity constant Cq(H) is given by

Cq(H) = lim
n→∞

Mq(H;n)
h!
a

(n
h

) ,
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that is, the limit as n tends to infinity of the minimum proportion of copies of H which are monochro-

matic in any q-coloring of the edges of Kn.

Writing m for the number of edges in H, a simple upper bound, Cq(H) ≤ q1−m, follows from consid-

ering a random coloring. When q = 2 and H = K3, a classical result of Goodman [42] shows that this

upper bound is tight. This led Erdős [29], for cliques, and Burr and Rosta [15], for general H, to con-

jecture that the upper bound is tight in the 2-color case. However, in the late eighties, Thomason [60]

showed that these conjectures fail already for K4.

A strong quantitative counterexample to the Burr–Rosta conjecture was found by the second au-

thor [32]. Define the graph T (k, ℓ) to be a clique of order k one of whose vertices is joined to ℓ

otherwise isolated vertices. Color the complete graph on n vertices by splitting its vertex set into

k− 1 pieces of equal size and coloring an edge red if it lies entirely within one of these pieces and blue

otherwise. This coloring contains no blue copies of T (k, ℓ) and any red copy is contained within one

of the k− 1 clumps. Taking ℓ = (k2 + k)/2, the number of vertices is h = (k2 +3k)/2 and the number

of edges is m = k2, so taking the limit as n tends to infinity implies that

C2(T (k, ℓ)) ≤ (k − 1)1−h ≤ m−(1+o(1))m/4.

For three or more colors, this counterexample becomes even more effective. Indeed, take the same

graph T (k, ℓ) with ℓ = (k2 + k)/2 and suppose that we have a (q − 1)-coloring of the complete graph

on r = 2(q−2)k/4 vertices with no monochromatic copy of Kk (see [24, Section 2.1] for the proof that

such a coloring exists). Consider the blow-up of this coloring, where each vertex is replaced by a clique

of color q with size n/r. By construction, the only monochromatic cliques of size k have color q and,

therefore, the only monochromatic copies of T (k, ℓ) are also in color q. Letting n tend to infinity, we

see that

Cq(T (k, ℓ)) ≤ r1−h ≤ 2−c′qm
3/2

.

These upper bounds for C2(T (k, ℓ)) and Cq(T (k, ℓ)) with q ≥ 3 are both tight up to a constant factor

in the exponent. This can be proved using an appropriate generalization of Lemma 6.3 below, though

we omit the details for brevity. In particular, we see a substantive difference in behavior between the

2- and 3-color cases. An obvious objection might be to say that the graph for which this difference

happens is an unusual one. In response to this objection, we prove the following theorem, improving

an earlier result, C2(H) ≥ 2−cm3/2 logm, of the second author [32].

Theorem 6.1 There exists a constant c such that, for any graph H with m edges,

C2(H) ≥ 2−cm4/3 log2 m.

So the difference in behavior is a very real one: there is no graph on m edges which has a 2-color

multiplicity constant as small as 2−cm3/2
. Along with [22], this is one of the first results where there

is a provable quantitative difference between the 2-color case and the q-color case for some q ≥ 3.

To prove Theorem 6.1, we use a mixture of two methods, both of which have become mainstays of

graph Ramsey theory. The first, known as dependent random choice (see the survey [38]), shows that

every dense graph contains a large set of vertices A with the property that almost all small subsets of A

have many common neighbors. The following lemma, a routine variant of [36, Lemma 2.1] (see also [18,

Lemma 1]), will suffice for our purposes. Note that we write N(S) to denote the joint neighborhood

of a set S, the collection of vertices joined to every vertex in S.
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Lemma 6.2 Let G = (U, V ;E) be a bipartite graph with at least ǫ|U ||V | edges. Then, for all positive

integers a, t, x, there is a subset A ⊂ U with |A| ≥ 2−1/aǫt|U | such that all a-sets S in A but at most

2ǫ−ta
(

x
|V |

)t
|A|a/a! have |N(S)| ≥ x.

It will also be useful to record the following result.

Lemma 6.3 Let k and n be positive integers with n sufficiently large. For every red/blue edge coloring

of Kn, there is a vertex subset U with |U | ≥ n/3 vertices and a color such that

• there are at least 12−k
(n
k

)

monochromatic Kk in U in that color and every such monochromatic

Kk extends to at least n/2 monochromatic Kk+1, or

• every vertex in U has both red degree and blue degree at least D := (n− 3)/12k.

Proof: Each vertex has degree at least (n− 1)/2 ≥ D in some color. So at least one of the following

holds: there are at least n/3 vertices with both red degree and blue degree at least D (in which case

we are done); there are at least n/3 vertices of red degree at least D and blue degree less than D; or

there are at least n/3 vertices of blue degree at least D and red degree less than D.

Without loss of generality, we may assume that there are at least n/3 vertices of red degree at least

D and blue degree less than D. We let U be the set of such vertices. The density of blue edges in U

is at most D|U |/2
(|U|

2 )
≤ 1

4k . Consider a random set T of 2k vertices in U . The expected number of blue

edges in T is thus at most 1
4k

(2k
2

)

≤ k
2 . Thus, with probability at least 1/2, the number of blue edges

in T is at most k and we can delete one vertex from each blue edge in T so that T contains a red

Kk. It follows that the number of red Kk in U is at least 1
2

(|U |
2k

)

/
(|U |−k

k

)

=
(

2
(2k
k

)

)−1
(|U |

k

)

. The lower

bound on |U | and the fact that n is sufficiently large implies the desired lower bound on the number

of monochromatic red Kk in U . Each such red Kk extends to at least n− k− kD ≥ n/2 red Kk+1. ✷

For our application of dependent random choice, we require some further notation. Recall that a

hypergraph F = (V,E) is a vertex set V together with a collection of subsets E of V , known as the

edges. A hypergraph is said to be k-uniform if all of the edges have the same size k. A hypergraph

F = (V,E) is said to be down-closed if e1 ⊂ e2 and e2 ∈ E implies e1 ∈ E.

Lemma 6.4 Suppose that the edges of Kn are two-colored in red and blue. Then, provided n is

sufficiently large, there are at least 2−50m4/3 logm
( n
m2/3

)

monochromatic copies of Km2/3 such that,

for each such copy K, every vertex subset L of K of size 2m1/3 has at least 2−50m1/3 logmn vertices

connected to each element of L in the same color as the clique.

Proof: Let k = m2/3 and apply Lemma 6.3 to obtain the promised set U of at least n/3 vertices.

In the first case, the monochromatic Kk in U give the desired set of monochromatic Kk. So we may

assume that every vertex in U has both red degree and blue degree at least D = (n− 3)/12k.

Let ǫ = 1/13k, a = 2m1/3, t = m2/3 and x = 2−50m1/3 logmn. We now apply Lemma 6.2 to the bipartite

graph with parts U and V (Kn), where (u, v) is an edge if it is red in the given edge coloring, with the
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parameters above to find a set A ⊂ U of size at least 2−10m2/3 logmn such that all but 2−30m logm|A|a/a!
of the a-tuples have at least 2−50m1/3 logmn common red neighbors.

Now, since A ⊂ U , every vertex in A has blue degree at least D. Therefore, applying Lemma 6.2 with

the same parameters as before we find a set A′ ⊂ A of size at least 2−10m2/3 logm|A| ≥ 2−20m2/3 logmn

such that all but 2−30m logm|A′|a/a! of the a-tuples have at least 2−50m1/3 logmn common blue neighbors.

In summary, since |A| ≤ 210m
2/3 logm|A′| and a = 2m1/3, we have a set A′ of size at least 2−20m2/3 logmn

such that all a-tuples in A′ but at most

2−30m logm|A|a/a! + 2−30m logm|A′|a/a! ≤ 2−8m logm|A′|a/a!
have 2−50m1/3 logmn common red neighbors and 2−50m1/3 logmn common blue neighbors.

Let F be the down-closed hypergraph with vertex set A′ whose maximal edges consist of the at least
(

1− 2−8m logm
)

|A′|a/a! sets of size a which have appropriately large common neighborhoods in both

red and blue. We fix d = 22m
2/3(2m2/3

2m1/3

)

. Call a set S ⊂ A′ of size |S| ≤ a good if S is contained in more

than (1 − (4d)|S|−a)|A′|a−|S|/(a − |S|)! edges of F of cardinality a. For any good set S with |S| < a

and any vertex j ∈ A′ \ S, call j bad with respect to S if S ∪ {j} is not good. Let BS denote the set

of vertices j ∈ A′ \ S that are bad with respect to S. We claim that if S is good with |S| < a, then

BS ≤ |A′|/4d. Indeed, suppose that |BS | > |A′|/4d. Then the number of a-sets containing S that are

not edges of F is at least

|BS |
a− |S| (4d)

|S|+1−a |A′|a−|S|−1

(a− |S| − 1)!
> (4d)|S|−a |A′|a−|S|

(a− |S|)! ,

which would be a contradiction.

We will now prove that the hypergraph F contains many copies of the complete 2m1/3-uniform hyper-

graph with m2/3 vertices such that the graph induced by the vertices of each copy is monochromatic.

We will embed 2m2/3 vertices, vertex by vertex, maintaining three conditions. More specifically, we

will inductively find an embedding f of v1, v2, · · · , vi and a disjoint vertex subset Vi satisfying the

following conditions. The first condition is that if we have embedded i vertices v1, v2, · · · , vi, then
every subset of these vertices of size less than or equal to 2m1/3 is good. The second condition is that

for every j, k with 1 ≤ j < k ≤ i, the color of f(vj)f(vk) is determined by the value of j. Moreover,

the color of the edge from f(vj) to any element of Vi is the same color. Thirdly, we will maintain that

|Vi| ≥ 2−i|A′|.
To verify the induction hypothesis at i = 0, we only have to verify that all empty sets are good, since

the second and third conditions follow trivially by taking V0 = A′. However, the empty set is good,

since
(

1− 2−8m logm
)

|A′|a/a! ≥
(

1− (4d)−a
)

|A′|a/a!.
We may therefore assume that v1, v2, · · · , vi have been embedded as required and we are trying to

embed vi+1.

We may suppose, without loss of generality, that there are |Vi|/2 vertices in Vi with red degree at

least |Vi|/2. Moreover, there are at most
(

2m2/3

2m1/3

)

subsets of v1, v2, · · · , vi of size at most 2m1/3 − 1.

By induction, all of these sets have a good embedding. For any such subset S, there are, therefore, at

most |A′|/4d bad vertices with respect to it. But now, since d = 22m
2/3(2m2/3

2m1/3

)

,

|A′|
4d

≤ 22m
2/3 |Vi|

4d
≤ |Vi|

4
(2m2/3

2m1/3

)

.
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Thus, adding the numbers of bad vertices with respect to all the sets to which we would like to append

vi+1, we obtain that there are at most |Vi|/4 vertices which are bad for one of these sets. We may,

therefore, let f(vi+1) be any of the remaining |Vi|
4 vertices which have |Vi|/2 red neighbors in Vi and

are good for each of the sets S. Letting Vi+1 be the red neighborhood in Vi of f(vi+1) completes the

induction.

Since we continue this process until we have 2m2/3 vertices, some subset w1, w2, · · · , wm2/3 must form

a monochromatic clique. How many monochromatic cliques do we form through this process? At the

very worst,

1

(2m2/3)!nm2/3

|V0|
4

× |V1|
4

× · · · × |V2m2/3−2|
4

× |V2m2/3−1|
4

≥ 2−6m2/3 logmn−m2/3

( |A′|
22m

2/3

)2m2/3

≥ 2−50m4/3 logm

(

n

m2/3

)

,

as required. This completes the proof. ✷

The second technique we use goes back to work of Graham, Rödl and Ruciński [43], though similar

ideas are implicit in earlier work [52]. Let G be a graph on vertex set V and let X,Y be two subsets

of V . Define e(X,Y ) to be the number of edges between X and Y . The density of the pair (X,Y )

is d(X,Y ) = e(X,Y )/|X||Y |. The graph G is said to be bi-(σ, δ)-dense if, for all X,Y ⊂ V with

X ∩ Y = ∅ and |X|, |Y | ≥ σ|V |, we have d(X,Y ) ≥ δ. It was shown by Graham, Rödl and Ruciński

[43, Lemma 2] that if σ is sufficiently small in terms of δ and the maximum degree ∆ of a fixed graph

H, then a sufficiently large bi-(σ, δ)-dense graph G will contain a copy of H. The following lemma is

a counting version of their result with restrictions on where each vertex can be embedded.

Lemma 6.5 Let α, δ > 0 be real numbers. If G is a bi-(αδ∆/2t2, δ)-dense graph with n vertices, then

G contains at least
(

αδ∆n/2t2
)t

copies of any graph H with t vertices and maximum degree ∆ such

that each vertex w of H is mapped to a prespecified vertex subset Vw of size at least αn.

Proof: Our initial aim will be to find a single embedding f of H in G so that f(w) ⊂ Vw for all

w ∈ V (H). By replacing each Vw with a set of order |Vw|/t, we may assume that the Vw are disjoint.

Let the vertices of H be {w1, w2, · · · , wt}. For each 1 ≤ h ≤ t, let Lh = {w1, w2, · · · , wh}. If the

vertices of Lh have been embedded, then, for each y ∈ V (H) \ Lh, we let T h
y be the set of vertices in

Vy which are adjacent to all already embedded neighbors of y. That is, letting Nh(y) = N(y) ∩ Lh,

T h
y is the set of vertices in Vy adjacent to each element of f(Nh(y)). We will find, by induction, an

embedding of Lh such that, for each y ∈ V (H) \ Lh, |T h
y | ≥ δ|Nh(y)||Vy|.

For h = 0, there is nothing to prove. We may therefore assume that Lh has been embedded consistent

with the induction hypothesis and attempt to embed w = wh+1 into an appropriate v ∈ T h
w. Let Y be

the set of neighbors of w which are not yet embedded. We wish to find an element v ∈ T h
w such that,

for all y ∈ Y , |N(v) ∩ T h
y | ≥ δ|T h

y |. If such a vertex v exists, taking f(w) = v will then complete the

proof.

Let By be the set of vertices in T h
w which are bad for y ∈ Y , that is, such that |N(v) ∩ T h

y | < δ|T h
y |.

Note that, by the induction hypothesis, |T h
y | ≥ δ∆|Vy| ≥ αδ∆n/t. Therefore, |By| < αδ∆n/2t2, for

otherwise the density between the sets By and T h
y would be less than δ, contradicting the bi-density
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condition. Hence,
∣

∣

∣T h
w \ ∪y∈YBy

∣

∣

∣ >
αδ∆

t
n− t

αδ∆

2t2
n ≥ αδ∆

2t
n

and an appropriate choice for f(w) exists. The result therefore follows by induction. The counting

result also follows straightforwardly since there are at least αδ∆

2t n choices for each of the t vertices and

each copy of H can be counted at most t! ≤ tt times. ✷

Thus, if we are looking for monochromatic copies of H in a red/blue edge coloring of Kn and we

cannot find a large number of red copies, there must be a large bipartite graph where the blue density

is very high. If we iterate this observation, we might hope to find a sequence of such bipartite graphs,

enough to build up a complete graph with very high blue density. Precisely this idea was pursued by

Graham, Rödl and Ruciński, though we use a streamlined approach due to Fox and Sudakov [35]. We

start with some notation and a definition.

For a graph G = (V,E) and disjoint subsets W1, · · · ,Wt ⊂ V , the density dG(W1, · · · ,Wt) between

the t ≥ 2 vertex subsets W1, · · · ,Wt is defined by

dG(W1, · · · ,Wt) =

∑

i<j e(Wi,Wj)
∑

i<j |Wi||Wj |
.

Definition: For α, σ, δ ∈ [0, 1] and positive integer t, a sequence (G1, · · · , Gr) of graphs on the

same vertex set V is (α, σ, δ, t)-sparse if for all subsets U ⊂ V with |U | ≥ α|V |, there are positive

integers t1, · · · , tr such that
∏r

i=1 ti ≥ t and for each i ∈ [r] = {1, 2, · · · , r}, there are disjoint subsets

Wi,1, · · · ,Wi,ti ⊂ U with |Wi,1| = · · · = |Wi,ti | = ⌈σ|U |⌉ and dGi(Wi,1, · · · ,Wi,ti) ≤ δ.

The fundamental lemma that we will need to apply is the following [35, Corollary 3.4].

Lemma 6.6 If (G1, · · · , Gr) is
(

(σ2 )
h−1, σ, δ8 , 2

)

-sparse where h = r log 2
δ , then there is i ∈ [r] and an

induced subgraph G′ of Gi on 2δ−121−hσh|V | vertices that has edge density at most δ.

We only use Lemma 6.6 in the case r = 2 with G1 and G2 the subgraphs of each color in a two-coloring

of the edges of Kn. We are now ready to complete the proof of Theorem 6.1.

Proof of Theorem 6.1: Let δ = 1/m3, ∆ = 2m1/3 and σ = 2−60m1/3 logm. Then h = 2 log(2m3).

Note that
(σ

2

)h−1
≥ 2−600m1/3 log2 m.

Let us refer to this latter quantity as β. Let U be a subset of V of size at least βn. We will first show

that, for any graph H with m edges and no isolated vertices, U contains either 2−3000m4/3 log2 m
(

n
|V (H)|

)

monochromatic copies of H or two disjoint sets W1 and W2 of size σ|U | such that the density of edges

between them in one color is less than δ/8.

If H has at most m2/3 vertices, then H is a subgraph of Km2/3 , so C2(H) ≥ C2(Km2/3) ≥ 2.19−m4/3

by a result of the first author [19]. We may therefore assume that H has more than m2/3 vertices.

We may also assume that H has no isolated vertices, since these do not contribute to the multiplicity

constant, and hence that |V (H)| ≤ 2m.

We partition the vertex set of H into two subsets, those of large degree and those of small degree.

More specifically, let A1 be the m2/3 vertices with largest degree and let A2 be the complement. By
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choice, every vertex in A2 has maximum degree at most 2m1/3. Otherwise, every vertex in A1 would

have degree greater than 2m1/3, implying the existence of more than m edges.

Applying Lemma 6.4, we find at least 2−50m4/3 logm
( |U |
m2/3

)

≥ 2−700m4/3 logm
( n
m2/3

)

monochromatic copies

of Km2/3 such that, for each such copy K, every vertex subset L of K of size 2m1/3 has at least

2−50m1/3 logm|U | vertices connected to each element of L in the same color as the clique. Suppose,

without loss of generality, that at least half of these cliques are blue.

Every vertex in A2 has degree at most 2m1/3 in A1, so, given any blue Km2/3 , considered as an

embedding of A1, there is, for each w ∈ A2, a subset of size at most 2m1/3 that the image of w should

be joined to in blue. We know that each such vertex set has at least s = 2−50m1/3 logm|U | common

blue neighbors. For any vertex w ∈ A2, let this set of common neighbors be Vw. We would now like

to embed the induced subgraph of H on A2 in such a way that w is embedded in Vw for each w ∈ A2.

Applying Lemma 6.5 with α = 2−50m1/3 logm and δ0 = δ/8, we see that if the blue graph induced on U

is bi-(αδ∆0 /8m2, δ0)-dense, then, since |Vw| ≥ α|U | for each w ∈ A2 and ∆ ≤ 2m1/3, there are at least

(

αδ∆0
8m2

|U |
)|A2|

≥ (2−60m1/3 logm|U |)|A2| ≥
(

2−700m1/3 log2 mn
)|A2|

blue copies of H[A2] which form a blue copy of H with our given copy of H[A1]. Since |A2| ≤ |V (H)| ≤
2m, we therefore see that Kn contains at least

1

|V (H)|! 2
−701m4/3 logm

(

n

m2/3

)

×
(

2−700m1/3 log2 mn
)|A2| ≥ 2−3000m4/3 log2 m

(

n

|V (H)|

)

blue copies of H, as required.

If, on the other hand, every subset of order βn is not bi-(αδ∆0 /8m2, δ0)-dense either for red or blue,

then, since σ ≤ αδ∆0 /8m2 and
(

σ
2

)h−1 ≥ β, (GB , GR) is (
(

σ
2

)h−1
, σ, δ8 , 2)-sparse, where GB and GR

represent the blue and red graphs, respectively. Therefore, by Lemma 6.6, for one of the colors, blue

say, there is a set |W | of size 2δ−121−hσhn ≥ 2−600m1/3 log2 mn such that the induced graph GB [W ]

has density less than δ = 1
m3 . Therefore, a random subset of |V (H)| ≤ 2m vertices from W has in

expectation at most
(|V (H)|

2

)

/m3 ≤ 1/2 blue edges and so is monochromatic red with probability at

least 1/2. Hence, the number of red copies of K|V (H)| in W is at least

1

2

( |W |
|V (H)|

)

≥ 1

3

|W ||V (H)|

|V (H)|! ≥ 2−1500m4/3 log2 m

(

n

|V (H)|

)

.

This completes the proof. ✷

We do not expect Theorem 6.1 to be the end of the story. Indeed, as conjectured in [32], it is likely

that C2(H) = 2−m1+o(1)
. However, this conjecture seems well beyond the reach of current methods.

Similarly, it is tempting to conjecture that for q ≥ 3, we have Cq(H) ≥ 2−m3/2+o(1)
. Here, the state

of the art, easily derivable from a sampling argument and the bound rq(H) ≤ 2cqm
2/3

for the q-color

Ramsey number of a graph H with m edges and no isolated vertices [45], is Cq(H) ≥ 2−m5/3+o(1)
.

7 A Ramsey problem for connected matchings

In this section, we discuss a common generalization of two classical problems, the Ramsey number of

a triangle versus a large clique and Hadwiger’s conjecture for graphs with independence number two.
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The Ramsey number r(3, t) is the minimum integer n such that every triangle-free graph on n vertices

has independence number at least t. The problem of estimating r(3, t) has been studied extensively

over the last 60 years. After several successive improvements, the asymptotic behavior of r(3, t) was

determined by Ajtai, Komlos and Szemerédi [1] and by Kim [50], who proved upper and lower bounds

showing that r(3, t) = Θ(t2/ log t).

The celebrated Hadwiger conjecture states that any graph G with chromatic number k has a clique

minor of order k. Since the chromatic number of a graph G is always at least |V (G)|/α(G), this

conjecture implies that any graph G on n vertices has a clique minor of order at least n/α(G). The

problem of proving that this implication holds when α(G) = 2 has attracted considerable attention in

recent years. The aim in this case is to show that an n-vertex graph with independence number two

has a clique minor of order n/2. A result of Duchet and Meyniel [27] demonstrates that such a G has

a clique minor of order at least n/3. Seymour and Mader have both asked whether the factor 1/3 can

even be improved to 1/3 + ǫ for some constant ǫ > 0.

This problem of improving the bound for the maximum clique minor in a graph with independence

number two can be reformulated in terms of an interesting Ramsey-type problem. A set of pairwise

disjoint edges e1, . . . , et of G is called a connected matching of size t if, for every pair of distinct

edges ei, ej , there is at least one edge of G connecting an endpoint of ei to an endpoint of ej . It was

observed by Thomassé that the following conjecture is equivalent to the above problem of improving

the constant factor 1/3.

Conjecture 7.1 There exists a constant C such that every n-vertex graph G with α(G) = 2 contains

a connected matching of size at least n/C.

It was proved in [48] that if a graph G with independence number two has a connected matching of

size t, then it has a clique minor of order at least n/3 + t/9. In the other direction, the same authors

showed that if G has a clique minor of order at least n/3 + t, then G contains a connected matching

of size at least 3t
4 − 1. Improving on earlier work, Fox [33] showed that an n-vertex graph G with

α(G) = 2 has a connected matching of size Ω(n4/5 log1/5 n), which remains the best known bound for

Conjecture 7.1.

Motivated by the above conjecture, Füredi, Gyárfás and Simonyi [40] proposed a more general question.

A set of pairwise disjoint edges e1, . . . , et of G is called an s-connected matching of size t if, for

every pair of distinct edges ei, ej , there are at least s edges of G connecting an endpoint of ei to

an endpoint of ej . For 1 ≤ s ≤ 4, let fs(t) be the minimum n such that every graph on n vertices

with independence number two contains an s-connected matching of size t. Note that a 4-connected

matching is just a clique of order 2t, so the function f4(t) is just the Ramsey number r(3, 2t) mentioned

above and has order of magnitude Θ(t2/ log t). Using this notation, Conjecture 7.1 states that f1(t)

is linear in t. Füredi, Gyárfás and Simonyi [40] asked to determine the order of magnitude of fs(t).

As a first step towards this goal, they asked whether the functions can be separated, i.e., whether

f1(t) ≪ f2(t) ≪ f3(t) ≪ f4(t). They also proved that f2(t) ≤ O(t3/2). We improve this bound

to f2(t) ≤ O(t4/3 log−1/3 t). We also prove that f3(t) ≤ O(t3/2), which implies that f3(t) ≪ f4(t),

partially answering their question.

Theorem 7.1 There are positive constants c, c′ such that if G is an n-vertex graph with α(G) = 2,

then G contains a 3-connected matching of size cn2/3 and a 2-connected matching of size c′n3/4 log1/4 n.
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Proof: Let t be the size of the matching we are trying to find. Since α(G) = 2, note that for every

vertex v ∈ G its non-neighbors form a clique in G. Therefore, we can assume that every vertex is

adjacent to all but at most 2t − 1 vertices, i.e., δ(G) ≥ n − 2t, or we are done. Pick two vertices

u, v of G uniformly at random. Let Au,v be the set of vertices adjacent to neither u nor v and Bu,v

the set of vertices adjacent to at most one of u or v. By the discussion above, it is easy to see that

|Bu,v| ≤ 2(n − δ(G)) ≤ 4t. We need the following claim.

Claim 7.1 With probability at least 3/5, the set Au,v has size at most 10t2/n.

Proof: Note that a vertex w of G belongs to Au,v only if both u and v are non-neighbors of w. The

probability of this event is at most
(n−δ(G)

n

)2 ≤ 4t2/n2. Therefore, the expected size of Au,v is at most

4t2/n. The result now follows from Markov’s inequality. ✷

This claim implies that all but at most 0.4
(n
2

)

≤ n2/5 pairs u, v in G have |Au,v| ≤ 10t2/n. Since G

has at least n(n − 2t)/2 edges and t ≪ n, we conclude that there is a set F of at least n2/4 edges of

G such that |Au,v| ≤ 10t2/n for every edge (u, v) ∈ F .

To find a 3-connected matching in G, choose t = 0.2n2/3 and consider an auxiliary graph H whose

vertex set is F and where two vertices (u, v) and (u′, v′) are adjacent if these pairs share a vertex or

there are at most two edges of G between (u, v) and (u′, v′). Note that by definition an independent

set in H corresponds to a 3-connected matching in G. To find a large independent set in H, we will

estimate its maximum degree. Given a pair (u, v) ∈ F , there are at most 2n other pairs which intersect

(u, v). Note also that if between disjoint pairs (u, v) and (u′, v′) there are at most 2 edges, then either

both u′, v′ ∈ Bu,v or at least one of them is in Au,v. Therefore, the number of pairs (u′, v′) incident to
(u, v) in H is at most

∆(H) ≤ 2n+

(|Bu,v|
2

)

+ |Au,v| · n ≤ 2n + 8t2 + 10t2 ≤ 19t2,

where we used that n ≪ t2. Thus, a well known lower bound on α(H) implies that it contains an

independent set of size at least |V (H)|
∆(H)+1 ≥ n2/4

20t2
> t.

The proof for 2-connected matchings is similar, but with one additional twist. Let t = c′n3/4 log1/4 n

for some c′ we choose later and let H ′ be the graph with vertex set F and where two vertices (u, v)

and (u′, v′) are adjacent if these pairs share a vertex or there is at most one edge of G between (u, v)

and (u′, v′). An independent set in H ′ will give us a 2-connected matching. To estimate the maximum

degree of H ′, note that if between disjoint pairs (u, v) and (u′, v′) there is at most one edge, then

either both u′, v′ ∈ Au,v or one of them is in Au,v and the other is in Bu,v. Therefore, the number of

pairs (u′, v′) incident to (u, v) in H ′ is at most

∆(H ′) ≤ 2n +

(|Au,v|
2

)

+ |Au,v| · |Bu,v| ≤ 2n + 50t4/n2 + 40t3/n ≤ 41t3/n,

where we used that both n, t4/n2 ≪ t3/n. Next we observe that the vertex set of H ′ does not contain
three disjoint pairs (ui, vi), 1 ≤ i ≤ 3, which form a triangle. Suppose otherwise. Then, since the

number of edges between every pair is at most one, we can assume, without loss of generality, that u1
is a non-neighbor of both u2 and v2. Since also u1 has at most one neighbor in u3, v3, we can assume it
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is not adjacent to u3. Moreover, u3 has at most one neighbor in u2, v2. But then, if u3 is not adjacent

to v2, say, u1, v2, u3 form an independent set in G, contradicting α(G) = 2. Thus, every triangle in H ′

has at least two vertices whose corresponding pairs intersect. Therefore, the total number of triangles

t(H ′) in H ′ satisfies t(H ′) ≤ 2n ·∆(H ′) · |V (H ′)| ≤ 82t3|V (H ′)|. To conclude the proof, we use a well

known bound ([10], Lemma 12.16) on the independence number of a graph with few triangles (see

also [8] for a more general result). This bound says that

α(H ′) ≥ 0.1
|V (H ′)|
∆(H ′)

(

log ∆(H ′)− 0.5 log(t(H ′)/|V (H ′)|)
)

≥ Ω
(n3

t3
log(t3/2/n)

)

= Ω
(n3

t3
log n

)

,

where we used that |V (H ′)| ≥ n2/4,∆(H ′) ≤ 41t3/n and t3/2/n > n1/8. By choosing c′ in the

definition of t sufficiently small, we have that α(H ′) > t, completing the proof. ✷

In order to obtain further separation results between the functions f1(t), f2(t) and f3(t), one needs to

obtain good lower bounds. In particular, it would be interesting to show that f2(t) ≥ t1+ǫ for some

constant ǫ > 0.
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[28] P. Erdős, On a theorem of Rademacher–Turán, Illinois J. Math. 6 (1962), 122–127.
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