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Abstract

Viscoelastic material properties at high strain rates are needed to model many biological and med-
ical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics
are sensitive to the material properties. Thus, in principle, these properties can be inferred via
measurements of the bubble dynamics. Estrada et al. (2018) demonstrated such bubble-dynamic
high-strain-rate rheometry by using least-squares shooting to minimize the difference between sim-
ulated and experimental bubble radius histories. We generalize their technique to account for
additional uncertainties in the model, initial conditions, and material properties needed to uniquely
simulate the bubble dynamics. Ensemble-based data assimilation minimizes the computational ex-
pense associated with the bubble cavitation model. We test an ensemble Kalman filter (EnKF),
an iterative ensemble Kalman smoother (IEnKS), and a hybrid ensemble-based 4D–Var method
(En4D–Var) on synthetic data, assessing their estimations of the viscosity and shear modulus of a
Kelvin–Voigt material. Results show that En4D–Var and IEnKS provide better moduli estimates
than EnKF. Applying these methods to the experimental data of Estrada et al. (2018) yields simi-
lar material property estimates to those they obtained, but provides additional information about
uncertainties. In particular, the En4D–Var yields lower viscosity estimates for some experiments,
and the dynamic estimators reveal a potential mechanism that is unaccounted for in the model,
whereby the viscosity is reduced in some cases due to material damage occurring at bubble collapse.

Keywords: A. dynamics; B. constitutive behaviour; B. viscoelastic material; C. numerical
algorithms; data assimilation

1. Introduction

Measuring the mechanical properties of soft viscoelastic materials at high strain rates (exceed-
ing 103 s−1) is a challenging goal of rheometry. These measurements are of particular interest in
biological and medical engineering, where high strain rates occur during impact and blast expo-
sure (Bar-Kochba et al., 2016; Sarntinoranont et al., 2012; Meaney and Smith, 2011; Nyein et al.,
2010) and during therapeutic ultrasound (Maxwell et al., 2009; Xu et al., 2007; Mancia et al., 2017;
Vlaisavljevich et al., 2015; Bailey et al., 2003). Cavitation, which can take place on exposure to
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tensile waves, induces high strain rates in surrounding materials, and the resulting bubble dynam-
ics are sensitive to the adjacent material properties (Estrada et al., 2018). This observation led
Estrada et al. (2018) to propose a high-strain rate rheometer to estimate the viscoelastic proper-
ties of polyacrylamide gels through observation of the bubble radius time history during a laser-
generated cavitation event in a sample of the material. To infer the viscosity and shear modulus,
they developed a least-square fitting technique which minimizes the difference between the measure-
ments and the bubble radius history predicted through a mechanical model of a spherical bubble
in an assumed neo-Hookean Kelvin–Voigt viscoelastic material.

In this paper, we generalize bubble-dynamic rheometry by considering data assimilation (DA)
techniques that can potentially improve predictions in uncertainty-prone high-strain-rate regimes.
Provided the material properties are observable and the dynamics are sufficiently sensitive to their
values, DA provides a solution to this inverse problem that accounts for uncertainty in both the
model and data (Evensen, 2009a,b; Bocquet and Sakov, 2013b; Schillings and Stuart, 2017). Thus,
for bubble-dynamics-based rheometry, DA can address additional uncertainties beyond the unknown
viscosity and shear modulus, including those associated with measurement noise, additional material
properties, modeling assumptions, and initial conditions. DA techniques are characterized as filters
if the state (and parameters) are updated at each moment based on the prior trajectory or smoothers

if the state history and parameters are estimated over a horizon. By considering both filters and
smoothers, we can gain additional insights into whether constant or time-varying parameters best
fit the observed behavior.

Three data assimilation methods are considered: an ensemble Kalman filter (EnKF), an iterative
ensemble Kalman smoother (IEnKS), and a hybrid ensemble-based 4D–Var method (En4D–Var).
EnKF and IEnKS are variations on the classical Kalman Filter (KF) (Kalman, 1960). Their algo-
rithms follow the same structure as the KF, which assimilates data at each step of a discrete time
series. These are Monte Carlo methods that represent the system via an ensemble. The assimilation
uses statistics of the ensemble to calculate a sample covariance. This replaces the covariance matrix
of the KF and thus the covariance forecast operator, reducing computational cost. En4D–Var is a
different ensemble-based approach to the assimilation problem. It is a variant of offline 4D varia-
tional data assimilation (4D–Var) (Caya et al., 2005; Trémolet, 2007), where a guess for the initial
condition is iterated upon to improve the fit to the data over the entire time domain.

In section 2, we describe the specific material–bubble-dynamic model, which matches the one
considered by Estrada et al. (2018). In section 3, details of the data assimilation algorithms and
their implementation are provided. We then examine the relative merits of the estimators in
section 4 using synthetic data generated by running the model (with additional simulated noise).
This allows us to gauge their relative performance for cases with no modeling uncertainties. Next,
in section 5, we apply these estimators to established experimental data for polyacrylamide gels.
We compare and contrast results with each method and with the the estimates of Estrada et al.
(2018). We summarize the conclusions in section 6.

2. Bubble dynamics model

A physical model for the collapsing bubbles is required to characterize the viscoelastic properties
of surrounding materials. Many spherical bubble dynamics models exist. Of particular relevance
here are those for cavitation in soft materials (Gaudron et al., 2015; Yang and Church, 2005) and
specific numerical methods for solving them (Warnez and Johnsen, 2015; Barajas and Johnsen,
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2017). We use the model of Estrada et al. (2018), which adopts approximations validated in previ-
ous spherical-bubble models (Prosperetti and Lezzi, 1986; Prosperetti et al., 1988; Akhatov et al.,
2001; Epstein and Keller, 1972; Keller and Miksis, 1980; Preston et al., 2007). Key assumptions
of this model are that the motion of the bubble and its contents are spherically symmetric, the
bubble pressure is spatially uniform (homobaricity), the temperature of the surrounding material
is constant, and that there is no mass transfer of the non-condensible gas across the bubble wall.

The Keller–Miksis equation models the radius evolution (Keller and Miksis, 1980),

(
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where R is the bubble radius, c the material speed of sound, ρ the material density, pb the bubble
internal pressure, γ the bubble-wall surface tension, S the stress integral (see (6)), and p∞ the
far-field pressure. Under the model assumptions, no mass or energy conservation equations are
needed outside the bubble. Furthermore, the conservation of momentum simplifies to an ordinary
differential equation for the bubble pressure
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where κ is the specific heat ratio, K the thermal conductivity, T the gas temperature, Cp the
specific heat, D the binary diffusion coefficient, and kv the vapor mass fraction. Subscripts g, v,
and m refer to gas, vapor, and mixture properties. Conservation of energy in the bubble interior
yields an equation for the bubble temperature:

ρmCp

(

∂T

∂t
+ vm

∂T

∂r

)

= ṗb +
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where vm is the radial mixture velocity and ρm the mixture density. The boundary condition
T (R) = T∞ follows from the model assumptions. The radial mixture velocities are computed as
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1

κpb
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− 1

3
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Fick’s law describes the mass diffusion process in the bubble. Casting the conservation of mass
inside the bubble in terms of the mixture density, the vapor mass fraction inside the bubble is

∂kv
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+ vm
∂kv
∂r

=
1

ρm

1

r2
∂

∂r

(

r2ρmD
∂kv
∂r

)

. (5)

Under the assumption of equilibrium phase change at the bubble wall, the associated boundary
condition at the wall is pv,sat(T (R)) = Rvk(R)ρm(R)T (R), where pv,sat is the saturation pressure
of the vapor and Rv is the gas constant of the vapor.

Equations (1), (2), (3), and (5) form a system of equations. This system is evolved in time
with an implicit Runge–Kutta algorithm that uses the trapezoidal rule and backwards differentia-
tion at each step (TR–BDF2) (Hosea and Shampine, 1996). The partial differential equations for
temperature and vapor mass fraction are discretized in space via a uniform grid and computed
using second-order-accurate central finite differences. Estrada et al. (2018) showed that the finite-
deformation neo-Hookean Kelvin–Voigt model can represent the material response at high strain
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rates. In this framework, the material is modeled with a parallel spring (neo-Hookean elastic re-
sponse with shear modulus G) and dashpot (linear viscous response with viscosity µ). The stress
integral in (1) is

S = −G

2

[

5−
(

R0

R

)4

− 4
R0

R

]

− 4µṘ

R
, (6)

where R0 is the equilibrium bubble radius Gaudron et al. (2015).

3. Data assimilation methods

Two difficulties that drive the choice of data assimilation method are the nonlinearity of the
dynamics and large state vector required to discretize the partial differential equations adequately.
The former rules out the standard linearized Kalman filter (EKF) (Kalman, 1960) and the latter
renders its direct nonlinear extensions (e.g. the unscented Kalman filter, UKF) computationally
prohibitive. Instead, ensemble-based methods (Evensen, 1994) are considered. They combine com-
putational efficiency with nonlinear dynamics by approximating the state covariance via statistics of
a finite (and typically small) ensemble. We consider three specific ensemble methods: an ensemble
Kalman filter (EnKF), an iterative ensemble Kalman smoother (IEnKS) and a hybrid ensemble-
based 4D–Var method.

The discretized equations of section 2 are re-written as a nonlinear operator F , and we define
the linear observation function H that maps the state x to measurement space. This yields the
discrete-time dynamical system

xk+1 = F (xk) + ηk, (7)

yk = H(xk) + νk, (8)

where

xk ∈ R
d , yk ∈ R

n,

ηk ∼ N (0,Σ) , νk ∼ N (0,Γ),

F : Rd → R
d , H : Rd → R

n.

xk is the d-dimensional state comprised of all the dependent variables plus the unknown parameters

x = {R, Ṙ, pb, S,T,C, log(Ca), log(Re)}, (9)

which are the bubble-wall radius, velocity, bubble pressure, stress integral, the discretized tem-
perature and vapor concentration fields inside the bubble, and the log-Cauchy and log-Reynolds
numbers, respectively. The Cauchy and Reynolds numbers are defined as

Ca ≡ p∞
G

and Re ≡
√
ρp∞Rmax

µ
. (10)

These quantities appear in the nondimensionalized model equations of section 2 and the shear
modulus G and viscosity µ can be computed via (10). The forecast operator F maps log(Ca) and
log(Re) to themselves because they are constant in the physical model. Using the logarithm avoids
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negative (and thus non-physical) values during the analysis step of the assimilation algorithms
(described in sections 3.1, 3.2, and 3.4).

The variable yk is the n-dimensional observation (data) at time k. ηk is the unknown process
noise (or model error) added to H(xk) to retrieve yk. It is assumed to be Gaussian with zero mean
and standard deviation Σ. Similarly, νk is the assumed Gaussian measurement noise added to
F (xk) to obtain xk+1, with zero mean and unknown standard deviation Γ. Throughout this study,
the only available measurement is the bubble radius. This means that yk is the radius only, and
the observation operator H is the linear map from the state vector to its first element R. In the
following, the linear operatorH is sometimes represented as the matrixH for clarity (Hx = H(x)).

The following methods estimate the full state vector x (including parameters of interest log(Ca)
and log(Re)) based on observations of y. The EnKF and IEnKS are online (or quasi-online)
methods—they optimize the value of x at each time through the simulation. The IEnKS is deemed
quasi-online because it uses data from future times as well. The estimation trails the simulation
time by a fixed number of time steps called the lag. Alternatively, the En4D–Var is an offline
method, which only optimizes the initial condition for x, taking into account data from the entire
time-domain.

3.1. The ensemble Kalman filter

The ensemble Kalman filter (Evensen, 1994) represents the probability density function (PDF)
for the state of the dynamics through the statistics of an ensemble of q state vectors. It does not
require an adjoint, or deriving a tangent linear operator to the physical model (Evensen, 2003,
2009a). Starting with suitably randomized initial conditions, each ensemble member is propagated
through the physical model, and the predictions are then corrected using the ensemble statistics.
The ensemble is initialized with a guess for the initial condition x0 as the mean, and a given
covariance corresponding to the expected error covariance. In practice, each ensemble member
is independently sampled from a normal distribution with mean x0 and the assumed covariance
matrix. Several initialization strategies exist depending on the system and its dynamics. In the
present case, the nonlinear dynamics render a systematic approach difficult. Instead, the ensemble is
initialized with a covariance corresponding to our best estimate based on simulations, and adjusted
through trial and error to optimize results. An ensemble size of q = 48 is used for the tests. This
has shown to give accurate results while keeping computational costs modest. At any given time,
the estimated value for the state vector is then taken to be the ensemble average.

xk =
1

q

q
∑

j=1

x
(j)
k . (11)

The filter is broken down into a forecast and an analysis step. In the forecast step, the physical
model is used to step the state forward in time with (7). Each representation of the state vector

x
(j)
k in the ensemble at time k is propagated through F with x̂

(j)
k+1 = F (x

(j)
k ). Next, in the analysis

step, if an experimental measurement yk+1 is available at the current time step k+1, then it is used
to correct the forecast. As described in the dynamical system equations, each ensemble member
is mapped to measurement space H(xk+1). The analysis proceeds by minimizing a cost function
involving the difference between H(x) and the data point y, while accounting for measurement
noise and model error. This cost function marks the key difference between the EnKF and other
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ensemble Kalman methods. The EnKF cost function is given by

J(x) =
1

2
‖yk −H(x)‖2

R
+

1

2
‖x− x̂k‖2Ck

(12)

=
1

2
[yk −H(x)]TR−1[yk −H(x)] +

1

2
[x− x̂k]

T
C
−1
k [x− x̂k], (13)

where R is the measurement noise covariance matrix, which is an input to the algorithm, and Ck

is the ensemble covariance at time step k. This covariance is defined as

Ck = Ak(Ak)
T, (14)

where Ak is the state perturbation matrix

Ak =
1√
q − 1

[

x
(1)
k − xk, ... , x

(q)
k − xk

]

. (15)

In fact, the minimization does not make use of the covariance matrix directly, but instead uses the
state perturbation matrix and scaled output perturbation matrix HAk defined as

HAk =
1√
q − 1

[

y
(1)
k − yk, ... , y

(q)
k − yk

]

. (16)

The optimization is carried out by finding the minimizer xk satisfying

xk = x̂k +Ak ·wk, (17)

with wk a correction coefficient. This restricts the solution to the subspace spanned by the scaled
perturbation matrix around the prior estimate x̂k. The optimization can be restated as

wk = argmin
w∈Rq

J(w), (18)

where

J(w) =
1

2
‖w‖2 + 1

2
‖yk −H(x̂k)−HAk(w)‖2

R
. (19)

The solution is unique, and using the Woodbury matrix identity to write the inversion in measure-
ment space, can be written as

wk = (HAk)
T[R+ (HAk)(HAk)

T]−1(yk −H(x̂k)). (20)

Performing this inversion in the measurement space is in most cases more computationally efficient.
Here this is clear, as the measurement space is comprised of only one variable (bubble radius).
Once the minimizer is found and the analysis step complete, covariance inflation is applied to the
ensemble to correct for the (typical) underestimation of the variance with finite (typically small)
ensembles (see section 3.3 for details on covariance inflation). Finally, the forecast step can be
repeated.

6



3.2. The iterative ensemble Kalman smoother

Minimizing deviation from data at future times can help to smooth out estimation and fo-
cus on longer-term trends. The IEnKS uses information from one or multiple future time steps
in its assimilation, and can thus be an effective tool. While the ensemble initialization and
forecast step are the same as that of the EnKF, the difference in the analysis step is twofold.
First, the cost function is modified to minimize difference with data at a single or multiple future
times (Evensen and van Leeuwen, 2000). The assimilation thus trails the simulation by a number
of time steps (called the lag). Second, it is no longer minimized analytically but iteratively using a
Gauss–Newton algorithm.

The IEnKS method used here is from Bocquet and Sakov (2013a) and Sakov et al. (2012).
Bocquet and Sakov (2013b) have shown it to be effective for state and parameter estimation prob-
lems with highly nonlinear dynamics. Its cost function can take two forms referred to as ‘single
data assimilation’ (SDA) or ‘multiple data assimilation’ (MDA) (Bocquet and Sakov, 2013a). The
IEnKS–SDA cost function penalizes difference with measurements at a single time step k+L, where
L corresponds to the lag of the smoother. It is given by

J(x) =
1

2
‖yk+L −H ◦ Fk→(k+L)(x)‖2R +

1

2
‖x− x̂k‖2Ck

. (21)

On the other hand, the IEnKS–MDA cost function minimizes this difference over a data assim-
ilation window (DAW) from k + 1 to k + L, and is expressed as

J(x) =
1

2

L
∑

i=1

βi‖yk+i −H ◦ Fk→(k+i)(x)‖2R +
1

2
‖x− x̂k‖2Ck

, (22)

where βi are weights attributed to given time steps with
∑

βi = 1. Again, a solution of the form
x = x̂k +Ak ·w is sought, but a Gauss–Newton method is used (Bocquet and Sakov, 2013a). The
minimizer w is found by iterating following

w(i+1) = w(i) −H−1(i)∆J(i)(w(i)), (23)

where i is the iteration number, and H is the approximate Hessian

H(j) = (q − 1)I +HAT
(j)R

−1HA(j), (24)

where I is the q × q identity matrix. The gradient is given by

∆J(j) = −HAT
(j)R

−1[yk+L −H ◦ Fk+L←k(xk)] + (q − 1)w(j). (25)

For the smoother, HA is more complicated than it is for the filter as it involves differences
with measurements at future time steps. This quantity is akin to a tangent linear operator from
ensemble to measurement space and has to be estimated. Following Bocquet and Sakov (2013a), a
finite-difference estimate is used:

HA(j) ≈
1

α
H ◦ Fk+L←k(x

(j)
k 1T + αAk)

(

I − 1 · 1T

q

)

, (26)

with scaling factor α ≪ 1 and 1 = (1 · · · 1)T a vector of length q. The iteration is repeated until
a threshold w(i+1) −w(i) < ǫ, or a fixed number of iterations is reached. Once the optimal value
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wopt is obtained, xopt = x̂ + Ak · wopt is calculated and a new ensemble Ek is sampled at time
step k with

Ek = xopt1
T +

√

q − 1AkH−1/2opt I. (27)

This completes the analysis step. When using the MDA variant, the Hessian and gradient of J are
found with

H(j) = (q − 1)I +

L
∑

i=1

HAT
i βiR

−1HAi (28)

∆J(j) = −
L
∑

i=1

HAT
i βiR

−1[yk+i −H ◦ Fk+i←k(xi)] + (q − 1)w(j). (29)

3.3. Covariance inflation

While the EnKF and IEnKS may converge, ensemble methods are subject to intrinsic sampling
error (Bocquet, 2011; Luo and Hoteit, 2011). This sampling error results from the finite ensemble
size q used to represent the statistics of a system of often much higher dimension. As van Leeuwen
(1999) explains, the EnKF tends to underestimate error variances, particularly for small ensemble
sizes. There exist different ways to address this sampling error, but a simple approach is covariance
inflation (Whitaker and Hamill, 2012), where we correct

x(j) = x+ α(x(j) − x) + λ(j). (30)

Here, x denotes the ensemble average, as defined in (11), after the analysis step. Parameters α and
λ correspond to multiplicative and additive inflation parameters, respectively.

There exist many schemes for multiplicative inflation, the most simple of which is picking a
scalar α (usually 1.005 ≤ α ≤ 1.05). This can work well but requires extensive tuning to optimize
the value for each run or data set. Instead, Whitaker and Hamill (2012) propose a scheme they call
‘Relaxation Prior to Spread’ (RTPS). Here, the value for α is found at each time step using

αi = 1 + θ

(

σb
i − σa

i

σa
i

)

, (31)

where σa
i and σb

i are the prior and posterior ensemble standard deviation for the ith element of the
state vector (α is a vector here), and θ is a scalar (usually 0.5 ≤ θ ≤ 0.95). As this expression for α
shows, this scheme inflates the covariance more in regions where the analysis led to a large correction.
Whitaker and Hamill (2012) test this method and compare it to other approaches, showing that
it performs well. We similarly find that this performs as well or better than a simple scalar α for
our tested cases. This RTPS model was used with θ = 0.7. Additive covariance inflation was not
found to significantly affect results and introduced some stability issues with larger magnitudes of
λ. Therefore, λ = 0 is used.

3.4. A hybrid ensemble-based 4D–var method

As with ensemble Kalman methods, ensembles can be used with 4D-Var to estimate covariance
empirically, thus reducing computational cost (Gustafsson and Bojarova, 2014; Liu et al., 2008).
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The present method (En4D-Var) is a fully offline extension of the IEnKS–MDA method. Again,
the ensemble is initialized in the same way as EnKF, but the cost function is here

J(x) =
1

2

∑

k

βk‖yk −H ◦ Fk←0(x)‖2R +
1

2
‖x− x̂k‖2C0

. (32)

The difference with the IEnKS–MDA cost function is the data assimilation window size. Rather
than minimizing over a few time steps forward and then stepping through time, the minimization
is done over the entire time domain and only the initial state vector is corrected. Each new
iteration is initialized with the corrected initial state (including parameters to estimate). The
same minimization procedure as described in section 3.2 is used. When the minimization has
converged, a final simulation is run with the forecast model only. In cases where only a few
iterations are necessary, this method reduces computational cost as compared to the IEnKS-MDA.
The time dimension is still full included, but each point in time is only assimilated once per iteration.
Furthermore, this retains the advantage of ensemble methods. As opposed to classical 4D–Var, there
is no need to linearize the state function and find the tangent linear adjoint operator. This novel
adaptation of the IEnKS method is well suited to the present problems given that our interest is
the estimation of material properties which are, at the outset, assumed to be constant.

4. Testing with synthetic data

4.1. Parameter estimation results

Synthetic data where the true shear modulus and viscosity are known is generated from the
model (section 2) and used to test the data assimilation methods in a setting where there is no
modeling error. Bubble radius time-history data from the simulation is sampled at 270,000 frames
per second to match available experiments. Random Gaussian noise is added to these samples
to mimic experimental data. The standard deviation of this noise is set at σ = 0.02, which is
greater than the estimated noise of the experiments. Two polyacrylamide gels were examined with
nominal values of shear modulus and viscosity determined by Estrada et al. (2018). For the stiff
gel: Gstiff = 7.69kPa, µstiff = 0.101Pa s, and for the soft gel: Gsoft = 2.12 kPa, µsoft = 0.118Pa s.
Since similar estimation accuracy was achieved in both cases, we report results for the stiff gel only.
The other material properties used are taken from Estrada et al. (2018) and given in table 1. No
uncertainty is added to these parameters in the present study to match their conditions and focus
on estimating G and µ.

Parameter Value Parameter Value
ρ 1060kg/m3 c 1430m/s
p∞ 101.3kPa γ 5.6× 10−2N/m
D 24.2× 10−6m2/s κ 1.4
Cp,g 1.62 kJ/kgK Cp,v 1.00kJ/kgK
A 5.3× 10−5W/mK2 B 1.17× 10−2W/mK2

pref 1.17× 108 kPa Tref 5200K
T∞ 298.15K

Table 1: Model parameters as they follow from Estrada et al. (2018).
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An example simulated radius curve and sampled surrogate measurements (with noise added)
with these parameters is shown in figure 1a, plotted against non-dimensional time

t∗ =
t

Rmax

√

p∞
ρ

. (33)

With the simulated data, the evolution over time of all variables in the state vector is known. For
example, bubble-wall velocity, bubble pressure and stress integral are plotted in figure 1b.

(a) (b)

Figure 1: Simulated bubble radius and noisy sampled data used to test data assimilation methods (a),
alongside simulated bubble-wall velocity, normalized bubble pressure and stress integral (b), plotted over
non-dimensional time t∗.

A set of initial guesses for the shear modulus and viscosity, ranging from 10% to 100% error
from the true values, were used to test each method. Table 2 summarizes results for a subset of
these cases, representing 10, 50 and 100% initial error in G and µ. In each case, ensembles were
initialized as Gaussian with these erroneous material properties as the mean, and standard devia-
tion increasing with increased error. That is, the spread of the initial ensemble was made wider for
cases with more error, to account for the increased uncertainty in the initial guess. To match the
tests on experimental data in the next section, simulated data is limited to the first three peaks of
the bubble collapse. This corresponds to approximately 35 points given the initial conditions and
frame rate. Estrada et al. (2018) found that limiting the data to this region led to better parameter
estimation. Similarly, we find that the model fails to fit the radius measurements after this time.
Reasons for this reduced accuracy at later times are discussed in section 5.3.
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Method G estimate (%error) [kPa] µ estimate (%error) [Pa s] Run time [s]

Guess 1 8.50 (+10%) 0.09 (-10%) –
EnKF 7.234 (5.93%) 0.098 (2.61%) 428

IEnKS–SDA (lag 1) 7.364 (4.24%) 0.110 (8.58%) 852
IEnKS–MDA (lag 3) 6.682 (13.11%) 0.100 (0.92%) 8076

En4D–Var 7.150 (7.03%) 0.099 (1.80%) 679

Guess 2 3.80 (-50%) 0.05 (-50%) –
EnKF 3.988 (48.1%) 0.057 (43.1%) 375

IEnKS–SDA (lag 1) 4.203 (45.4%) 0.080 (20.9%) 904
IEnKS–MDA (lag 3) 7.390 (3.90%) 0.086 (15.2%) 9755

En4D–Var 7.396 (3.82%) 0.100 (0.52%) 690

Guess 3 15.0 (+100%) 0.20 (+100%) –
EnKF 13.649 (77.5%) 0.175 (73.1%) 495

IEnKS–SDA (lag 1) 10.272 (33.6%) 0.142 (40.7%) 800
IEnKS–MDA (lag 3) 10.078 (31.1%) 0.121 (19.9%) 9802

En4D–Var 10.210 (32.7%) 0.118 (16.6%) 611

Table 2: Comparing accuracy of estimation with 3 different initial guesses for the parameters. Runs were
performed on a machine with dual 12-core 2.3Ghz processors

Table 2 shows that with a relatively good initial guess with 10% error, the assimilation methods
perform adequately. For example, the EnKF tracks the correct values for shear modulus and
viscosity within 6% and 3% respectively. With a moderate initial error of 50%, however, the EnKF
looses accuracy and barely improves on the initial guess. In some cases, the EnKF was observed to be
unstable, and the initial ensemble covariance had to be limited to prevent divergence. This limited
the ability of the filter to estimate the parameters of interest, and thus despite its computational
efficiency, the EnKF is eliminated from further consideration.

The IEnKS and En4D–Var performed better than the EnKF for the 50% error case. The
estimation was stable while varying initial conditions and covariance. Still, the lag 1 IEnKS–SDA
only resulted in marginal improvements in the parameter values. The lag 3 IEnKS–MDA, on
the other hand, resulted in further improvement, but at a high computational cost. This cost is
associated with the calculation of the Hessian (see equation (28)) and gradient of the cost function
(see equation (29)), which now involves three future time steps. The En4D–Var performs best in
this test case, achieving good estimation with a comparably fast computational time. We note that
while the En4D–Var was run for fifteen iterations in each case, the material property estimation
converged by the fifth iterations. Thus, results and run time after five iterations are reported.

Estimation results in the case with 50% error are presented in figure 2. Figure 2d shows the
suitability of the En4D–Var: both parameters converge to accurate estimates within a few iterations.
Overall, figure 2 also highlights the value of looking over a time horizon. While the EnKF and lag
1 IEnKS appear to disbelieve the data too much throughout the run, taking into account multiple
times enables the lag 3 IEnKS–MDA to adjust to new information well, notably around collapse.
Indeed, the IEnKS–MDA significantly corrects the viscosity estimate around each collapse, and the
shear modulus estimate during the second collapse. Assimilating data from single time-steps appears
to be insufficient given the short time scales of bubble cavitation and limited data. Smoothing over
multiple times far improves performance around collapse points, which, given the IEnKS–MDA
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results, appear to hold the most pertinent data to make the necessary corrections.

(a) EnKF (b) IEnKS–SDA (lag 1)

(c) IEnKS–MDA (lag 3) (d) En4D–Var

Figure 2: Estimation of shear modulus and viscosity with initial guesses of G = 3.8 kPa and µ = 0.05 Pa s
(both at 50% error). The estimation is plotted over non-dimensional time t for the EnKF and IEnKS
methods, and over iteration number for the En4D–Var.

In the case with 100% error in the initial guess, the relative performances of each method are
similar to the 50% error case, but the three smoothers stagnate at 20 to 40% errors for µ and G.
Weighted by computational expense, the En4D–Var performs best, but the IEnKS–MDA should not
be discarded. Indeed, the time-varying estimation provides additional information about potentially
time-dependent modeling uncertainties. While the physical model used assumes a constant shear
modulus and viscosity, the quasi-online IEnKS–MDA can uncover potential limitations of this
assumption. This issue is further examined in section 5.3.

4.2. Uncertainty

Ensemble methods carry information about error statistics of the estimated parameters in the
final ensemble. One way to visualize ensembles is through a histogram, an example of which is shown
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Figure 3: Histogram of the final estimate for log(Ca) with the lag 1 IEnKS and fitted normal curve, where
n is the number of ensemble members at each value of log(Ca).

in figure 3 for the logarithm of the Cauchy number with the lag 1 IEnKS–SDA estimator. Despite
the nonlinearity of the model, the tested methods track only the first two statistical moments of an
assumed Gaussian filtering or smoothing PDF. Previous works (e.g., (Evensen and van Leeuwen,
2000; Yang et al., 2012; Katzfuss et al., 2016)) have discussed that adequate results can still be
achieved with a nonlinear model where this assumption must break down to some degree. Our
results for the IEnKS and En4D–Var results above confirm that this is the case in this example.

Figure 4 shows a comparison of the fitted histograms for the methods for the case with 50% initial
error in both parameters. Despite imperfect estimation, the En4D–Var converges significantly more
than other methods given the limited data. The IEnKS–MDA curve displays the least variance of
the Kalman methods, as expected.

Anticipating experimental results, the En4D–Var was run for 10 simulated data sets with the
same ground truth but different (random) noise. Results are shown in figure 5 for shear modulus
and viscosity estimates over the data sets. The dashed black lines correspond to the truth, and
the blue line to the mean estimate over the 10 runs. Results across these 10 data sets are fairly
uniform (standard deviation of 0.98kPa for G, 0.009Pa s for µ), confirming that reliable estimates
are obtained despite noisy measurements across data sets. Figure 6 shows a histogram combining
final ensembles for shear modulus to visualize overall results. As each of the 10 ensembles should be
approximately normal, a Gaussian curve is expected when combining them. Figure 6 indeed shows
an approximately normal distribution, as does the equivalent histogram for viscosity (as shown in
section 5.3 in figure 9a).
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IEnKS-sda

IEnKS-mda
EnKF

En4D-Var

Truth
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EnKF

IEnKS-sda
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Truth Initial Guess
En4D-Var

(b)

Figure 4: Comparing final ensembles for log(Ca) (a) and log(Re) (b) in the case with 50% initial error in
both parameters.

(a) (b)

Figure 5: En4D–Var results for G (a) and µ (b), for ten simulated data sets.
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Figure 6: Histogram for G combining 10 final ensembles for simulated data runs with En4D-Var.

Based on these results with simulated data, given reasonable initial guesses as to the shear
modulus and viscosity, we can confidently expect to estimate both parameters to within 5% using
the 10 available data sets. Multiple initial guesses can be tested and their fits with experimental
radius histories compared. Therefore, it is straightforward to formulate an initial guess with less
than 50% error, and thus obtain results comparable to the second test case with simulated data.
The En4D–Var is the baseline given its performance. IEnKS–MDA is also tested for its ability to
estimate parameters quasi-online.

5. Applied to experimental data

5.1. Experimental setup

For a more detailed description of the experimental setup for data collection, see Estrada et al.
(2018). After the polyacrylamide gel is prepared, each cavitation event is induced with a 6ns pulse of
a “user-adjustable 1–50 mJ, frequency-doubled Q-switched 532nm Nd:YAG laser”. These cavitation
events are triggered at different locations in the same large batch of polyacrylamide to maximize
uniformity of material properties across experiments. Bubble radius is captured approximately
every 3.7µs, processing 270 000 fps high-speed camera output by subtracting a reference image
from each frame and fitting a circle. A few sources of error may be present. Nonuniformity of
the polyacrylamide gel or discrepancies across data sets could cause the bubble to lose spherical
symmetry. Laser pulses may also vary slightly across runs, affecting the energy deposited in the
system and thus initial growth conditions. In practice, a difference in maximum bubble radii was
observed, with Rmax = 388± 35µm across experiments with the stiff gel, and Rmax = 430± 17µm
with the soft gel. Ten experimental data sets in the stiff gel were used for the following results, in
part to address this potential lack of uniformity in experimental conditions.

5.2. Initial estimates for G and µ with En4D–Var

The noise magnitude in the experimental data is smaller than what was used in the simulated
data with the same data rate. Therefore, if the model is adequate and the noise accurately repre-
sented as Gaussian, the IEnKS and En4D–Var should yield comparable or better estimation results
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with the experimental data. As with the simulated data, the assimilation window is limited to
the initial collapse and two subsequent rebounds to match the setup used by Estrada et al. (2018),
who estimated in the stiff-gel: Gstiff = 7.69± 1.12 kPa and µstiff = 0.101± 0.023Pa s. The results
are compared to theirs. Our estimation is initialized with three different initial guesses, detailed in
table 3. Similarly to the surrogate truth data from the last section, initial guesses with 10%, 50%
and 100% difference from the Estrada et al. (2018) estimates are chosen.

Method G estimate ±σ [kPa] µ estimate ±σ [Pa s] Run time [s]

Guess 1 8.50 (+10% diff) 0.09 (-10% diff) –
IEnKS–SDA (lag 1) 7.93± 1.68 0.096± 0.012 2751
IEnKS–MDA (lag 3) 7.51± 1.50 0.089± 0.016 9536

En4D–Var 7.41± 1.63 0.093± 0.014 609

Guess 2 3.80 (-50% diff) 0.05 (-50% diff) –
IEnKS–SDA (lag 1) 4.32± 0.46 0.085± 0.013 2832
IEnKS–MDA (lag 3) 6.67± 1.43 0.083± 0.016 10052

En4D–Var 6.53± 1.58 0.090± 0.014 585

Guess 3 15.0 (+100% diff) 0.20 (+100% diff) –
IEnKS–SDA (lag 1) 9.46± 2.76 0.114± 0.014 2871
IEnKS–MDA (lag 3) 8.57± 1.52 0.103± 0.015 9222

En4D–Var 8.24± 1.58 0.098± 0.016 535

Table 3: Comparing results of estimation with three different initial guesses for the parameters. Runs were
again performed on a machine with dual 12-core 2.3Ghz processors

Table 3 summarizes the results from the three different initial material parameters guesses for
the three methods. These estimates correspond to the mean estimate over all 10 experimental data
sets. The standard deviation σ of the results is also reported.

The En4D–Var estimates for shear modulus and viscosity all fall within the error bounds pro-
vided by Estrada et al. (2018). Results are close to theirs in the test cases considered. The estimates
are uniform, with only 8.5% difference between viscosity estimates, and 23% difference in the shear
modulus results across the data sets. This larger difference in the shear modulus estimates and in
the associated standard deviations is expected, as we have found the radius curves to be relatively
more sensitive to µ than G. Finally, the average normalized root mean squared error (NRMSE)
for bubble radius is low at 2.16× 10−2 for guess 1, indicating that a good fit was achieved with
this method (see equation (34) for NRMSE definition). Given that the guess–1 results lead to the
smallest radius error, our initial shear and viscosity modulus estimates are G = 7.41± 1.63 kPa and
µ = 0.093± 0.014Pa s, respectively. An example bubble radius curve is shown in figure 7, for one
of the experimental data sets (data set 10).
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Figure 7: Radius curve given by En4D–Var estimates and experimental measurements for data set 10.

The standard deviation across the 10 IEnKS–SDA runs was comparable to the En4D–Var.
However, the estimates varied significantly based on the initial guess. These ranged from 4.32kPa
to 9.46 kPa for shear modulus, and from 0.085Pa s to 0.114Pa s for viscosity. Except for estimates
from guess 1, the shear modulus estimates are also outside the bounds given by Estrada et al. (2018),
and the radius fit is significantly worse than that of the En4D–Var, with an average NRMSE of
9.10× 10−2.

On the other hand, while still worse than that of the En4D–Var, the IEnKS–MDA estimates
are within the Estrada et al. (2018) margin, and the radius fit is better than that of the IEnKS–
SDA (NRMSE = 6.79× 10−2). The IEnKS–MDA thus represents the best tested quasi-online
method, as expected from the simulated data results of section 4. It is important to note here that
the bubble radius fits were all obtained by re-running simulations with final shear modulus and
viscosity estimates and comparing to experimental measurements. This is a fair way to compare the
ability of each method to estimate these parameters. However, the radius fit obtained online during
assimilation with the IEnKS methods is better (and comparable with the En4D–Var estimates),
given that the radius is also being directly corrected at each time-step as part of the state vector.
For parameter estimation, the En4D–Var is the best tested method, but the IEnKS–MDA is a good
quasi-online estimator. This is particularly useful for the discussion in section 5.3, where we make
use of this time-varying estimation.

5.3. Refined estimates

The estimates obtained for the shear modulus and viscosity from the previous section show that
ensemble data assimilation methods can be effectively used for estimation of viscoelastic material
properties. A further look at the results, though, provides more information than simply this
estimate. Examining estimates for each variable across the 10 tested experimental data sets, as
shown in figure 8, there appears to be a discrepancy between data sets 3, 4, 5 and the rest for the
viscosity. While the shear modulus estimation shows no discernible trend (despite the previously
mentioned larger spread in results), the viscosity data appears to be split between two estimates.
The red line in figure 8b shows the mean estimate of data sets 3 to 5 (µ = 0.074Pa s) and the green
line that of the rest (µ = 0.102Pa s).
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(a) G estimates (b) µ estimates

Figure 8: En4D–Var estimates for 10 experimental data sets.

Figure 9 compares the histogram obtained when collating the 10 × q final ensemble members
for viscosity from 10 runs with different simulated data but the same ground truth (Figure 9a) and
the 10 runs done with experimental data (Figure 9b). As discussed in section 4.2, we expect to
approximately retrieve a Gaussian distribution around the estimate, as is the case for the simulated
run in figure 9a. However, figure 9b shows an apparent bimodal distribution. The lower viscos-
ity peak corresponds to the mean estimate of data sets 3 to 5, and the higher peak to that of the rest.

(a) Simulated data (b) Experimental data

Figure 9: Comparing final combined ensembles for viscosity estimation in simulated and experimental data.

To understand what may be causing this discrepancy of results, it is useful to consider the
IEnKS–MDA and its quasi-online estimation of viscosity. Figure 10 shows a comparison between
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viscosity estimation for data set 2 (figure 10a) and data set 3 (figure 10b). These are representative
of data sets with a high and low viscosity estimate respectively. They result in estimates of µ =
0.098Pa s for data set 2, and µ = 0.077Pa s for data set 3. Comparing the two data sets, it
appears that the assimilation begins similarly, correcting to a higher viscosity estimate during the
first collapse. However, there is a divergence between the behavior of the smoother after each
collapse point, particularly the second one (around t = 65µs). Figure 10a shows a slow decrease
and convergence towards a higher viscosity value, with negligible change at the second collapse
point. However, this estimate drops sharply after these collapse points in figure 10b. In fact, the
data around each collapse causes the viscosity estimate to sharply drop in data set 3, which does
not occur in data set 2. This behavior is representative of what is seen in data sets 3 through 5,
but does not occur in the rest of the runs.

(a) (b)

Figure 10: Comparing online estimation of viscosity in data sets 2 (a) and 3 (b) using the IEnKS–MDA.

Given the physical model used, the viscosity should be constant and such drops in the param-
eter are not expected. The model alone thus cannot adequately capture the behavior of the gel
seen by the IEnKS in these data sets. We can posit that a violent collapse in these data sets is
causing inelastic behavior in the material, and thereupon this perceived change in material prop-
erties (Yang et al., 2020). More work will be needed to determine the exact cause, but this could
perhaps result from fracture, damage to the polymer network in the gel, or combustion in the gas
phase (Movahed et al., 2016; Kundu and Crosby, 2009; Raayai-Ardakani et al., 2019). Regardless
of physical cause, this time-dependent behavior is not accounted for in the model, but is captured
by the IEnKS–MDA as a drop in the perceived viscosity.

Figure 11 compares the normalized root mean squared error (NRMSE) across all data sets, given
by

NRMSE =

√

(ysim − yexp)
2

yexp
, (34)

where yexp is the experimental bubble radius time history, and ysim the simulated time history
given the estimated material properties (at the corresponding times).
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Figure 11: Bar plot of radius normalized root mean squared errors for each data set. Also plotted are the
previous estimate mean NRMSE (mean of all sets), the mean NRMSE for sets 3 to 5, and the final estimate
mean NRMSE (mean of all other sets).

Figure 11 shows a higher error in the estimated bubble radius curves fit for data sets 3 through
5, which is expected given the heightened model uncertainty in these data sets. Because of this
uncertainty and higher error, we discard these three sets as outliers, which yields the final IEnKS–
MDA-informed En4D–Var estimate reported in table 4. Notable are the drop in standard deviation
for viscosity as compared to the previous En4D–Var estimate and the reduced NRMSE.

Estimate G± σ [kPa] µ± σ [Pa s] NRMSE
Estrada et al. (2018) 7.69± 1.12 0.101± 0.023

Previous 7.41± 1.63 0.093± 0.014 2.16× 10−2

Final 7.81± 1.80 0.102± 0.006 1.95× 10−2

Table 4: Final En4D–Var estimates (discarding three outlier data sets) and standard deviation, along with
the average radius normalized root mean squared error. The previous best estimate corresponds to the
mean of all 10 data sets, outliers included.

6. Conclusions

Ensemble-based data assimilation was successfully used to estimate the mechanical properties
of soft viscoelastic materials at high strain rates via observations of bubble collapse. In particular,
the ensemble-based 4D–var method (En4D–Var) provided an accurate estimate efficiently, while
the iterative ensemble Kalman smoother with multiple data assimilation (IEnKS–MDA) reliably
estimated parameters quasi-online. Added benefits of these algorithms include adaptability to
different numerical or viscoelastic models, and scalability to further parameter estimation, with
negligible computational cost for additional parameters. These methods account for both model
and experimental error, with noisy measurements or inaccuracies in the model having a limited
impact on estimation. The ability to adjust the entire state vector rather than just the parameters
to estimate limits inaccuracies from a poor initial guess. Overall, this represents a viable framework
for estimation of mechanical properties of viscoelastic materials.
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Using the En4D–Var and IEnKS–MDA together provided information, in this case, in the form
of model error. It is hypothesized that the bubble collapses are damaging the polyacrylamide
gel in certain test cases, leading to a reduced estimated viscosity after each subsequent collapse,
a physical effect not accounted for in the model. Thus, while the En4D–Var provides the best
estimates (especially given its relative computational efficiency), the IEnKS–MDA can provide
additional information about time-dependent modeling errors.
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