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We develop a novel “moving capacitor” dynamic network model to simulate immiscible
fluid-fluid displacement in porous media. Traditional network models approximate the
pore geometry as a network of fixed resistors, directly analogous to an electrical circuit.
Our model additionally captures the motion of individual fluid-fluid interfaces through
the pore geometry by completing this analogy, representing interfaces as a set of moving
capacitors. By incorporating pore-scale invasion events, the model reproduces, for the
first time, both the displacement pattern and the injection pressure signal under a
wide range of capillary numbers and substrate wettabilities. We show that at high
capillary numbers the invading patterns advance symmetrically through viscous fingers.
In contrast, at low capillary numbers the flow is governed by the wettability-dependent
fluid-fluid interactions with the pore structure. The signature of the transition between
the two regimes manifests itself in the fluctuations of the injection pressure signal.

Key words:

1. Introduction

A beautiful array of flow patterns arises when a low-viscosity fluid displaces a
more-viscous fluid in a porous medium. The problem has been extensively examined
through laboratory experiments, as well as numerical simulations and theoretical
models (Saffman & Taylor 1958; Bensimon et al. 1986; Homsy 1987; Paterson 1981;
Tryggvason & Aref 1983; Nittmann et al. 1985; Kadanoff 1985; Arnéodo et al. 1989;
Li et al. 2009; Bischofberger et al. 2015; Chen & Wilkinson 1985; Måløy et al. 1985;
Chen 1987; Fernández et al. 1990). The dynamics of such displacement can be
characterized by two dimensionless groups: the ratio of viscous to capillary forces, or
the capillary number (Ca), and the ratio of defending to invading fluid viscosities,
or viscosity contrast (M). For high Ca, the resulting displacement patterns are
reminiscent of diffusion limited aggregation (Witten et al. 1981; Daccord et al. 1986;
Meakin et al. 1989; Niemeyer et al. 1984; Conti & Marconi 2010). For low Ca, the
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displacement dynamics becomes more intricate, and the emerging patterns display a
strong dependence on the pore geometry (Lenormand & Zarcone 1985; Lenormand et al.

1983, 1988; Fernandez et al. 1991; Måløy et al. 1992; Furuberg et al. 1996; Ferer et al.
2004; Toussaint et al. 2005; Holtzman et al. 2012) and the wettability of the medium,
that is, the chemical affinity of the solid for each fluid (Stokes et al. 1986; Trojer et al.
2015; Zhao et al. 2016; Odier et al. 2017). In particular, an intermittent injection
pressure signal emerges in the limit of low Ca (Furuberg et al. 1996; Måløy et al. 1992).
Given that in most practical applications visualization of the flow in porous media is
not possible, the pressure signal is often the only source of information. Surprisingly,
no modeling approach to date has been able to capture the injection pressure signal
across different Ca and pore wettabilities. Here, we develop a new pore-network model
that fills this gap, and we use it to explore the transition from viscous-dominated to
capillary-dominated flow regimes by examining the connections among fluid morphology
and pressure signal.

Pore network models of flow in porous media can be broadly classified into two
groups: quasi-static and dynamic models (Blunt 2001; Meakin & Tartakovsky 2009;
Joekar-Niasar & Hassanizadeh 2012). Quasi-static models neglect viscous effects and
advance the invading fluid through either invasion-percolation (Chandler et al. 1982;
Lenormand et al. 1988) or event-based algorithms (Cieplak & Robbins 1990, 1988). Al-
though a quasi-static approach can be effective in reproducing experimental invasion
patterns at low Ca (Primkulov et al. 2018), it is unable to capture the temporal evo-
lution of the injection pressure signal. Dynamic network models approximate the flow
channels with a network of interconnected capillary tubes. Viscous pressure drops are
calculated by assuming fully developed viscous flow within each tube. Local capillary
pressures within the network are calculated from either the interface position within
pore throats (Aker et al. 1998a; Gjennestad et al. 2018) or through mass balance of
the two phases in pore bodies (Al-Gharbi & Blunt 2005; Joekar-Niasar et al. 2010).
Another notable class of models is invasion-percolation in a gradient: a percolation
model designed to incorporate buoyancy forces (Wilkinson 1984; Birovljev et al. 1991;
Frette et al. 1992; Meakin et al. 1992), and then extended to model (linear) pressure
gradients (Yortsos et al. 1997). None of the invasion-percolation in a gradient studies,
however, incorporate any notion of wettability (they all deal exclusively with strong
drainage), pore-scale dynamics, or capillary-number-dependent pressure fluctuations.

In fact, most existing pore-network models, both quasi-static and dynamic, are
limited to strong drainage (or injection of non-wetting fluid) and do not include
wettability-induced cooperative pore filling (Joekar-Niasar et al. 2010; Aker et al.
1998a; Al-Gharbi & Blunt 2005; Holtzman & Juanes 2010). The only dynamic pore
network model to date that includes cooperative pore filling events (Holtzman & Segre
2015) does so by combining pore-level invasion events of Cieplak & Robbins (1988, 1990)
with viscous relaxation through the pore-network. This viscous-relaxation assumption
is at odds with the physics of interface motion in the capillary-dominated regime and,
as a result, this model is unable to capture the injection pressure signal observed
experimentally in the limit of intermediate and low Ca (Zhao et al. 2016; Furuberg et al.

1996; Måløy et al. 1992). We present in §2 a consistent framework that combines
viscous, capillary, and wettability effects in a single dynamic network model that builds
a direct analogy between local fluid-fluid interfaces and electric capacitors. Our model
reproduces, quantitatively, the fluid-fluid displacement patterns for a wide range of Ca
and wettabilities (§3), and points to a surprising and heretofore unrecognized transition
in the pressure fluctuations between the low and high Ca flow regimes (§4).
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Figure 1. (a) Schematic diagram of in-plane and out-of-plane curvatures within the flow cell.
Out-of-plane curvature represents the overall affinity of the porous medium to the invading fluid.
It is determined by θ and is analogous to a battery. In-plane curvature changes as the local
interface evolves while pinned to a pore throat, and it is analogous to a capacitor. (b) Evolution
of burst, touch, and overlap events. (c) Temporal profiles of the injection pressure bear close
resemblance to similar experiments in the drainage regime at low (orange) and high (blue) Ca
(Furuberg et al. 1996; Zhao et al. 2016).

2. Moving Capacitor Model

Consider a moving fluid-fluid interface in a micromodel (FIG 1a). Neglecting dynamic-
contact-angle effects (Hoffman 1975) for simplicity, the shape of the meniscus between
posts is uniquely defined by the combination of Laplace pressure and substrate wet-
tability defined through a contact angle θ at which the interface meets post surfaces
(Cieplak & Robbins 1988, 1990). As the interface advances, the Laplace pressure in-
creases until the interface encounters a burst, touch or overlap event, as defined by
Cieplak & Robbins (1988, 1990). The burst event is equivalent to a Haines jump (Haines
1930; Berg et al. 2013), while the touch and overlap events take place when the local in-
terface either touches the nearest opposing post or coalesces with a neighboring interface
respectively [FIG. 1(b)]. If the interface becomes unstable due to burst or touch, a single
pore is invaded and two new interfaces appear. In the case of an overlap event, two (in
some cases more) pores are filled simultaneously. These pore-level events are an integral
part of the model and, indeed, this sensitivity is what permits capturing wettability effects
within the model. The events evolve differently at different wettabilities—burst events
are most frequent in drainage, while touch and overlap are most frequent in imbibition
(or injection of wetting fluid) (Cieplak & Robbins 1990; Primkulov et al. 2018).

We can explicitly calculate the critical Laplace pressure ∆pcrit corresponding to
all events from the values of the contact angle, radii and coordinates of the posts
(Primkulov et al. 2018), and thus can use the analogy between electric capacitors and
fluid-fluid interfaces in constructing our network model. A capacitor represents the
pinning of the fluid–fluid interface at a pore throat, and is active in both drainage
and imbibition: the interface moves only when a local depinning threshold (∆pcrit) is
reached, and the fluid front moves to restart the pinning–depinning cycle from zero
in-plane curvature [Fig. 1(b)]. This progression of the in-plane curvature in our model
was motivated by the work of Cieplak and Robbins (Cieplak & Robbins 1988, 1990) [see
also (Rabbani et al. 2018)] and experiments on the progression of the in-plane curvature
between the Hele-Shaw cell posts (Jung et al. 2016; Lee et al. 2017). This is what allows
capturing pressure fluctuations in the limit of low Ca [Fig. 1(c)]. The battery analogy
represents the overall affinity of the porous medium to the invading fluid, set by the
out-of-plane curvature at the fluid front. The out-of-plane curvature is fixed throughout
a single simulation, and determined by the value of the contact angle (given the constant
gap between the flow-cell plates): it is positive in drainage and negative in imbibition
[Fig. 1(a)]. To complete the analogy between an electric circuit and a pore network,
one can think of a network of resistors being responsible for viscous effects, capacitors
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Figure 2. (a) Phase diagram of the invading fluid morphology at breakthrough; (b) Fractal
dimension, computed by means of the box-counting method; (c) Number of fingers per unit area
of injected fluid, which exhibits a maximum near θ = 90◦; (d) Normalized finger width (w/a)
at different Ca and wettabilities measured at breakthrough. Finger width increases as the posts
become more wetting to the invading fluid.

and batteries responsible for capillary effects, and local rules for circuit rearrangements
responsible for wettability effects [FIG. 1(b)].
Therefore, the pressure drop across an edge of the network containing a fluid-fluid

interface has three components: (i) pressure drop due to viscous dissipation, (ii) Laplace
pressure drop due to in-plane curvature of the interface, and (iii) Laplace pressure drop
due to out-of-plane curvature of the interface. We calculate the viscous pressure drop
assuming Poiseuille flow in a capillary tube, which is analogous to the potential drop
across a resistor. The out-of-plane component of the Laplace pressure can be expressed

as either a positive or negative pressure jump (∆p⊥ = −
2γ cos θ

h
, where γ is the interfacial

tension, and h is the cell height) depending on the substrate wettability; this is analogous
to a battery in an electric circuit. The Laplace pressure due to in-plane curvature of the
interface is analogous to a capacitor which allows flow until it reaches the critical pressure
(∆pcrit = min{pburst, ptouch, poverlap}). Since we can calculate ∆pcrit for all edges at the
invading fluid front, we use a linear estimate of the in-plane Laplace pressure drops
within our network (Φ(t)∆pcrit), where Φ(t) stands for the filling ratio of a given throat.
When Φ(t) → 0, the in-plane Laplace pressure is negligible. When Φ(t) → 1, the throat
is nearly full and has a critical in-plane Laplace pressure ∆pcrit. This analogy between
local interfaces and capacitors allows us to incorporate local changes in Laplace pressure
due to filling of pore throats. Once a node in the network reaches its maximal potential,
which coincides with its filling capacity, it becomes unstable and the interface advances.
We assume that the in-plane and out-of-plane Laplace pressures are decoupled, and this
is done to maintain the simplicity of the overall model. With this assumption, one can run
the model for either h

a
≫ 1 or h

a
≪ 1, where these conditions would result in negligible

or dominant contributions of the out-of-plane curvature in the model, respectively.
The topology of the pore network is captured through the incidence matrix A by

examining the adjacency of the pores (Strang 2007). We number all pores and adopt
the convention that pore connections are oriented in the direction of increasing pore
numbers. Rows of A represent edges, and columns of A represent nodes of the network.
We also make use of the diagonal conductance matrix C, whose elements are hydraulic
conductivities of the network edges. The elements of this matrix can be calculated as

c = πr4

8µL , assuming fully developed Hagen-Poiseuille flow through a rectangular tube
with hydraulic radius r and length L, where µ is the effective viscosity of the fluid in the
channel.
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The pressure difference across the network edges can be calculated as e = b−Ap, where
b and p stand for pressure change due to out-of-plane contribution to Laplace pressure
(batteries) and node pressures, respectively. The network flow rates can be calculated
from this pressure difference as q = Ce. At the same time, flow rates must obey mass
conservation, AT q = f , where f stands for flow sources at the nodes. After eliminating
e, the flow through the network without the in-plane contribution to Laplace pressure
(capacitors) is obtained through the following system of equations:

q = C(b −Ap), (2.1)

AT q = f. (2.2)

We set constant flow boundary conditions at the inlet pores (at the center of the flow cell)
and constant pressure boundary conditions at the outlet pores (at the edges of the flow
cell). We note that Ap can be decomposed into components of nodes with prescribed
pressure and all other nodes (Ap = Aouterpouter + Ãp̃), and therefore Eqs. (2.1)-(2.2)
transform to:

[

C−1 Ã

ÃT 0

] [

q
p̃

]

=

[

b−Aouterpouter
f̃

]

=

[

b̃

f̃

]

. (2.3)

The solution to (2.3) provides values of both edge flow rates and node pressures for given
boundary conditions.
Finally, we incorporate the pressure drop due to in-plane Laplace pressure (capacitors)

within the network. Taking into account the direction of the edges (an array d(t)
consisting of 1 and −1), the total pressure drop across the network edges can be written
as e = b̃−Ãp̃−d(t)Φ(t)∆pcrit. In other words, the in-plane Laplace pressure is the product
of the filling ratio and the critical pressure from the quasi-static model (Primkulov et al.

2018). Therefore, the equations governing two-phase flow through the network can be
written as:

[

C−1(t) Ã

ÃT 0

] [

q(t)
p̃(t)

]

=

[

b̃− d(t)Φ(t)∆pcrit
f̃

]

. (2.4)

We now discuss the mechanics of the time-stepping in our two-phase flow model. After
we initialize the interface locations within the network, we use an adaptive forward Euler
time stepping to update the filling ratios of the network edges at the interface Φ(t). We
ensure that only a fraction of the edge total volume at the interface flows within the time-
step (Aker et al. 1998a). After every time-step, we use Φ(t) to update the conductance
matrix C(t) and resolve the flow through Eq. (2.4) with updated pressure drops across
the fluid-fluid front.
In the spirit of the fundamental contributions from Cieplak and Robbins (Cieplak & Robbins

1988, 1990), our model takes the form of an arrangement of cylindrical posts confined
between the plates of a Hele-Shaw cell. The approach is simple enough to lead to
universal findings, yet sufficiently complex to have direct relevance to microfluidic
geometries, as well as engineered and natural porous media—much like Lenormand’s
phase diagram (Lenormand et al. 1988). By doing so, we demonstrate the ability to
reproduce physics—in particular, pressure fluctuations under a wide range of wetting
conditions—which, until now, were inaccessible to pore-network modeling. A limitation
of the model presented here is that it does not extend to contact angles below 45◦,
where the wetting fluid preferentially wets the corners of the pore-geometry at low Ca
and forms film flow at high Ca (Zhao et al. 2016; Odier et al. 2017).
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3. Invasion Patterns

We simulate immiscible fluid-fluid displacement by setting a constant injection rate at
the center of the flow cell and zero pressure at the outlets. The invading and defending
fluid viscosities are set to 8.9× 10−4 Pa · s and 0.34 Pa · s respectively. The post height h
is 100µm, and interfacial tension γ is set to 13× 10−3 N/m. These parameters as well as
the pore geometry are chosen to mimic the experiments of Zhao et al. (2016). The flow
cell has an outer diameter of 30 cm. We perform simulations for wetting conditions from
strong drainage (θ = 160◦) to weak imbibition (θ = 46◦). FIG. 1(c) shows the pressure
profiles for θ = 160◦ at Ca ∈ {10−3, 10−7}, respectively. In the limit of high Ca, the more-
viscous defending fluid sustains substantial spatial pressure gradients, and the injection
pressure gradually drops as more of the defending fluid is displaced (Zhao et al. 2016). In
contrast, in the limit of low Ca, the pressure field is virtually uniform in each fluid, and the
injection pressure exhibits intermittent fluctuations typical of slow capillary-dominated
drainage (Knudsen & Hansen 2002; Aker et al. 1998b; Måløy et al. 1992; Moebius & Or
2012).

The morphology of the invading fluid at breakthrough can be analyzed by means of
a binary-image representation of the invasion patterns (Cieplak & Robbins 1990, 1988;
Primkulov et al. 2018) [FIG. 2(a)]. We estimate the width and number of fingers in
the invading fluid pattern following the protocol outlined in (Cieplak & Robbins 1988,
1990) and modified in (Primkulov et al. 2018). The binary image is sliced horizontally
and vertically, with each slice containing clusters of invading fluid pixels. We calculate
the finger width as the mean size of these clusters. FIG. 2(d) shows that the finger
width, normalized by the typical pore size, increases as θ → 46◦ for all Ca, which
is in agreement with experimental observations (Stokes et al. 1986; Trojer et al. 2015;
Zhao et al. 2016). While FIG. 2(a) demonstrates that the number of fingers increases
with Ca (Lenormand et al. 1988; Fernández et al. 1990; Zhao et al. 2016), we observe
an unexpected behavior [FIG. 2(b)]: the finger density changes with the substrate
wettability, and exhibits a maximum around θ = 90◦. This effect is most pronounced
for 10−6 < Ca < 10−3 (when viscous and capillary effects are comparable).

We explain the peak in the viscous finger density at θ ≈ 90◦ in FIG. 2(b) by considering
in-plane and out-of-plane contributions to the Laplace pressure. At a fixed Ca, the ratio
of viscous and capillary forces in the micromodel changes as a function of substrate
wettability. The capillary forces have out-of-plane contributions, which are nominally
equal to zero when θ = 90◦, so the ratio of viscous and capillary forces increases as
θ changes from 160◦ to 90◦ at fixed Ca. In addition, when θ changes from 90◦ to
46◦, the cooperative pore filling mechanisms become dominant and widen the largest
fingers, which in turn consume the smaller ones and reduce the number of fingers. The
combination of these two effects results in the local maximum in the number of viscous
fingers around θ ≈ 90◦ across different Ca [FIG. 2(b)].

For a contact angle θ near 160◦ (strong drainage) and high values of Ca (10−3 and
10−4), the invading fluid front advances through viscous fingers with fractal dimension
close to 1.71, typical of DLA-type morphology (Witten et al. 1981). As Ca is reduced
to a low value (10−7), the fractal dimension increases to about 1.82, characteristic of
invasion-percolation (Wilkinson & Willemsen 1983) [FIG. 2(b)]. This increasing trend in
fractal dimension is consistent with the decrease in finger density [FIG. 2(c)] and the
increase in finger width [FIG. 2(d)].

As the contact angle approaches 46◦, cooperative pore filling becomes the dominant
flow mechanism at all values of Ca. This flow regime results in the compact displacement
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Figure 3. (a)-(b) Temporal evolution of the injection pressure at Ca = 10−3 and Ca = 10−7

respectively. At high Ca, the injection pressure decreases as the viscous fingers approach the
outer boundary of the flow cell. At low Ca, the injection pressure is dominated by Laplace
pressure fluctuations at the interface. We use wavelet decomposition (Cai 2002; Sygouni et al.
2006, 2007) to split the pressure signal (Ca = 10−5 and θ = 160◦ here) into its (c) global
trend and (d) cyclic component. (e) The standard deviation of the pressure fluctuations point
at two different regimes. At low Ca, pressure fluctuations are dominated by stick-slip changes
in Laplace pressure. At high Ca, pressure fluctuations are dominated by changes in the effective
hydraulic conductance of dominant flow channels.

of the defending fluid, and thus the fractal dimension increases, approaching a value of 2
at low Ca, indicative of stable displacement.

4. Pressure Signature

The fundamental difference in the fluid-fluid displacement process between low and
high Ca is reflected in the temporal injection-pressure signals [FIG. 3]. When the
capillary number is relatively high (Ca = 10−3), viscous forces dominate, and the
injection pressure decreases with time for all substrate wettabilities (Zhao et al. 2016)
[FIG. 3(a)]. Here, most of the pressure drop takes place in the more-viscous defending
fluid. Consequently, as more of the defending fluid is displaced, the pressure required
to maintain the prescribed injection flow rate decreases. In contrast, at Ca = 10−7,
viscous dissipation is negligible, and the injection pressure is determined by the sum of
outlet and Laplace pressures. As a result, the injection pressure fluctuates in a stick-
slip manner around a mean value [FIG. 3(b)], as has been documented in slow drainage
experiments (Måløy et al. 1992; Furuberg et al. 1996; Moebius & Or 2012). The pressure
signals in FIG. 3(b) highlight the roles that in-plane and out-of-plane curvatures play in
our model. Out-of-plane curvature plays the role of batteries, and thus provides additional
resistance/drive (in drainage/imbibition, respectively) to the flow at the interface. The
magnitude of the pressure drop/rise at the batteries is a function of wettability, which
explains why the mean value of the injection pressure signal also varies with wettability
[FIG. 3(b)]. The in-plane curvature plays the role of capacitors. As the invading fluid
is injected, the in-plane component of Laplace pressure grows at the interface until the
meniscus near the pore with lowest critical entry pressure becomes unstable due to burst,
touch or overlap. This results in the rapid advance of the local interface, which pressurizes
the defending fluid ahead. This overpressure then dissipates (see video S1 in supplemental
materials). The critical pressures of touch and overlap are always smaller than the critical
pressures of burst events (Primkulov et al. 2018; Cieplak & Robbins 1990, 1988), so the
magnitude of the pressure fluctuations decreases as the substrate becomes more wetting
to the invading fluid [FIG. 3(b)].
To gain further insight into the difference in the pressure signature between low and

high Ca, we decompose the injection pressure signal into its global trend and fluctuating
components with Block James-Stein wavelet decomposition (Cai 2002) (see FIG. 3c-
d). We compute the standard deviation of the fluctuating component of the pressure
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Figure 4. (a) Pore-scale perspective for the scaling of pressure fluctuations. The diagram shows
a typical pore being invaded. The characteristic distance between the pore centers is l (red
line), the post height is h, and a characteristic throat size is a. (b) Typical configurations of the
fluid-fluid interface in drainage and imbibition. Burst events are prevalent in drainage and the
typical radius of out-of-plane curvature is of order a. Overlap events are prevalent in imbibition
and the typical radius of out-of-plane curvature is an order of magnitude greater than a.

signal for both drainage and imbibition conditions (θ = 160◦ and 46◦, respectively) for
a wide range of Ca, and find that it exhibits two distinct regimes [FIG. 3(e)]. At low
Ca, pressure fluctuations are controlled by the stick-slip-type changes in local Laplace
pressures. In contrast, at high Ca, pressure fluctuations are controlled by changes in the
effective hydraulic conductance of the dominant flow channels. In the limit of high Ca,
the Laplace pressure drop is negligible in comparison with the viscous pressure gradient,
but the dominant flow channels are rearranged slightly as the fingers grow (see video S2
in supplementary materials). Since the pore geometry has a heterogeneous distribution
of throat sizes, shifts in the dominant flow channels result in viscosity-driven pressure
fluctuations at high Ca.
Scaling arguments support the findings from the model simulations. Let us take a

pore-scale perspective (see Fig. 4). Invading a single pore involves overcoming a capillary
pressure and pushing defending fluid out through a throat of width a and height h at a
speed proportional to the injection rate. The capillary pressure is pcap ≈ γ( 1

h
+ 1

af(θ)),

where f(θ) is a wettability-dependent function that takes a value ∼ 1 near drainage and
∼ 10 near strong imbibition [Fig. 4(b)]. Taking variations of pcap with a yields

δpcap ∼
γ

a2f(θ)
δa. (4.1)

The characteristic flow velocity through a typical throat is u = k(a,h)
µ

pvisc

l
, where k(a, h) =

R2
h/8 is the rectangular channel permeability and Rh = ah

2(a+h) the hydraulic radius. Thus

the viscous pressure is pvisc ∼
32(a+h)2

a2h2 µul = 32µul
h2 (1 + h/a)2. Taking variations of pvisc

with a yields

δpvisc ∼
64µul

h2
(1 + h/a)

h

a2
δa =

64µul

ha2
(1 + h/a)δa. (4.2)

The magnitude of the total characteristic pressure fluctuation is δpcap + δpvisc, and its

two components are comparable when δpvisc

δpcap
∼ 1. Using equations (4.1) and (4.2),

δpvisc
δpcap

∼
64µul

ha2
(1 + h/a)

a2f(θ)

γ
= Caf(θ)64

l

h
(1 + h/a) ∼ 1, (4.3)

which implies a crossover Ca,

Ca∗ ∼
h

64f(θ)(1 + h/a)l
, (4.4)

between flowrate-independent and flowrate-dependent pressure fluctuations [FIG. 3(e)].
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The above argument suggests two interesting implications. First, one can potentially infer
the characteristic pore size of the material from the fluctuations of the pressure signal
in both viscously-dominated and capillary-dominated flow regimes. This is especially
useful when visualization of the flow in pore space is not possible, which is the case
in most porous materials. Second, the characteristic h, a, and l used in this study

yield Ca∗ ≈ 10−3

f(θ) , which reduces to Ca∗ ∼ 10−3 for drainage and Ca∗ ∼ 10−4

for imbibition, in agreement with the data in FIG. 3(e). This means that one should
expect the transition from capillary-dominated to viscously-dominated flow regimes at
different Ca* in drainage and imbibition. The order of magnitude of f(θ) was obtained
by calculating ∆pcrit for all pore throats at θ ∈ {46◦, 160◦} with the quasi-static model
(Primkulov et al. 2018) and taking an average of f(θ) = γ

a∆pcrit
for each contact angle.

Finally, the viscous pressure fluctuation component scales as δpvisc ∼ µu, which is
equivalent to δpvisc ∼ Ca when interfacial tension is kept constant. This explains the
slope of the viscously-dominated portion of the graph in FIG. 3(e).

5. Conclusion

Overall, our moving-capacitor network model provides new fundamental insights into
the dynamics of immiscible fluid-fluid displacement in porous media for a wide range of Ca
and wettabilities. The model completes the picture of the displacement by covering both
high and low Ca which allows, for the first time, to reproduce experimental observations
of invading fluid patterns (Zhao et al. 2016), injection pressure and front velocity in
drainage (Måløy et al. 1992; Furuberg et al. 1996; Moebius & Or 2012) and imbibition.
Our observations and scaling arguments on the transition from viscous-dominated to
capillary-dominated flow regime suggest that it is possible to infer the character of the
multiphase-flow displacement purely from the injection pressure signal. This poses an
exciting prospect for detailed experiments.
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Måløy, Knut Jørgen, Feder, Jens & Jøssang, Torstein 1985 Viscous fingering fractals
in porous media. Physical Review Letters 55 (24), 2688–2691.
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