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Abstract Managing recharge of freshwater into saline aquifers requires accurate estimation of the
heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a
methodology for subsurface characterization in saline aquifers that takes advantage of the density
difference between the injected freshwater and the ambient saline groundwater. We combine high-
resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion
algorithm. In the presence of a density difference between the injected and ambient fluids due to differ-
ences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the
pressure field transient: the time evolution of the salinity distribution controls the density distribution which
then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity
to obtain an improved characterization of the permeability field without multiple pumping tests or
additional salinity measurements. We show that the inversion performance improves with an increase in
the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy
forces from density difference. Our work shows that measuring transient pressure data at multiple sampling
points during freshwater injection into saline aquifers can be an effective strategy for aquifer
characterization, key to the successful management of aquifer recharge.

1. Introduction

As world population continues to rise at an unprecedented rate, water demand is surpassing supply in
many areas of the world [Rijsberman, 2006]. Climate change will only expose many more regions to water
shortage issues in the near future [Vorosmarty et al., 2000]. As a major water supply source, groundwater is
depleting at an alarming rate due to overexploitation, and saline aquifers are becoming more and more
common as seawater intrusion aggravates [Aeschbach-Hertig and Gleeson, 2012; Gleeson et al., 2012; Werner
et al., 2013; Abarca et al., 2013]. According to the United Nations, about 60% of world’s population lives in
coastal areas [Cosgrove, 2012], and many aquifers in these areas are saline. Management of aquifer recharge
(MAR) is a promising technology, with many operational sites, to help secure water resources [Dillon, 2005].
This technology consists in the intentional recharge of water into aquifers and may have three major bene-
fits: water storage for later use, recharging aquifers subject to falling water levels, and water quality
improvements by physical filtration and biodegradation. MAR is also a major technology for the mitigation
of seawater intrusion [Merritt, 1986; Simmons et al., 2001; Berens et al., 2009], and MAR in these coastal saline
aquifers will become necessary as seawater intrusion intensifies and freshwater becomes more scarce [Sim-
mons, 2005].

One of the major complications for MAR in brackish-saline aquifers is the occurrence of density-driven flows
due to the density difference between injected freshwater and ambient saline aquifer. The freshwater-
saltwater interface tilting due to the density contrast leads to early breakthrough of saline groundwater and
reduces the recoverable volume of water [Ward et al., 2007; Van Dam et al., 2009; Zuurbier et al., 2014].
Numerical simulators for variable density flow and transport have been developed, and the effect of density

KANG ET AL.

SUBSURFACE IMAGING OF SALINE AQUIFERS 4444


http://dx.doi.org/10.1002/2016WR020089
http://orcid.org/0000-0001-7174-2237
http://orcid.org/0000-0002-7370-2332
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/

@AG U Water Resources Research 10.1002/2016WR020089

difference on freshwater recovery rate has been investigated [Voss and Souza, 1987; Guo and Langevin,
2002; Ward et al., 2007; Bakker, 2010; Pool and Carrera, 2010; Zuurbier et al., 2013]. The application of these
forward numerical models at field sites for the design of injection and recovery schemes, however, requires
an accurate estimation of groundwater model parameters such as the medium permeability. Aquifers are
naturally heterogeneous systems with a wide range of permeability values, and aquifer heterogeneity con-
trols the flow of injected freshwater and its mixing with the residing saline groundwater [Hess et al., 1992;
Simmons et al., 2001]. Aquifer heterogeneity has been shown to have a major impact on the fraction of
recoverable water in MAR sites, and accurate estimation of aquifer heterogeneity can help maximize the
recovery efficiency [Ward et al., 2008; Izbicki et al., 2010; Pool et al., 2015b; Guo et al., 2015]. It is also well
known that subsurface heterogeneity can lead to anomalous transport behavior, characterized by early
arrival and long tails of subsurface fluid plumes [Becker and Shapiro, 2000; Haggerty et al., 2001; Le Borgne
and Gouze, 2008; Dentz et al., 2015; Kang et al., 2015]. Thus, an accurate characterization of subsurface het-
erogeneity is essential for site selection and operation of MAR.

Geophysical methods such as electrical imaging and electromagnetic methods have been applied successfully
to delineate the freshwater-saline water interface [Lebbe, 1999; Abdalla et al., 2010; Minsley et al., 2011; Maliva,
2015]. However, inferring hydraulic conductivity information from electrical and electromagnetic signal is chal-
lenging due to the uncertainty in the constitutive law [Slater, 2007]. The most easily measurable kind of data
that are directly sensitive to fluid flow properties is pressure data. Pressure data alone are generally insufficient
to accurately image the subsurface under constant-fluid-density groundwater flows and requires a dense sam-
pling network combined with multiple pumping tests [Li et al., 2005; Alcolea et al., 2007; Cardiff et al., 2012,
2013] or additional sources of information from either tracer transport or geophysical monitoring [Woodbury
et al, 1987; Pavelic et al., 2006; Fienen et al., 2009; Li et al.,, 2012; Lee and Kitanidis, 2014; Zhang et al., 2014;
Kang et al., 2016]. In the presence of variable-density flow, however, fluid pressure is coupled to the salinity
distribution. Does, then, a density contrast between injected and ambient fluids make pressure data more
informative for subsurface characterization? This is the central question that we address in this study.

When there is a salinity difference between the injected and ambient fluids, due to the coupling between the
salinity-controlled density-driven flow and the changes in salinity distribution, the pressure data become
time-dependent. Our key hypothesis here is that the transient pressure data caused by density-dependent
flow can provide high-quality information for characterizing the subsurface permeability field. The hypothesis
is based on the recognition that the concentration-dependent density term couples pressure and transport
equations. With the added temporal dynamics, the transient pressure data may provide additional details of
the permeability field that steady state pressure data cannot provide. To test our hypothesis, we perform
Bayesian geostatistical inversion for different scenarios of fluid injection, with and without density-driven flow.
We also present inversion results for different types of permeability fields and different values of the mixed
convection ratio, which determines the relative importance between injection-driven viscous forces and gravi-
tational forces. We show that a variable density makes pressure data more informative, thus enabling more
accurate subsurface inversion as the mixed convection ratio increases.

2. Conceptual Background

2.1. Problem Setup

The conceptual model is mainly motivated by the MAR site in South Korea. The site has multiple injection
and observation wells and the ambient groundwater has a salinity close to seawater. We study the case
where the freshwater is injected simultaneously through a linear arrangement of a number of wells [Nicot,
2008; MacMinn et al., 2010; Szulczewski et al., 2012]. While a single well injection forms a radial flow geome-
try, the injection from a line array of wells will interfere and the flow becomes linear as the radius of the
plumes approaches the interwell spacing.

The synthetic field set up and model input parameters are shown in Figure 1 and Table 1. We inject fresh-
water into a saline aquifer from the left boundary, simulating a fully penetrating well. There are five obser-
vation wells with multilevel groundwater monitoring, which give pressure data at five discrete levels
[Pickens et al., 1978; Foster and Langevin, 1989; Einarson and Cherry, 2002]. Two different types of “true” log
permeability fields are generated using Gaussian and exponential covariance models, and we use pressure
data to estimate heterogeneous permeability fields.
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Figure 1. (a) Conceptual 2-D model of a saline MAR site. The colorbar indicates the concentration of the ambient fluid. Red asterisks indi-
cate the 5 X 5 data sampling network, and the green dashed line indicates the area of interest to be characterized. We impose a constant-
flux boundary condition at the injection well and a hydrostatic boundary condition at the right boundary. The aquifer is initially saturated
with saline water and we inject freshwater from the left boundary. We impose a nondispersive mass flux boundary condition at the right
boundary. (b) Example of true permeability field with Gaussian covariance function. (c) Example of true permeability field with exponential
covariance function.

2.2. Mixed Convection Ratio

There are three driving forces that control the density-driven groundwater flow in the system: the gravita-
tional force due to the density contrast, the external viscous force due to the injection, and the dispersive
force due to the concentration gradient. The interplay between these three driving forces controls the flow

Table 1. Model Input Parameters

Parameter Symbol Value Unit
Aquifer length L 250 [m]
Aquifer depth B 50 [m]
Effective porosity ¢ 0.3

Permeability field type Gaussian®, exponential®

Mean permeability k 10710 [m?]
Fluid dynamic viscosity u 1073 [kg/m/s]
Freshwater density Po 10° Tkg/m?3]
Variance of Ink a2 0.25,0.5

Longitudinal dispersivity i 1 [m]
Transverse dispersivity pr 0.1f, [m]
Molecular diffusivity Do 10°° [m?/s]
Pumping rate Q 300 [m3/d/m]
Mixed convection ratio M 0,0.21, 0.42

Injected solute concentration Gin 0 [kg/kg]
Ambient solute concentration Co 0,0.0175, 0.035 [kg/kg]
Number of unknown k values Nink 50,000

Number of measurements Nobs 25 (steady state), 144,000 (transient)

Measurement error @i 300 [N/mzl

2 2
?Covariance kernel g?exp (—r?), where r= \/(/1) + (f) with scale parameter [,=30m and /,=5 m.

Iz

2 2
PCovariance kernel g2exp (—|r|), where r= (,1) + (,l) with scale parameter /,=50m and ,=5m.

2
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dynamics and the relative importance between these three forces can be quantified with dimensionless
numbers. The Rayleigh number compares gravitational force to dispersive force, Ra= %, the Péclet
number compares injection force to dispersive force Pe= Df:;‘e"r?fo'n and the mixed convection ratio compares

gravitational force to external force, M= % [Holzbecher, 2000; Ward et al., 2007].

The mixed convection ratio is shown to control the flow dynamics in saline aquifers and, as a result, the
freshwater recovery efficiency [Massmann et al., 2006; Ward et al., 2007]. The mixed convection ratio can
also be understood as the ratio between forced convection and free convection, where forced convec-
tion is the advection due to pumping, and free convection is the advection caused by the density differ-
ence between injected freshwater and ambient saline water. Therefore, we define the mixed convection
ratio as

Pe Vforced :uQ 7 (1)
where k,, [L?] is the mean permeability, Ap [ML™3] is the density difference between injected freshwa-
ter and saline groundwater, g [LT™2] is the gravitational constant, B [L] is the aquifer depth in z direc-
tion, u [ML™'T™" is the dynamic viscosity of the fluid, and Q [L3T"'L™'] is the injection rate into a
cross section with height B and unit thickness. The specific units of the variables can be found in
Table 1. The characteristic velocity associated with forced convection is defined as, Vforced:%, and
with free convection is defined as, vf,ee=k”‘ﬂifg, where ¢ is the porosity. Since advection arises from
two different mechanisms, we call this the mixed convection ratio. Density differences dominate the
flow in the system when M > 1, and fluid injection dominates the flow when M < 1. The case M=0
corresponds to the situation in which there is no density contrast, which is equivalent to injecting a
matched-density fluid with a passive tracer. We study the value of transient pressure data at different

mixed convective regimes.

3. Numerical Simulation of Variable Density Groundwater Flow and Transport

The density-driven flow and transport of two miscible fluids in a groundwater system can be described by
the so-called Boussinesq approximation when % > 1 where ¢ is the density difference ratio, e=”’“%;”°
[Landman and Schotting, 2007]. The Boussinesq approximation is valid for realistic scenarios in saline con-
fined MAR sites. The governing equations for variable-density flow under the Boussinesq approximation are
[Riaz et al., 2006; Landman and Schotting, 2007; Elenius et al., 2012; Hidalgo et al., 2012; Szulczewski and
Juanes, 2013],

V- u=0, (2a)
k
u=-2 (Vp—p(c)g2), (2b)
oc
qbﬁ +V - (uc—¢De;Vc)=0. (2¢0)

The governing equations consist of the mass conservation equation, Darcy’s law, and the advection-
dispersion equation, where k is the permeability field, p is the fluid density, and D is the effective disper-
sion coefficient. We adopt the Scheidegger-Bear dispersion model: qSDZﬁ:((/>D0+[ir|u\)5,-j+(ﬁL—[;’T) %,
where Dy is the molecular diffusivity, |u| is the magnitude of the Darcy velocity, f5, is the longitudinal disper-
sivity, and fi; is the transverse dispersivity. Density is given as a linear function of concentration,
p=po+ 3—’: (c—¢o), where ‘;—’C’ =700[kg/m?3] and p, is the density of freshwater [Voss and Souza, 1987]. ¢ is the
concentration of solute as a mass fraction of dissolved salt in water (mass of dissolved salt per unit mass of
fluid), and ¢ = 0 for injected freshwater and ¢ > 0 for saline groundwater. The aquifer is initially fully satu-
rated with saline groundwater and we start to inject freshwater at t = 0.

The boundary conditions are
u- n(X:0727 t):Vforcech (3a)

u-n(x,z=00rB,t)=0, (3b)
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p(X:L727 t):pseagza (3C)

where n is the outward unit normal to the boundary. We inject with a constant flow rate from the left
boundary and assign a hydrostatic pressure boundary condition at the right boundary [Voss and Souza,
1987]. The domain size is 250 m X 50 m. We assign no-flow boundary conditions at the top and bottom
boundaries to describe a confined aquifer. We inject freshwater using a fully screened well and measure
pressure values at 25 data sampling points. We employ a high-resolution, high-order forward numerical sim-
ulator to solve the full, two-dimensional system of governing equations. For all simulations, the model
domain is discretized into square elements with Ax=Az=0.5 m. We solve the pressure field using the finite
volume method with the two-point flux approximation (TPFA), and solve for the concentration field using
sixth-order finite compact difference [Lele, 1992]. We integrate in time using an explicit fourth-order Runge-
Kutta time stepping scheme [Jha et al., 2011; Nicolaides et al., 2015]. The high-resolution, high-order model
allows us to accurately capture density-driven flow and dispersive mixing under forced injection. The
detailed model input parameters are shown in Table 1.

In this study, we investigate the effects of density-driven flow on permeability characterization for different
values of mixed convection ratios and different types of permeability fields. To study the effects of the
mixed convection ratio on the inversion results, we study three different mixed convection ratios, M=0,
0.21 and 0.42. To avoid effects from other parameters, we vary the mixed convection ratio only by changing
the density difference between injected freshwater and ambient groundwater. We fix the injection rate to
avoid changing Péclet number. M = 0 corresponds to the case when there is no density contrast between
injected water and residing groundwater, which results in steady state groundwater flow. M=0.21 and
M = 0.42 correspond to residence groundwater concentrations of c=0.0175 [kg/kg] and ¢=0.035 [kg/kg],
respectively. The freshwater injection duration is 20 days. To confirm the generality of our inversion results,
we study five different lognormal permeability fields for each covariance model (Gaussian and exponential).

4, Inversion With the Principal Component Geostatistical Approach (PCGA)

To infer the permeability distribution from the pressure data, we consider the following observation
equation:

p=h(s)+v, (4)

where p is the observed pressure data vector at monitoring wells, h is a forward model described in equa-
tion (2a), s is the unknown lognormal permeability field (e.g., s=log,yk), and v is the error in the observation
data y as well as the simulation model h, usually modeled as Gaussian. To estimate the unknown s from the
data and the forward model, we employ the Bayesian geostatistical inverse approach [Kitanidis, 1995]. The
prior probability density function (pdf) of s is assumed to be Gaussian with an unknown mean and a prior
covariance matrix Q. Then, the posterior pdf of s is computed through Bayes’ theorem, and the maximum a
posteriori (MAP) estimate or most likely value of s is obtained by maximizing the posterior pdf (typically
minimizing the negative logarithm of the posterior pdf). The inverse problem becomes a nonlinear optimi-
zation problem that is commonly solved using an iterative Gauss-Newton method. However, the geostatisti-
cal approach becomes computationally challenging for large-scale inversions because it requires
computation of the derivative of the forward model, i.e., the Jacobian matrix H at a current estimate s,

Oh;

Hi=—| .
) (95] |s—s>

(5)
which has a computational cost proportional to the number of observations, even in the efficient adjoint-
state method. Furthermore, the adjoint-state method needs intrusive changes in the forward model code,
which can be an added practical challenge for coupled multiphysics models like the one here.

To circumvent those computational requirements and code development issues, we use PCGA, which expe-
dites the geostatistical inversion by avoiding the direct evaluation of the Jacobian matrix H using a low-
rank approximation of the prior covariance matrix Q and a finite difference calculation of sensitivities based
on the forward model. This can be made possible due to the fact that the geostatistical approach requires
Jacobian-covariance products such as HQ, not the Jacobian itself. Assume that the covariance matrix Q is
approximated as
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Figure 2. Forward-model simulation results at four different times, t/teng=0.05,0.25, 0.5, 1, for the permeability field with Gaussian covariance function shown in Figure 1b. (a) Mixed
convection ratio 0, when there is no density contrast. (b) Mixed convection ratio 0.21. (c) Mixed convection ratio 0.42. (d-f) The time evolution of normalized pressure and concentration
values at three data sampling points (marked by black circles in Figure 2a). The pressure values are normalized by the measured pressure value at t = 0, and the concentration values are
normalized by the ambient solute concentration. Red line: data sampling point located at the first row, first column. Green line: data sampling point located at the third row, third col-
umn. Blue line: data sampling point located at the last row, last column.

K
Q=Q.=> {/, (6)
=1
where Q, is a rank-x approximation of Q and (; is ith eigenvector multiplied by square root of ith eigenvalue
of Q. A fast and accurate method to obtain equation (6) for large-scale covariance matrices is explained in
Lee and Kitanidis [2014]. Then, the Jacobian-covariance product HQ can be approximated,

HQ=H(> " )= (H,)L 7
i=1 i=1
where H{; is computed as
HE, ~ h(s+d(;)—h(s) @®

s )
where ¢ is the finite difference perturbation size. A detailed explanation on the optimal choice of k and §
can be found in Lee and Kitanidis [2014] and Lee et al. [2016]. Thus, only about “x” forward simulation evalu-
ations are needed to obtain the inverse solution at each iteration. Previous numerical experiments [Lee and
Kitanidis, 2014; Lee et al., 2015; Fakhreddine et al., 2016] have shown that k ~ (O(100) and a few hundred
simulation runs in total are needed without any intrusive changes in the simulation model code to arrive at
inverse solutions of the same quality as those obtained from the geostatistical approach.

In this work, PCGA is used to estimate permeability fields from synthetic pressure data measure at the 5 X 5
sampling network shown in Figure 1. A Gaussian error with zero mean and standard deviation of 300 N/m?
was added to the simulated pressure measurements. This error corresponds to 50% of the maximum
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Figure 3. Inversion results with PCGA for the Gaussian permeability field with aj, , =0.25. (a) True permeability field. (b) Estimated perme-
ability field for passive tracer case, M = 0. (c) Estimated standard deviation for passive tracer case, M = 0. (d) Estimated permeability field
for density-driven flow case, M = 0.21. (e) Estimated standard deviation for density-driven flow case, M = 0.21. (f) Estimated permeability
field for density-driven flow case, M = 0.42. (g) Estimation standard deviation for density-driven flow case, M = 0.42.

pressure change during the fresh injection. The data were recorded every 5 min for 20 days and the number
of pressure measurements amounts to 144,000 in total for the saline aquifer injection cases (i.e, M =0.21
and 0.42). All inversion cases were run on a Linux workstation equipped with 36 Intel core 3.1 GHz process-
ors and 128 GB RAM, and x was chosen to be 324 (36 X 9) to take advantage of running the forward solvers
on 36 cores simultaneously. One entire inversion run with a density-driven pressure data set took 9 h on
average, and all the tests converged within six iterations. All the inversion runs used an exponential covari-
ance function for the prior and corresponding structural parameters for the prior covariance Q and the error
R were determined using the cR/Q2 criteria [Kitanidis, 1991].

5. Results and Discussion

The mixed convection ratio has a significant impact on plume spreading and fluid pressure distribution (Fig-
ure 2). When there is no density contrast between injected and defending fluids, the pressure field is steady
(constant in time). For M= 0.21 and M = 0.42, we clearly observe the change in pressure over time due to
the density-driven flow. Note that the relative pressure change for M = 0.42 is larger than for M= 0.21. This
is because the free convection component that causes the pressure change is larger for larger mixed
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Figure 4. Comparison between measured and estimated pressure data for the Gaussian permeability field shown in Figure 3. (a) M= 0, (b) M = 0.21, (c) M = 0.42.

convection ratio. Moreover, the pressure change exhibits a nontrivial behavior as the change starts before
the injected fluid reaches a sampling point. This shows that the change in freshwater-saline groundwater
interface influences the pressure distribution globally. The pressure data alone in density invariant flow is
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Figure 5. Inversion results with PCGA for the exponential permeability field with o7, ,=0.25. (a) True permeability field. (b) Estimated per-
meability field for passive tracer case, M = 0. (c) Estimation standard deviation for passive tracer case, M = 0. (d) Estimated permeability
field for density-driven flow case, M = 0.21. (e) Estimation standard deviation for density-driven flow case, M = 0.21. (f) Estimated perme-
ability field for density-driven flow case, M = 0.42. (g) Estimation standard deviation for density-driven flow case, M = 0.42.
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Figure 6. Comparison between measured and estimated pressure data for the exponential permeability field shown in Figure 5. (a) M= 0, (b) M = 0.21, (c) M = 0.42.

known to capture large-scale features of permeability fields and the joint inversion with concentration data
is necessary to improve the imaging quality of small-scale features [Cirpka and Kitanidis, 2000; Lee and Kita-
nidis, 2014]. Now the key question is whether the sampling of this transient pressure field in variable-
density flow can better inform about the subsurface permeability structure. To answer this question, we per-
form permeability-field inversion in the synthetic MAR site shown in Figure 1 using pressure data.

We present the inversion results obtained by applying PCGA to different mixed convection ratios and differ-
ent types of permeability field. The inversion results for a permeability field with Gaussian covariance func-
tion are shown in Figure 3. It is visually clear that the increase in density contrast leads to improved
characterization results, along with reduced uncertainty. Figure 4 shows the crossplot between observed
and simulated pressures for three inversion scenarios with different mixed convection ratios. When there is
no density contrast, we obtain a smoothed permeability estimate at best from the steady state pressure
data due to the diffusive nature of pressure distribution. Improvements in the characterization result would
typically require complementing the pressure data with other types of the data such as concentration, and
performing joint inversion [e.g., Lee and Kitanidis, 2014]. For cases with density contrast between injected
and ambient fluids, the pressure field is no longer steady but, instead, changes with time due to density-
driven flow. The change in system dynamics increases the number of pressure measurements that can be
utilized in the inversion, and the transient pressure measurement implicitly has concentration information
through coupled flow and transport equations in equation (2). It has been shown that joint inversion with
pressure and concentration data can improve the inversion results dramatically by capturing both large-
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Figure 7. (a) Residual sum of squares (RSS) between estimated and true Gaussian permeability fields for three different mixed convection

ratios. We performed inversion for five different realizations for each mixed convection ratio. The filled symbols are RSS average over five

realizations. (b) Residual sum of squares (RSS) between estimated and true exponential permeability fields for three different mixed con-
vection ratios.
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Figure 8. Residual sum of squares (RSS) between estimated and true tracer breakthrough curves for three different mixed convection
ratios. The tracer breakthrough curves are measured at the 5 X 5 data sampling network. The filled symbols correspond to the RSS average
over five realizations, and the error bars indicate one standard deviation. We observe that the transport predictability improves with the
mixed convection ratio. (a) Gaussian permeability field. (b) Exponential permeability field.

scale features from pressure and small-scale details from concentration [e.g., Cirpka and Kitanidis, 2000; Lee
and Kitanidis, 2014]. Pool et al. [2015a] also showed in a field-based study that adding concentration data
into the inversion framework lead to better match the measured concentration data. The current work is
similar to the joint inversion in that the transient pressure data implicitly contains transport information.

As shown in Figure 5, the inversion results for the permeability fields with exponential covariance function
show very similar results to those obtained with Gaussian permeability fields. We obtain a smoothed perme-
ability estimate without any local heterogeneity information from the steady state pressure data. The
increase in the density contrast significantly improves the inversion results. Figure 6 shows the crossplot
between simulated and observed pressure indicating that the estimated permeability fields can accurately
capture observed pressure data.

To confirm the generality of our findings, we performed the inversion for five different realizations for both
Gaussian and exponential permeability fields. We then rigorously assess the performance of permeability
estimation using three different measures. We first compute the inversion performance as a function of
mixed convection ratio by calculating the residual sum of squares between the true and estimated
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Figure 9. Mapping accuracy of five different realizations for three different mixed convection ratios. The filled symbols correspond to the
average mapping accuracy over five realizations. We observe that the mapping accuracy increases with the mixed convection ratio.
(a) Gaussian permeability field. (b) Exponential permeability field.
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Figure 10. Inversion results with PCGA for the Gaussian permeability field with a,znkZOAS. (a) True permeability field. (b) Estimated perme-
ability field for passive tracer case, M = 0. (c) Estimation standard deviation for passive tracer case, M = 0. (d) Estimated permeability field
for density-driven flow case, M = 0.21. (e) Estimation standard deviation for density-driven flow case, M = 0.21. (f) Estimated permeability
field for density-driven flow case, M = 0.42. (g) Estimation standard deviation for density-driven flow case, M = 0.42.

permeability fields (RSS,) for five realizations. RSSy is defined as, RSSx=>";(si—s;), where s; is the true per-
meability value of the ith element and s; is an estimated permeability value of the ith element. Figure 7a
clearly shows that the increase in density contrast improves the inversion result. Figure 7b shows that, as
was the case for the Gaussian covariance function, a higher density contrast between background saline
water and injected freshwater improves the characterization of the permeability field also for the exponen-
tial covariance function.

As a second measure, we perform the transport predictability tests with passive tracers; that is, with no den-
sity contrast between injected and ambient fluids. This permits comparing transport predictions of the
inverted permeability fields obtained at different mixed convection ratios, since transport will be governed
by permeability heterogeneity alone. To confirm the generality of transport predictability, we calculate the
residual sum of squares (RSS) of breakthrough curves measured at the 5 X 5 data sampling network. RSS
for each breakthrough curve is defined as RSS,-:Z,(C{—E’,:), where d is the true concentration value of the
ith measurement of the jth breakthrough curve and E’,: is an estimated concentration value of the ith mea-
surement of the jth breakthrough curve. We measure 25 RSS measurements for each realization and a total
of 125 RSS values for each mixed convection ratio. As shown in Figure 8, transport predictability improves
with mixed convection ratio.

The quality of the estimated permeability field is also assessed by a mapping accuracy evaluation. Mapping
accuracy is defined as the fraction of the permeability field where the difference between the true and
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Figure 11. Inversion results with PCGA for the exponential permeability field with o2, =0.5. (a) True permeability field. (b) Estimated per-
meability field for passive tracer case, M = 0. (c) Estimation standard deviation for passive tracer case, M = 0. (d) Estimated permeability
field for density-driven flow case, M = 0.21. (e) Estimation standard deviation for density-driven flow case, M = 0.21. (f) Estimated perme-
ability field for density-driven flow case, M = 0.42. (g) Estimation standard deviation for density-driven flow case, M = 0.42.

estimated log permeability values is less than a certain threshold [Yoon and McKenna, 2012; Lee et al., 2016].
In this study, we set the threshold as 15% of the difference between the maximum and minimum values of
the true log-permeability field. A higher mapping accuracy indicates higher fractions of accurately esti-
mated permeability. Figure 9 shows that the mapping accuracy increases with the mixed convection ratio,
and the increasing trend is clearer for Gaussian permeability field. For both Gaussian and exponential per-
meability fields, all three measures show that the inversion accuracy increases as the density contrast
increases. This confirms that our finding applies to permeability fields with different statistical properties.

Finally, we have performed additional inversion tests at higher heterogeneity, o2, , =0.5. As shown in Figures
10 and 11, we clearly observe that the existence of a density contrast still improves the inversion perfor-
mance for higher heterogeneity, so the main point of our paper stands. However, a more detailed study is
necessary to study the effects of density contrast on saline aquifer characterization at higher levels of
heterogeneity.

6. Conclusions

We have shown that the transient pressure data in variable density flow provides robust information for
effective subsurface imaging. In density-driven flow, the pressure data becomes time-dependent since den-
sity is a function of salt concentration. The transient pressure measurement implicitly contains
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concentration information through the coupled flow and transport equations, so that inversion with tran-
sient pressure alone produces inversion results that are similar to those from joint inversion.

The mixed convection ratio is the central parameter determining the accuracy of the inversion: inversion
accuracy increases as density contrast increases. In real field applications, the mixed convection ratio can be
engineered by varying the density of the injection fluid [Shakas et al., 2017] or by injection rate. However,
change in the injection rate will also change the Péclet number which can have nontrivial effects on inver-
sion. These combined effects will be the topic of a future study. In reality, additional challenges may arise in
association with 3-D flow. A relatively dense 3-D array of data sampling networks may be required to char-
acterize the 3-D permeability field. An extension of this study to 3-D heterogeneous aquifers with a realistic
monitoring system will be necessary to address the challenges of applying our findings to field sites.

Our work suggests new opportunities to effectively image subsurface heterogeneity utilizing variable den-
sity flow. We anticipate that from a small number of pumping tests in which transient multisample pressure
data are collected would be sufficient to accurately estimate the permeability field, thus reducing the cost
of site characterization. Tracer concentration and electrical resistivity data are also commonly used data
types for saline aquifer characterization. The effects of the density-driven flow on the value of different data
types will be the focus of a future study. This will help field practitioners to choose the best combination of
data sets for improved saline aquifer characterization. Density-driven flow occurs at MAR, seawater intru-
sion, and geologic carbon dioxide sequestration sites, and these applications can potentially benefit from
this work.

During MAR in brackish-saline aquifers, the density contrast between injected and residing fluids can be a
major challenge for maximizing recovery efficiency. While a small amount of salinity in the recovered water
can be detrimental to MAR operations, in this study we show that the density contrast can be actually utilized
for efficient heterogeneity characterization. The density effect in saline aquifers can reduce recovery efficiency,
but on the other hand can play an effective role in subsurface characterization. With the accurately character-
ized heterogeneous permeability field obtained from freshwater injection experiments, the recovery efficiency
can be improved by optimizing injection-withdrawal locations and operational strategies.
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