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ABSTRACT 
 

Pulsed laser photolysis coupled with infrared (IR) wavelength modulation spectroscopy and 

ultraviolet (UV) absorption spectroscopy was used to study the kinetics and branching fractions 

for the acetonyl peroxy (CH3C(O)CH2O2) self-reaction and its reaction with hydro peroxy (HO2) 

at a temperature of 298 K and pressure of 100 Torr. Near-IR and mid-IR lasers simultaneously 

monitored HO2 and hydroxyl, OH, respectively, while UV absorption measurements monitored 

the CH3C(O)CH2O2 concentrations. The overall rate constant for the reaction between 

CH3C(O)CH2O2 and HO2 was found to be (5.5 ± 0.5) × 10-12 cm3 molecule-1 s-1 and the 

branching fraction for OH yield from this reaction was directly measured as 0.30 ± 0.04. The 

CH3C(O)CH2O2 self-reaction rate constant was measured to be (4.8 ± 0.8) × 10-12 cm3 molecule-1 

s-1 and the branching fraction for alkoxy formation was inferred from secondary chemistry as 

0.33 ± 0.13. An increase in the rate of the HO2 self-reaction was also observed as a function of 

acetone (CH3C(O)CH3) concentration which is interpreted as a chaperone effect resulting from 

hydrogen-bond complexation between HO2 and CH3C(O)CH3. The chaperone enhancement 

coefficient for CH3C(O)CH3 was determined to be k²A = (4.0 ± 0.2) ´ 10-29 cm6 molecule-2 s-1 

and the equilibrium constant for HO2•CH3C(O)CH3 complex formation was found to be Kc(R15) 

= (2.0 ± 0.89) × 10-18 cm3 molecule-1; from these values the rate constant for the HO2 + 

HO2•CH3C(O)CH3 reaction was estimated to be (2 ± 1) × 10-11 cm3 molecule-1 s-1.  Results from 

UV absorption cross-section measurements of CH3C(O)CH2O2 and prompt OH radical yields 

arising from possible oxidation of the CH3C(O)CH3-derived alkyl radical are also discussed. 

Using theoretical methods, no likely pathways for the observed prompt OH radical formation 

have been found and thus remains unexplained. 
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 3 

I. INTRODUCTION 

Atmospheric oxidation of volatile organic compounds (VOCs, RH) leads to the formation 

of organic peroxy radicals, RO2. These species play a vital role in the budgets of O3, NOx (NO + 

NO2), NOy (NOx + NOz; NOz = HNO3, HONO, PAN + other nitrogen oxides), and HOx (OH + 

HO2) throughout the troposphere and, consequently, are important in determining atmospheric 

composition, the Earth’s radiative balance and future changes in climate. Once formed, RO2 can 

react with NOx, HO2 (R1), OH, other R’O2 species/itself (R2), or undergo H-shift reactions to 

form autoxidation products (R3) as shown in Figure 1.1-10 

  
Figure 1. General scheme for RO2 chemistry in the atmosphere.1, 2 The right and left side 
represent low and high NOx environments, respectively. The bold arrow indicates unimolecular 
rearrangement by H-shift reactions. 
 

In pristine environments, direct emissions from vegetation, oxidation of anthropogenic 

and biogenic hydrocarbons, oceans, and biomass burning make acetone, CH3C(O)CH3, one of 

the most abundant oxygenated VOCs in the atmosphere.11-14 Following oxidation of 

CH3C(O)CH3 to form acetonyl peroxy, CH3C(O)CH2O2, reactions with hydro peroxy, HO2, 

dominate in low NOx environments and impact the HOx balance by removing HO2 and working 

as either a HOx radical sink through the formation of hydroperoxides (ROOH, R1a) or as radical 
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 4 

propagation by generating hydroxyl radicals (OH, R1b).15-21 The ozone generating pathway 

shown in Figure 1 is not available for CH3C(O)CH2O2 due to the position of the carbonyl 

group.16  

HO2 + CH3C(O)CH2O2  → CH3C(O)CH2OOH + O2         (R1a) 

                                      → CH3C(O)CH2O + OH + O2     (R1b) 

The importance of accurately accounting for the OH production from peroxy radical reactions 

(R1b, in Fig. 1) is driven in part by OH field measurements in pristine environments which 

report elevated mixing ratios compared with atmospheric models.22-25 OH-recycling from peroxy 

radical reactions as well as autoxidation reactions may explain, in part, the discrepancy between 

measurements and models. 

Additional fates of the CH3C(O)CH2O2 radical in pristine environments include reactions 

with other peroxy radicals and with itself. These reactions are less dominating in the atmosphere 

compared to reactions with NOx and HO2, but are important for laboratory studies. Similar to 

other peroxy radicals, there are two established self-reaction pathways for CH3C(O)CH2O2: one 

which leads to hydroxyacetone (CH3C(O)CH2OH) and methylglyoxal (CH3C(O)CHO) as stable 

products (R2a) and the other that generates acetonoxy radical (CH3C(O)CH2O, R2b).21, 26, 27 In 

addition, a third pathway, R2c, was recently proposed and observed by Berndt et al., which leads 

to higher functionalized accretion products, ROOR.28 

2 CH3C(O)CH2O2 → CH3C(O)CH2OH + CH3C(O)CHO + O2    (R2a)  

         → 2 CH3C(O)CH2O + O2      (R2b) 

    → C6H10O4 + O2 (ROOR)      (R2c) 

 Previously, the cross-reaction rate constant for CH3C(O)CH2O2 + HO2 (k1) has only been 

measured once by Bridier et al.21 using flash photolysis and ultraviolet (UV) absorption of 
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 5 

CH3C(O)CH2O2 and other radicals. As with all spectroscopic studies, the experimentally 

determined rate constant is highly sensitive to the values of the UV absorption cross-sections 

employed. However, the reported literature values of UV absorption cross-section for 

CH3C(O)CH2O2 radical, sCH3C(O)CH2O2, are not in good agreement and vary by up to a factor of 

2.5.21, 26, 29 The k1 rate constant from the Bridier et al.21 study was determined using much larger 

sCH3C(O)CH2O2 values compared to other literature works. In subsequent studies, their value for k1 

was used to determine the branching fraction for OH formation,15, 18-20 which propagated any 

error in their reported k1 to the reported branching fraction values. The literature values for the 

branching fraction of the OH generating channel, k1b/k1, are not in agreement, ranging from 0.15 

– 0.67. A single theoretical study by Hasson et al.16 of the branching between R1a and R1b finds 

that R1a is favored, but lowering the energy of the CH3C(O)CH2O2•HO2 intermediate complex 

by just 2 kcal mol-1 inverts the branching to favor R1b demonstrating the sensitivity of the 

branching fraction to the energies determined in the structure calculations. None of these 

experimental or theoretical studies have considered H-shift isomerization reactions.  

The rate constant for the CH3C(O)CH2O2 self-reaction (k2) has been measured by two 

studies21, 26 that are in agreement but with one only reporting an upper limit26. This agreement 

may be fortuitous, however, because significantly different sCH3C(O)CH2O2 were used between 

these two studies. Subsequent indirect observation of the branching fraction of k2b/k2 by Emricha 

and Warneck30 did not agree with the results by Bridier et al.21 showing a difference of 0.25. The 

most recent results by Berndt et al.28 measured k2c only and based the branching fraction for this 

channel on the results of the previous studies.  

Our work is the first study to monitor simultaneously the time-dependent concentration 

profiles for CH3C(O)CH2O2, HO2, and OH independently. The goal of this work is to reassess 
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 6 

and resolve the discrepancies in the overall kinetic rate constants, k1 and k2, and the associated 

branching fractions. We have re-measured sCH3C(O)CH2O2 at selected wavelengths in the region 

between 290 – 320 nm and constrained the results of our kinetic model fits by coupling the 

kinetic data of CH3C(O)CH2O2 with HO2 and OH, both obtained through infrared wavelength 

modulated spectroscopy (IR-WMS). In addition, a significant chaperone effect caused by 

CH3C(O)CH3 forming a hydrogen-bonded (H-bonded) complex with HO2 that, in turn, increases 

the HO2 self-reaction rate was also observed at room temperature and is reported here for the 

first time. This HO2 self-reaction rate enhancement must be included in the analysis to obtain 

accurate kinetic parameters for the CH3C(O)CH2O2 chemistry.  

II. METHODS 

IIa. Experimental 

     Infrared Kinetic Spectroscopy (IRKS) 

Experiments conducted using the Infrared Kinetic Spectroscopy (IRKS) apparatus to 

study peroxy radical chemistry have been reported in earlier publications.31-33 Therefore, the 

method is discussed only briefly here with an emphasis on improvements in the detection 

capabilities and details specific to this work. The general schematic is shown in Figure 2. 
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 7 

 
Figure 2. Experimental schematic of the IRKS apparatus. M, D, H, and L are mirrors, dichroic 
filters, half-moon shaped Herriott mirrors, and lenses, respectively. The Herriott mirrors are 
housed inside nitrogen purged boxes attached to the jacketed cell. Solid Red lines represent the 
IR beam paths prior to entering the cell, the reflecting red lines in the cell represent thirty passes 
in a Herriott optic geometry, and the dashed red lines represent the IR beam paths after exiting 
the cell. The laser driven UV light source (LDLS) and 351 nm photolysis laser counter-
propagated the cell entering/exiting the cell at a height offset but crossing the IR beam paths. 
 

Pulsed laser photolysis (PLP) by a XeF excimer laser (Lambda Physik Compex 301, 351 

nm, 110 mJ/pulse in constant energy mode, 0.2 Hz repetition rate) was used to initiate reactions 

in a continuous, temperature-controlled (T = 298 ± 1 K) flow cell (175 cm long, 5 cm diameter). 

The repetition rate of the photolysis laser was set to ensure products diffused out of the reaction 

volume between pulses and the flow cell pressure and temperature were held constant at 100 

Torr and 298 K, respectively. Collimated broadband UV light generated by a laser driven light 

source (LDLS, Energetiq EQ-99XFC) counter propagated the excimer beam path through the 

cell and was separated from the excimer beam by a dichroic mirror and dispersed using a 

monochromator (Acton Research Corporation Spectra Pro-300i, slit width ~160 μm) coupled to a 

photomultiplier tube (EMI 9781A) for UV absorption measurements. The gas exit port positions 

(located in front of the Herriott mirrors, as shown in Figure 2) dictated the UV absorption 

gas entry and exit ports
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 8 

pathlength, which was measured to be 148 ± 10 cm long by Cl2 absorption at 320 nm (sCl2 = 

2.37 × 10-19 cm2).31  

Two continuous-wave distributed feedback IR lasers (NASA JPL Microdevices 

Laboratory), were each wavelength modulated at 6.8 MHz, entered the cell through a hole in a 

custom coated mirror (Rocky Mountain Instrument Co.) aligned in a Herriott optical 

arrangement to achieve thirty passes through the cell, resulting in a total IR effective path length 

of approximately 27 m for each laser.34 The Herriott mirrors were mounted inside nitrogen 

purged boxes attached to both ends of the cell as shown in Figure 2. After exiting the cell, the IR 

signals were detected independently using an indium gallium arsenide detector (InGaAs, New 

Focus 1811) and a liquid nitrogen-cooled indium antimonide detector (InSb, Infrared Associates 

IS-0.25) for the near- and mid-IR light, respectively. These signals were demodulated at 13.6 

MHz and amplified by a factor of 200 for 2f-heterodyne detection. Similar to previous works,31-33 

the concentrations derived from the 2f signals for both lasers detection axes were calibrated daily 

(See SI for details.).  

In a typical experiment, the time-dependent UV absorption trace and the two IR kinetic 

traces were recorded simultaneously following the excimer photolysis pulse. Typical datasets 

comprised all three signals that were digitized and averaged for 800 excimer shots while 

simultaneously being recorded using NI LabVIEW software. 

     Chemicals and Radical Generation 

Measured flows of nitrogen carrier gas (N2, Airgas Corps., 99.997%) were bubbled 

through methanol (CH3OH, Fisher Optima A454-1, >99.9%) and acetone (CH3C(O)CH3, Fisher 

Optima A929-1, >99.9%) to entrain these species in the gas phase. Changes in the bubbler flow 

rates were used to vary the concentrations of gaseous CH3OH and CH3C(O)CH3. These 
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 9 

precursor gases were combined and premixed in a temperature-controlled glass manifold with 

chlorine (Cl2, Air Products, 9.99% in He), oxygen (O2, Airgas Corps., 99.996%), and N2 (Airgas 

Corps., 99.997%) and then introduced through a central port of the flow cell (at the same 

temperature) depicted in Figure 2. Individual flow rates of the reaction precursors and the 

nitrogen bath gas were controlled using mass flow controllers (MKS Instruments). The total flow 

rate was 2160 sccm and the flow cell residence time was 9.7 s.  

Photolysis of Cl2 by pulsed 351 nm light generated atomic chlorine, Cl, to initiate 

reactions with CH3C(O)CH3 (R4) and CH3OH (R6) to generate CH3C(O)CH2O2 (R5) and HO2 

(R7), respectively, in the presence of O2. 

CH3C(O)CH3 + Cl → CH3C(O)CH2 + HCl       (R4) 

CH3C(O)CH2 + O2 (+M) → CH3C(O)CH2O2      (R5) 

CH3OH + Cl → CH2OH + HCl        (R6) 

CH2OH + O2 → HO2 + CH2O        (R7) 

Typical initial concentrations for investigating the cross-reaction, R1, averaged [Cl2] = 9 – 10 × 

1015, [Cl]0 = 1 – 2 × 1014, [CH3OH] = 4 × 1015, [CH3C(O)CH3] = 1.7 – 2.8 × 1016, and [O2] = 1.6 

× 1018 molecule cm-3 with N2 added to achieve the total pressure. Concentrations of the 

precursors for observing R1 were set to have ratios of [HO2]/[CH3C(O)CH2O2] between 4 – 6 to 

keep HO2 in excess of CH3C(O)CH2O2 to reduce secondary chemistry from the CH3C(O)CH2O2 

self-reaction. Similar initial concentrations in the absence of CH3OH were used for the UV 

cross-section measurements and for investigating R2.    

     Detection of Key Species 

Combining the UV absorption and IR-WMS techniques makes this the first study to 

simultaneously monitor the time-dependent concentrations of CH3C(O)CH2O2, HO2, and OH 
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 10 

radicals. CH3C(O)CH2O2 concentrations were detected by UV absorption spectroscopy using 312 

nm light. At the same time, IR-WMS was used to monitor concentrations of HO2 and the product 

OH at 6638.2 and 3407.6 cm-1, respectively, via ro-vibrational lines. Under these experimental 

conditions, the normalized noise-equivalent sensitivity concentrations for the detection of HO2 

and OH radicals were on the order of 108 molecule cm-3 Hz-1/2 (109 molecule cm-3 for typical 

experiments).  

IIb. Kinetic Modeling for Fitting Experimental Data 
 
 Because of the large number of reactions involved, numerical chemical simulations were 

necessary for extracting quantitative results for the rate constants and branching fractions of R1 

and R2. A Python code adapted from an existing library35 was used as a numerical integrator and 

fitting software encompassing the comprehensive mechanism shown in Table 1. The reaction list 

was constructed from a combination of the reactions listed in the JPL Data Evaluation 15-10 and 

relevant papers.18, 33, 36 CH3C(O)CH2O2, HO2, and OH kinetic data were fit simultaneously using 

a Levenberg-Marquardt algorithm37, 38 to optimize the kinetic rate constants and branching 

fractions against the datasets. Weights were applied to equalize the fitting across the different 

magnitudes of species concentrations. The fits were iterated 1000 times per experimental run 

following a Monte Carlo (MC) algorithm to randomly sample all parameters and systematic 

uncertainties (reaction rate constants and branching fractions, concentrations, calibration 

constants, the cell pathlength, Poisson counting in the data, and absorption cross sections) within 

each respective uncertainty. Initial guesses for the fitted parameters were sampled manually to 

ensure local minima were avoided. This procedure resulted in distributions of each fitted 

parameter from which its mean and uncertainty (reported as 1σ unless otherwise stated) could 

then be determined. 
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 11 

The self-reaction data (R2) was analyzed first. Here, OH and HO2 kinetics are the result 

of secondary chemistry that is directly affected by the overall kinetic rate of R2 and the 

branching fraction R2b/R2 (discussed in section IIIb). The resulting fits determined the overall 

rate constant k2 and the branching fraction, k2b/k2. In order to determine the rate constant and 

branching fraction for the cross-reaction, R1, the results of fitting R2 were incorporated into the 

model, and the experimental concentrations were set to minimize contributions from R2 by 

keeping HO2 in excess of CH3C(O)CH2O2 ([HO2]/[CH3C(O)CH2O2] > 4). The sensitivity of the 

model for the cross-reaction to the rate of the self-reaction was tested and found to be negligible 

for the range k2 = 3.5 – 6.0 × 10-12 cm3 molecule-1 s-1 under the conditions used in this work. The 

three [CH3C(O)CH2O2], [HO2] and [OH] time-dependent datasets were again fit simultaneously. 

For experimental runs of R1, the fitted parameters included k1a, k1b, and the chaperone enhanced 

HO2 self-reaction rate constant, k12,obs (sections IIIb and IIIc). Following the determination of the 

fit parameters for the cross-reaction, these values were used to re-run the MC simulations for the 

self-reaction data to verify that the final values of k2 and k2b/k2 were unaffected by the change in 

k1a, k1b, and k12,obs. 

Table 1. Reaction scheme used in the determination of rates, branching fractions, and chaperone 
effects for the self- and cross- reactions of CH3C(O)CH2O2 and HO2. Rate constants are taken from 
the JPL Data Evaluation 15-10 recommended values36 and are all in cm3 molecule-1 s-1, unless 
indicated otherwise. Uncertainties in values are given in their respective references. 
 
k 

Reaction Branching 
Ratio 

Rate Constant  
Ref. 

 Initial Radical Reactant Generation        

k6  CH3OH + Cl → CH2OH + HCl    5.5 × 10-11  

k7 CH2OH + O2 → HO2 + CH2O    9.1 × 10-12  

k4 CH3C(O)CH3 + Cl → CH3C(O)CH2 + HCl   1.63 × 10-11 exp(-610/T)  

k5a CH3C(O)CH2 + O2 (+M) → CH3C(O)CH2O2   0.98 2.75 × 10-31[M]  

k5b CH3C(O)CH2 + O2 (+M) → OH + products   0.01    

k5c CH3C(O)CH2 + O2 (+M) → HO2 + products   0.01   
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 12 

 Primary Chemistry    

k12 HO2 + HO2 → H2O2 + O2   1.5 × 10-12 + 4.0 × 10-29 × 
[CH3C(O)CH3] 

this 
work 

k2a 2CH3C(O)CH2O2 → CH3C(O)CHO + CH3C(O)CH2OH + O2   4.8 × 10-12 this 
work 

k2b 2CH3C(O)CH2O2 → 2 CH3C(O)CH2O + O2   0.68  

k2c 2CH3C(O)CH2O2 → accretion products      

k1a HO2 + CH3C(O)CH2O2 → CH3C(O)CH2OOH + O2   0.70 5.5 × 10-12 this 
work k1b HO2 + CH3C(O)CH2O2 → CH3C(O)CH2O + OH + O2 0.30  

   Secondary Chemistry                                                                                                                

   OH + CH3OH → CH2OH+H2O 0.85 2.9 × 10-12 exp(-345/T)  

   OH + CH3OH → CH3O+H2O 0.15   

   OH + CH3C(O)CH3 → H2O + CH3COCH2 0.98 1.33 × 10-13 + 3.82  
× 10-11 × exp(-2000/T) 

 

   OH + CH3C(O)CH3 → CH3 + CH3COOH 
 

0.02   

k11 Cl + HO2 → OH + ClO  3.6 × 10-11 exp(-375/T)  

 Cl + HO2 → O2 + HCl  1.4 × 10-11 exp(270/T)  

   2 CH3O2 → 2 CH3O + O2 0.59 3.5 × 10-13  

   2 CH3O2 → CH3OH + CH2O + O2 
 

0.41   

    HO2 + CH3O2 → CH3OOH + O2 
 

0.9 5.2 × 10-12  

    HO2 + CH3O2 → CH2O + H2O + O2 0.1   

   OH + CH3OOH → products  3.8 × 10-12 exp(200/T)  

   CH3O + O2 → CH2O + HO2  3.9 × 10-14 exp(-900/T)  

   O + CH2O → products  3.4 × 10-11 exp(-1600/T)  

   OH + CH2O → H2O + HCO  5.5 × 10-12 exp(125/T)  

   HO2 + CH2O → HOCH2O2  6.7 × 10-15 exp(600/T)  

   CH3 + O2 (+M) → CH3O2  1.16 × 10-31 [M]  

   CH3O2 + CH3C(O)CH2O2 → CH3C(O)CH2O + CH3O + O2 0.3 7.5 × 10-13 exp(500/T)  

   CH3O2 + CH3C(O)CH2O2 → CH3C(O)CH2OH + CH2O + O2 0.2   

   CH3O2 + CH3C(O)CH2O2 → CH3C(O)CHO + CH3OH + O2 0.5   

k10 CH3C(O)CH2O + O2 → CH3C(O)CHO + HO2  9.7 × 10-15 39 

k8 CH3C(O)CH2O → CH3CO + CH2O  rapid  39 

                  OH + HO2 → H2O + O2  4.8 × 10-11 exp(250/T)  

   O + O2 (+M) → O3   6.10 × 10-24 [M]  

   OH + HCl → H2O + Cl  1.8 × 10-12 exp(-250/T)  

 k9a CH3CO + O2 (+M) → CH3C(O)O2 0.97 3.99 × 10-12 40 
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 13 

 k9b CH3CO + O2 → OH + products 0.01   

 k9c CH3CO + O2 → HO2 + products .02   

 HO2 + CH3C(O)O2 → CH3C(O)OOH + O2 
 

0.29 1.72 × 10-11 33 

 HO2 + CH3C(O)O2 → CH3C(O)OH + O3 
 

0.23   

   HO2 + CH3C(O)O2 → OH + CH3CO2 + O2 
 

0.48   

   CH3O2 + CH3C(O)O2 → CH3CO2 + CH3O + O2 
 

0.9 2.0 × 10-12 exp(500/T)  

   CH3O2 + CH3C(O)O2 → CH3C(O)OH + CH2O + O2 0.1   

   CH3CO2 → CH3 + CO2 
 

 rapid 39 

   CH3C(O)CH2O2 + CH3C(O)O2 → CH3C(O)CH2O+CH3CO2+O2 
 

0.5 5.0 × 10-12 21,41  

   CH3C(O)CH2O2+CH3C(O)O2 → CH3C(O)CHO+CH3C(O)OH + O2 
 

0.5   

    2 CH3C(O)O2 → CH3CO2 + O2 + CH3CO2 
 

 2.9 × 10-12 exp(500/T)  

   HOCH2O2 + HO2 → OH + O2 + HOCH2O 
 

 5.6 × 10-15 exp(2300/T) 42, 43 

       

IIc. THEORETICAL METHODS AND ENERGETICS 

The potential for OH recycling via unimolecular reactions following O2-addition to the 

acetonyl radical was modelled using a Rice-Ramsperger-Kassel-Marcus (RRKM) master 

equation (ME) approach reflecting the experimental conditions. The energetics are calculated as 

described in the approach by Møller et al.44 and briefly outlined here. Conformers of reactants, 

transition states (TSs) and products are sampled using MMFF in Spartan ’18 based on optimized 

structures at the B3LYP/6-31+G(d) level from Gaussian 16, rev. C.01.45-52 For the transition 

states, suitable bond lengths are constrained in the conformer sampling. The resulting conformers 

are optimized at the B3LYP/6-31+G(d) level in Gaussian 16.50 Unique conformers44, 53 within 2 

kcal mol-1 in electronic energy of the lowest energy conformer are further optimized at the 

ωB97X-D/aug-cc-pVTZ level54-57 in Gaussian 16.  For the conformer lowest in zero-point 

corrected electronic energy at this level, an RO-CCSD(T)-F12a/VDZ-F12 single-point 

calculation is done in Molpro2012.58-63 The reactions are modelled using the Master Equation 

Solver for Multi Energy-well Reactions (MESMER)63 based on the ωB97X-D/aug-cc-pVTZ 

thermodynamic properties of the lowest-energy conformers and improved using the RO-
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 14 

CCSD(T)-F12a/VDZ-F12//ωB97X-D/aug-cc-pVTZ electronic energies. Further details of the 

MESMER modelling are given in the Supplemental Information (SI) Section SII. The rate 

coefficients for the unimolecular reactions of the thermalized species modelled are further 

calculated using the multi-conformer transition state theory (MC-TST) approach by Møller et 

al.44 including the Eckart tunneling correction.64 Rate coefficients of additional possible 

unimolecular reactions from subsequent intermediates were calculated at the same level of theory 

to aid the analysis of the experimental results (Section SIII in SI). All calculations are done at 

298.15K. 

III. RESULTS 

IIIa. CH3C(O)CH2O2 UV Absorption Cross-Section 

The inset in Figure 3 displays a typical set of UV absorption data used to assess 

sCH3C(O)CH2O2 in the spectral region λ = 290 – 320 nm for select wavelengths (see SV in SI for 

complete data set). Experimental parameters were held constant as the monochromator grating 

position scanned across the spectral window in 5 nm steps. CH3C(O)CH2O2 is a transient 

species, therefore, the reaction kinetics are coupled to quantifying sCH3C(O)CH2O2. Kinetic 

modeling was used to determine the time window for applying the fit at early times (0 – 2 ms) 

representative of second-order kinetics. The time window for the fit was optimized to exclude (1) 

scattered light and fluorescence from the excimer pulse which saturates the probe beam detector 

at early times (t < 0.2 ms), and (2) the influence of absorption from secondary species that absorb 

in this spectral region at later times (see SIV in SI for details).  The inverse absorbance, 1/Abs, 

vs. time was used under the assumption of second-order analysis in this time range. The 

integrated rate law for second-order kinetics dictates that a linear fit corresponds to Equation 1  

!
"#$

= &'()
s*+,*(.)*+(.(0

+ !
[34,3(5)34(5(]7s*+,*(.)*+(.(0	

     [E1] 
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 15 

 
where l is the pathlength of the absorption measurement, k2 is the bimolecular rate constant for 

R2, and [CH3C(O)CH2O2]0 is the initial concentration of CH3C(O)CH2O2 formed at t = 0 s 

following reaction of the radical precursors. [CH3C(O)CH2O2]0 was equated with [Cl]0 

determined during the calibration experiments (see SI for details). In the absence of CH3OH to 

form HO2, the same initial concentration of CH3C(O)CH2O2 forms under the condition of 

constant excimer power and [Cl]0. The y-intercept from the linear fit was used to calculate the 

value of sCH3C(O)CH2O2 using E1. Our results are shown in Table 2 and Figure 4 with comparison 

to prior studies.21, 26, 29, 36 The reported uncertainties were calculated through propagation of error 

and include the uncertainty in the linear fit, the pathlength, and the determined initial 

concentrations.  

    
Figure 3. UV 1/Abs vs. time measurements obtained for CH3C(O)CH3/Cl2/O2/N2 mixtures under 
conditions of constant laser power and [Cl2] to observe the CH3C(O)CH2O2 self-reaction. Each 
UV time trace shown in the inset for selected wavelengths in the range λ = 290 – 320 nm was 
converted to 1/Abs and fit with a linear regression following second order kinetics in the 0.6 – 2 
ms range. Additional datasets are shown in Figure S8 in the SI. 
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Table 2: Absorption cross-sections of CH3C(O)CH2O2, sCH3C(O)CH2O2, measured at T = 298 (±1) 
K and P = 100 (±1) Torr. Propagation of error for the reported uncertainties accounts for the 
uncertainties in the fits, pathlength, and initial radical concentrations.  

λ 
(nm) 

1020 σ 
(cm2 molecule-1) 

290 212 (±38) 
295 196 (±32) 
300 192 (±31) 
305 166 (±23) 
310 164 (±22) 
315 163 (±22) 
320 141 (±17) 

 
 

   
Figure 4. Comparison of the CH3C(O)CH2O2 cross-section, sCH3C(O)CH2O2, measured from this 
work (red squares), Bridier et al. (circles),21 Cox et al. (squares),26 Nielsen et al. (´),29 and the 
recommended values by JPL Evaluation 15-10 (diamonds)35 which reports the cross-section 
values from Cox et al. re-normalized to the absolute value at 240 nm measured by Nielsen et al. 
Errors in literature cross-section values were not available for all of the previous works as 
shown. 
 
 
IIIb. CH3C(O)CH2O2 self-reaction kinetics 
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 17 

 Figure 5 shows comparisons between experimental data and the kinetic model using the 

IUPAC66 recommended value of k2, 8.0 × 10-12 cm3 molecule-1 s-1, vs. the value for k2 determined 

from our MC simulations, 4.8 × 10-12 cm3 molecule-1 s-1. As is clearly seen, the recommended 

value for k2 does not capture the CH3C(O)CH2O2 kinetics observed in our experiments. Although 

Equation 1 could be used to determine the effective rate constant for R2 using the slope of the 

linear fit, it would result in large experimental uncertainty as a result of fitting only over a 

narrow temporal window. Fitting only CH3C(O)CH2O2 would also leave determination of k2 less 

constrained. To overcome these deficiencies, the concentration time profiles of HO2 and OH 

were fit simultaneously with the CH3C(O)CH2O2 radical kinetics using the MC simulation fitting 

method and model mechanism described in Section IIb and the absorption cross-sections given 

in Table 2. The time windows for the fits were 0.6 – 4, 0 – 20, and 0 – 2 ms for the 

CH3C(O)CH2O2, HO2, and OH kinetic traces, respectively, in order to disregard the early times 

for the UV data (<0.2 ms) that are affected by the excimer laser and data from later times to 

minimize higher contributions from secondary chemistry for each species.  
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Figure 5. Experimental data (red) for [CH3C(O)CH2O2] vs. time obtained by UV absorption 
measurements at 312 nm using linear interpolation of the 310 and 315 nm UV cross-sections 
determined in this work (Table 2). The kinetic simulation generated with recommended rate 
parameters for k2 and k2b / k2 by IUPAC66 is shown in turquoise and the fit from the MC 
simulations is shown in black. 
 

Figure 6a and 6b show the experimental vs. simulated time-dependent HO2 and OH 

concentrations, respectively, where the simulated kinetic profiles for each species using the 

IUPAC recommended values66 are shown in turquoise. Results of this work, where k2 and k2b / k2 

were fit to the experimental data, are shown in black in Figure 6 and histograms representing the 

occurrences for the k2 and k2b / k2 parameters from the MC simulations are shown in Figure 7. 

The magnitudes of both the OH and HO2 simulated kinetic concentrations, shown in Figure 6, 

were extremely sensitive to the branching fraction for CH3C(O)CH2O formation, R2b, in the 

mechanism. The use of the IUPAC recommended value66 for the branching fraction, k2b / k2 = 

0.63 (± 0.20), overpredicted our experimental observations for the HO2 and OH concentrations 

by a factor of ~2. Fitting the experimental data yielded a branching fraction of k2b / k2 = 0.33 (± 

0.13) and dramatically reduced the discrepancies between the kinetic model and our data.  

Figure 6. Experimental (red) and calculated kinetic profiles for (a) HO2 and (b) OH for the 
CH3C(O)CH2O2 self-reaction. The kinetic model (turquoise) shows the simulated concentrations 
using the IUPAC recommended rate parameters66 and the results of the fit (black) shows the 
simulated concentrations with the parameters from this work. The dashed blue lines show (a) the 
fit without k9 adjustment (see text) and (b) the model simulated with prompt OH arising from the 
acetonyl + O2 reaction (see text) for comparison. The uncertainties in the experimentally 
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measured HO2 and OH concentrations were ± 3.2 × 1010 and ± 1.4 × 109 molecules cm-3, 
respectively. 
 

  
Figure 7. Histogram output from the MC simulations (4000 iterations) for (a) k2 = (4.8 ± 0.8) × 
10-12 cm3 molecule-1 s-1 and (b) k2b / k2 = 0.33 ± 0.13. 
 

The fit in Figure 5 was primarily dependent on the absolute concentration of the 

CH3C(O)CH2O product formation through the R2b channel as opposed to the relative product 

formation between R2b and the other reaction pathways as discussed in Section IIIa. Equivalent 

fits to that shown in Figure 6 were achieved when maintaining a branching fraction for R2b 

pathway of 0.33 (± 0.13) with any combined remaining branching fraction of the R2a + R2c.  

Therefore, our experiments cannot distinguish between the other two channels, R2a and R2c. 

However, the recent mass-spectrometry study by Berndt et al.28 observed and proposed a 

mechanism for a third channel, R2c, for the CH3C(O)CH2O2 self-reaction which leads to 

accretion product formation (ROOR) with a rate constant of 1.3 × 10-12 cm3 molecule-1 s-1. Their 

results inferred a product branching fraction at 295 K for R2c of 0.16 based on the recommended 

overall k2. Based on their rate constant for R2c and k2 determined in this work, a larger branching 

fraction for the R2c accretion product channel of 0.30 was calculated.  

Monitoring the HO2 and OH concentrations constrained the fit for the rate constant and 

branching fractions while also providing insight to the secondary chemistry arising from R2. The 

secondary chemistry is complex; however, the difference in the chemical timescales for the 
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modeled reaction mechanism in comparison to the experimental data enabled the 

characterization of the experimentally observed HO2 and OH concentrations. A possible 

explanation for the relationship between the time-dependent HO2 and OH concentrations and the 

magnitude of the branching fraction involve the subsequent alkoxy product chemistry. Here, the 

CH3C(O)CH2O product formation rapidly decomposes to the acetyl, CH3CO, product (R8) 

which is oxidized to form acetyl peroxy, CH3C(O)O2 (R9a), OH (R9b) and HO2 (R9c).39  

CH3C(O)CH2O  → CH3CO + CH2O        (R8) 

CH3CO + O2  → CH3C(O)O2       (R9a) 

      → OH + products       (R9b) 

      → HO2 + products       (R9c) 

To achieve the calculated kinetic profiles for the fits shown in Figure 6, two rate 

parameters had to be adjusted relative to the recommended values shown in Table 1 in addition 

to fitting the overall CH3C(O)CH2O2 self-reaction kinetic parameters. First, there was a 

significant absence of prompt OH being formed in the calculated model at early times (<0.2 ms). 

Augmenting the oxygenation reaction of the alkyl group (acetonyl, CH3C(O)CH2) in the initial 

formation of CH3C(O)CH2O2 to include 0.02 ± 0.01 product OH formation (R5b) affected the 

calculated model as shown by the dashed blue line in Figure 6b. 

CH3C(O)CH2 + O2 (+M) → CH3C(O)CH2O2 (+M)      (R5a) 

CH3C(O)CH2 + O2 (+M) → OH + products (+M)      (R5b) 

The mechanism for the proposed OH formation is not resolved and further discussion of the 

validity of this alkyl chemistry is discussed in section IV. Due to the timescale of the prompt 

OH, the inclusion of prompt OH formation mechanism did not affect the fit for the branching 
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fraction, k2b / k2. The second parameter that was adjusted was the rate constant k9 corresponding 

to reaction between CH3C(O)CH2O and O2 (R10).  

CH3C(O)CH2O + O2 → CH3C(O)CHO + HO2      (R10) 

This reaction was shown to affect the calculated HO2 concentrations on the time scales between 0 

– 5 ms, as shown in Figure 6a (dashed blue). Increasing the rate constant by a factor of two 

greatly improved the fit to the experimental data. As this rate constant is relatively small 

compared to the decomposition pathway (R8), this adjustment did not have a significant effect 

on the other observed species concentration time profiles.  

 
IIIc. CH3C(O)CH2O2 + HO2: Rate Constant and Branching Fraction 
 
 Figure 8 shows a representative dataset for concentration profiles of HO2, 

CH3C(O)CH2O2, and OH arising from the cross-reaction between CH3C(O)CH2O2 and HO2 

(R1). The simulated kinetics using the IUPAC recommended values66 is also shown in 

comparison to the results of the MC simulation fits obtained in this work. Unlike the 

CH3C(O)CH2O2 self-reaction study, HO2 and OH are a primary reactant and product, 

respectively, and determining the branching fraction for the OH channel, R1b, is more 

straightforward. Figure 8a shows the HO2 concentration time dependence, which is in excess 

over CH3C(O)CH2O2 concentrations by a factor of 4 – 6. It is the least sensitive of the three 

species to changes in k1 because the difference between the kinetic model with the IUPAC66 

recommended values and the fit values for the HO2 kinetic profile arises primarily from the 

CH3C(O)CH3 rate enhancement coefficient for the HO2 self-reaction (discussed in detail in 

Section IIId).  

Figure 8b shows the CH3C(O)CH2O2 concentration time dependence, which was 

monitored using UV absorption at 312 nm, and Figure 8c shows the OH concentration kinetics, 
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which was monitored using IR-WMS; both are compared to the IUPAC modeled and out fitted 

kinetics. In the cross-reaction, as in the experimental results for the CH3C(O)CH2O2 self-

reaction, the prompt OH signal at early times is observable and in our fitted kinetics is simulated 

as arising from R5b in the mechanism. In the presence of HO2, there is an additional prompt OH 

concentration source present for the cross-reaction arising at early times from the reaction 

between HO2 and Cl (R11).  

HO2 + Cl → OH + ClO          (R11) 

However, the additional OH at early times from R11 does not generate enough prompt OH to fit 

the data. A branching fraction of 0.02 ± 0.01 for R5b again fits the prompt OH kinetics as shown 

in Figure 8c. The fit for the branching fraction was observable in the OH kinetics as a scaling of 

the OH concentrations on the timescale immediately following the prompt OH formation and 

was, therefore, not influenced by the inclusion of the prompt OH formation mechanism. The rate 

constant, k1, and branching fraction for the OH channel, k1b / k1, were determined from the MC 

fitting to be (5.5 ± 0.5) × 10-12 cm3 molecule-1 s-1 and 0.30 ± 0.04, respectively. The uncertainties 

in our reported values were determined from a series of MC simulations as described in section 

IIB; a representative set of histograms for the k1 and k1b / k1 are shown in Figure 9a and 9b, 

respectively. The resulting fits using these parameters are compared in Figure 8 to the model 

results using the currently recommended values36, 66: k1 = 9.0 (±1.0) × 10-12 cm3 molecule-1 s-1 and 

k1b / k1 =0.15 ± 0.10. The improved agreement is clearly observable.  
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Figure 8. Experimental (a) HO2, (b) CH3C(O)CH2O2, and (c) OH time-dependent concentrations 
(red) for the HO2 + CH3C(O)CH2O2 reaction. Uncertainties in the measured HO2 and OH 
concentrations were ± 1.6 × 1010 and 3.5 × 108 molecules cm-3, respectively. The simulated 
concentrations using recommended rate parameters by IUPAC66 (turquoise) are shown in all 
three panels. In panel (c) inclusion of the prompt OH (see text) is displayed (blue dashed) for 
comparison. The results of the fits of the temporal concentrations with the parameters from this 
work (black) are shown in all three panels 
 

  
Figure 9. Histogram output from the MC simulations (4000 iterations) for (a) k1 = (5.5 ± 0.5) × 
10-12 cm3 molecule-1 s-1 and (b) k1b / k1 = 0.30 ± 0.04. 
 
IIId. HO2 + HO2: Chaperone Effects by CH3OH and CH3C(O)CH3 

 A chaperone effect, increasing the rate of the self-reaction for HO2 (R12) via H-bonded 

complex formation, was observed in this work.  

HO2 + HO2 → H2O2 + O2          (R12) 

Because a change in the effective rate constant for the HO2 self-reaction, k12,obs, impacts the 

retrieved rate constants for R1 and R2,31, 67, 68 it was necessary to assess its impact quantitatively 

in this study.  
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The chaperone rate enhancing effect by CH3OH on R12, resulting from forming 

HO2•CH3OH has been studied previously67-69 and is due to the increased reaction rate of R13 

compared to R12.  

HO2 + HO2•CH3OH  → H2O2 + O2 + CH3OH                             (R13) 

It was shown to be negligible at room temperature and under the concentration conditions used 

in this work because, in part, the equilibrium constant for complexation, Kc(R14) is small (1.0 ´ 

10-18 cm3 molecule-1) at room temperature.36  

HO2 + CH3OH ⇌ HO2•CH3OH                                       (R14) 

To test for the effect of CH3OH chaperone, we conducted experiments in the absence of 

CH3C(O)CH3 while varying the CH3OH concentration (see SI for details). We verify that the 

chaperone effect from HO2•CH3OH was negligible. For the purpose of this work, the JPL 

recommended value36 for k12 (1.55 × 10-12 cm3 molecule-1 s-1) was used. 

CH3C(O)CH3 forms a strong bond with HO2 and its chaperone effect could be significant 

at room temperature. Determining the effect of HO2•CH3C(O)CH3 complexation on k12 is 

complicated by the secondary CH3C(O)CH2O2 peroxy radical chemistry. The fraction of HO2 

complexed as HO2•CH3C(O)CH3 was included in the kinetic mechanism. The observed rate of 

R12, k12,obs, in the presence of CH3C(O)CH3 was also allowed to vary during the MC simulations 

for determining the cross-reaction rate (k1) and branching fraction (k1b / k1) for R1. We found 

k12,obs to be statistically greater than the recommended value for k12.  

To test the possible chaperone enhancement by CH3C(O)CH3 at room temperature, a 

series of experiments were conducted as a function of CH3C(O)CH3 concentration with all other 

experimental parameters held constant. The results, shown in Figure 10, are reported as the first 

observation of the chaperone effect rate enhancement on k12 at room temperature resulting from 
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HO2•CH3C(O)CH3 complexation. These results build on observations reported for lower 

temperatures where significant CH3C(O)CH3 chaperone enhancement was first observed.30  

Prior to the improvements to the IRKS system for simultaneous detection of the OH 

product species described in Section IIa, analogous experiments were independently performed 

and analyzed in our laboratory that investigated the chaperone effect of CH3C(O)CH3 on the HO2 

self-reaction. In that work, only the HO2 and CH3C(O)CH2O2 kinetic traces were observed and 

analysis was done using FACSIMILE software70 (see SI, section SVI). The lack of OH data 

resulted in the k1 rate constant and k1b/ k1 branching fraction parameters being less constrained 

compared to the results reported in sections IIIa and IIIb. The results of these early experiments 

are reported here for the first time, also in Figure 10, together with the present data. The 

CH3C(O)CH3 concentrations from the earlier experiments overlap with those studied here, 

between 2.1– 2.4 × 1016 molecule cm-3, but also extend to a higher CH3C(O)CH3 (5.2 × 1016 

molecule cm-3). The two sets of data exhibit the same linear dependence of k12,obs with respect to 

[CH3C(O)CH3]. The agreement between the two datasets taken years apart and analyzed through 

two independent methods yields a greater confidence in the observed increased HO2 self-reaction 

rate being due to a chaperone effect. In order to consolidate the earlier datasets which did not 

account for uncertainties in the overall mechanism rate constants used during the fits, a 4% total 

uncertainty was used based on the MC fitting analysis (see SVI in SI for more details). 

Equation 3 is the result of the combined linear fit, with each dataset weighted by their 

uncertainties:  

k12,obs = k12 + k²A [(CH3)2CO]0 = (1.5 ± 0.1) × 10-12 + (4.0 ± 0.2) × 10-29 × [CH3C(O)CH3]    (E3) 

where k²A = (4.0 ± 0.2) × 10-29 cm6 molecule-2 s-1 is the chaperone enhancement coefficient for 

CH3C(O)CH3 at T = 298 K and the intercept, k12, agrees with the JPL recommended value36.  
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Figure 10. Experimentally determined values of k12,obs as a function of CH3C(O)CH3 
concentration. The dashed line represents the current recommended value for k12,obs in the JPL 
Data Evaluation.36 Exp. Data: k12,obs fits obtained of current data using the Monte Carlo 
simulations described in Section IIb. Prior Exp. Data: k12,obs fits of earlier data taken before IRKS 
modifications fit using FACSIMILE software. The overall fit was weighted by the uncertainties 
in each value. (R2 = 0.9582).    
  

The magnitude of the chaperone enhancement is dependent on the relative concentration 

of the H-bonded HO2•CH3C(O)CH3 complex which is determined from the equilibrium constant 

for the formation of the complex (R15). 

HO2 + CH3C(O)CH3 ⇌ HO2•CH3C(O)CH3                                      (R15) 

The complex enhances the self-reaction rate by R16. 

HO2 + HO2•CH3C(O)CH3  → H2O2 + O2 + CH3C(O)CH3                          (R16) 

The timescale for the attainment of equilibrium for R15 is much faster (< 100 μs) than the 

millisecond timescale of our kinetic observations. The recommended value36 for the equilibrium 

constant at room temperature, Kc(R15) = (1.4 ± 0.84) × 10-18 cm3 molecule-1, is extrapolated from 

lower temperature studies31, 71 with the highest temperature for the Kc(R15) measurement being 

272 K. Kc(R15) at T = 298 K can be determined directly here using the method given in Grieman 
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et al.31 although it is difficult to measure because of the relatively large change in initial [HO2] at 

t = 0 s caused by R4, the reaction of Cl with CH3C(O)CH3 relative to the change caused by the 

complex equilibrium (R15). (See SVII in SI.) We obtain Kc(R15) = (2.0 ± 0.89) × 10-18 cm3 

molecule-1 (Keq(R15) = 50 ± 22, standard state of 1 bar) based on a weighted average of four 

runs, where the uncertainty includes the propagation of all the estimated experimental errors in 

addition to the standard deviation from the weighted average. The directly determined value is 

40% higher than the extrapolated recommended value36, but is in agreement. For the 

CH3C(O)CH3 concentration range shown in Figure 10 for the early datasets (2.1 – 5.1 × 1016 

molecules cm-3), the percent complexation of HO2•CH3C(O)CH3 ranges between 4.0 – 9.2 % at 

room temperature. These results as well as the rate enhancement for the HO2 self-reaction 

resulting from R15 were incorporated into the MC simulations for determining k1. 

The equilibrium constant allows us to estimate the rate constant k16 by following the work 

by Christensen et al. on the HO2 self-reaction CH3OH enhancement.67 Under our conditions 

where Kc(R15) [(CH3)2CO] << 1, and using the constants obtained from Equation 3, we obtain 

k16 from 

k16 = k²A / Kc(R15) + 2 k12 = (2.0 ± 1.0) × 10-11 cm3 molecule-1 s-1    (E4) 

at room temperature, where most of the uncertainty arises from Kc(R15). This value is very 

similar to the analogous rate constant for the HO2•CH3OH complex which was estimated to be 

k13 = (2.1 ± 0.7) x 10-11 cm3 molecule-1 s-1 averaged over T = 222 – 295 K at 100 Torr and using a 

Kc averaged over T = 230 – 260 K.67 Although there is no determination of the temperature 

dependence of this rate constant, the magnitude of k16 for CH3C(O)CH3 at room temperature is 

estimated to be the same as that for CH3OH, k14, at significantly lower temperatures where the 

complex formation reactions may be faster at the same pressure.  
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IIIe. EVALUATION OF OH GENERATION FROM THE CH3C(O)CH2 RADICAL + O2 

REACTION 

To assess the potential for OH formation following O2-addition to the CH3C(O)CH2 

radical, we studied the unimolecular reaction system outlined in Figure 11 starting from the 

CH3C(O)CH2 radical (A1) with energetics as shown in Figure S4 (see SI). The reactions include 

those found to have the lowest barrier heights by Weidman et al.72 as well as an additional H-

shift following a second O2-addition. The initial reaction is a 1,5 H-shift from the methyl group 

with an MC-TST calculated rate coefficient of 5.9 × 10-6 s-1. The high barrier resulting in low 

rate coefficient for this reaction is in agreement with previous studies17, 72-75 and has been 

ascribed to the strain in the TS induced by the sp2-hybridized carbon atom reducing the 

flexibility.72 This means that the 1,5 H-shift is negligible from the thermalized peroxy radical 

under all relevant time scales and any possible OH-recycling from reactions following this H-

shift thus relies on it occurring via excess energy from the O2-addition to the CH3C(O)CH2O2 

radical. However, in agreement with most of the previous studies,17, 72-74 we find that the TS for 

the 1,5 H-shift is higher in energy than the separated CH3C(O)CH2 radical and O2 (by 3.8 kcal 

mol-1 according to our calculations) and as shown in Figure 12, that means that the H-shift 

reaction does not occur via excess energy. Thus OH formation based on reactions following this 

1,5 H-shift seems a highly unlikely explanation for the observed OH products and currently no 

explanation has been found for the experimental observations. Very recent high-level results by 

Weidman et al.72 also find that formation of OH is highly unlikely from CH3C(O)CH2 + O2 

under ambient conditions. This is in agreement with our calculations which shows that this also 

applies to our experimental conditions and when considering the possibility of a second O2-

addition. 
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Figure 11. Overview of the reactions modelled using RRKM-ME. Reactions in parentheses are 
not modelled explicitly, but are assumed to occur with unity yield. MC-TST rate coefficients at 
298.15 K calculated using the approach by Møller et al.44 are given for the unimolecular 
reactions and estimated pseudo-first order rate coefficients for the O2-additions are given based 
on the typical experimental conditions of [O2] = 1.6 × 1018 molecule cm3 and k5a from Table 2.  

 
Figure 12. Time-dependent species population of the modelled system under the experimental 
conditions. Labels refer to the scheme outlined in Figure 11. 
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IV. DISCUSSION 
 

This is the first study to measure CH3C(O)CH2O2, HO2, and OH simultaneously to 

determine the rate constants and branching fractions for the reaction between CH3C(O)CH2O2 

and HO2 (R1), and the CH3C(O)CH2O2 self-reaction (R2). As shown in Table 3, prior 

experimental studies on this system are scarce where the study by Bridier et al (1993)21 was the 

sole paper to measure both rate constants for these reactions. In contrast to their work, the results 

presented here are not subject to the disadvantage of relying solely on UV absorption techniques, 

specifically the deconvolution of the UV traces with high uncertainty in the absorption cross-

sections. In addition, the chaperone mechanism that we have shown to be substantial was not 

previously considered. Subsequent work measuring the branching fractions for R1 and R2 

through detection of OH relied on the rate constants measured by Bridier et al. (1993) and, 

therefore, are subject to the same systematic errors. Indeed, the branching fractions reported in 

the literature for this cross-reaction and self-reaction ranged from 0.15 – 0.67 and 0.50 – 0.75, 

respectively, indicating that measurements for this system were poorly constrained. By 

independently re-measuring sCH3C(O)CH2O2 in a region where other species absorptions are 

minimal, characterizing the chaperone effects, and measuring the three species simultaneously, 

this work is less susceptible to the systematic errors of the previous studies. 

Table 3: Summary of Experimental and Theoretical Kinetic Rate Constants and Branching 
Fractions for R1 and R2. 

   Branching Fractions, k1
-1  Branching Fractions, k2

-1 
Ref. , year 

P (Torr), T (K) 
Method k1 R1a R1b  k2  R2a R2b R2c 

[25], 1990 
760, 298 

PR, UVA - - - 8.3 (1.6) - - - 

[20], 1993 
760, 298 

FP, UVA 9.0 (1.0) - - 8.0 (2.0) - 0.75 (0.10) - 

[19], 2004 
800, 298 

FTIR, 
HPLC, F 

- 0.33 (0.13) 0.67 (0.20) - - - - 

[14], 2008 
700, 296 

UVP, FTIR  - - 0.15 (0.08) - - - - 

Page 30 of 42

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 31 

[17], 2008 
75–530, 298 

PLP, LIF - - ~ 0.15 - - - - 

[26], 2003 
765, 298 

UVP, GC - - - - - 0.50 (0.05) - 

[15], 2005 
1–760, 298 

CBS-QB3// 
B3LYP/6-

311G(2d,d,p) 
RRKM-ME 

 0.79 0.21     

[18], 2012 
800, 295 

UVP, FTIR, 
HPLC 

- 0.75 (0.13) 0.25 (0.13) - - -  

[27], 2019 
750, 297 

MS - - - - - -  0.16‡ 

this work 
100, 298 

PLP, UVA,  
IR-WMS 

5.5 (0.5) 0.70 (0.04) 0.30 (0.04) 4.8 (0.8) 0.37* 0.33 (0.13) 0.30† 

JPL 15-10  9.0 (1.0) - - - - - - 

IUPAC  9.0 (1.0) 0.85 (0.1) 0.15 (0.1) 8.0 (0.3) - 0.63 (0.20) - 

Notes: Rate constants units = 10-12 cm3 molecule-1 s-1. Reported uncertainties are in parentheses. PR = pulsed 
radiolysis; FP= flash photolysis; UVA = UV absorption spectroscopy; FTIR = Fourier transform infrared 
spectroscopy; HPLC = high-performance liquid chromatography; F = fluorescence detection; PLP = pulsed laser 
photolysis, LIF = laser induced fluorescence; UVP = UV Photolysis; GC = gas chromatography, MS = mass-
spectrometric techniques, IR-WMS = infrared wavelength modulated spectroscopy, RRKM-ME = Rice-
Ramsperger-Kassel-Marcus Master Equation. 
‡Ratio based on the IUPAC recommended rate constant,66 uncertainties not reported. 
†Ratio based on overall rate constant, k2, from this work. 

 
 The rate constants for both the CH3C(O)CH2O2 reaction with HO2 (k1) and the 

CH3C(O)CH2O2 self-reaction (k2) are both smaller than previously reported by Bridier et al. by 

about 60%.  A possible explanation for this systematic difference is that the UV cross-sections 

used in the work by Bridier et al. were up to 40 – 60% higher than those determined in this work 

and those found by other studies.26, 29 A larger cross-section would result in a larger rate 

constant. Their method also required that the concentration time dependence of multiple species 

be de-convoluted from UV spectra, which is susceptible to the uncertainties arising in the 

absorption cross-sections from all of these species, particularly those arising from secondary 

chemistry (such as CH3(O)O2, CH3O2, and O3, as shown in the SI).  To overcome these 

challenges, our approach was to accurately re-measure absorption cross-section values for 

CH3C(O)CH2O2, monitor [CH3C(O)CH2O2] at a wavelength where no other species absorbs, and 

to simultaneously monitor key species independently using IR-WMS (for which uncertainties are 

lower) to better constrain the analysis.   
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 An additional reaction mechanism that has not been considered in previous studies 

involving CH3C(O)CH2O2 is the reaction between CH3C(O)CH2O2 and OH radicals. The reaction 

between RO2 and OH reaction has been observed for CH3O2, C2H5O2, C3H7O2, and C4H9O2, but 

there is currently no experimental or theoretical evidence of this reaction for CH3C(O)CH2O2.10 

The potential implications of the OH radical reaction, R17, on the rate parameter values reported 

in this work have been assessed by adding R17 to the overall reaction mechanism (Table 1).  

CH3C(O)CH2O2 + OH → HO2 + CH3C(O)CH2O      (R17) 

An estimated rate of (5 ± 4) × 10-11 cm3 molecule-1 s-1 and HO2 product formation was used based 

on recent work for this class of reactions. The mean value for the rate and branching fraction for 

R1 were unaffected by the addition of R17 in the MC simulations. However, the uncertainty in k1 

and k1b / k1 scaled with the input uncertainty for R17. As this was highly subjective, it was not 

included in the final analysis of this work. Indeed, more work is necessary to understand the 

reaction rates and product formation channels for this class of reactions and it is beyond the 

scope of this work.  

 The branching fractions for the OH formation from R1 determined in this work fall 

within the large range of values observed previously.15, 18-20 However, we observe a factor of two 

more OH formation for this reaction than the IUPAC recommendation.65 This is not surprising, 

because the larger rate constant, k1, used in previous analyses is directly coupled to the absolute 

magnitude of the [OH] time dependence. The larger rate constant affects the model by generating 

OH at relatively faster times where secondary species concentrations that affect the OH loss are 

smaller. Effectively, a higher observed [OH] would correspond to a smaller branching fraction in 

the model when using the larger rate constant. Although the branching fraction determined in 

this work is twice the currently recommended value, it is more consistent with the OH yields 
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from other peroxy radical + HO2 experiments involving radicals with similar carbon number 

(e.g. CH3C(O)O2, C2H5(O)O2, C3H7(O)O2, and CH3C(O)CH2O2).36, 66, 76 In comparison to the 

work by Hasson et al. (2004)20, where the branching fraction was observed to be much higher 

(but also with higher error) than we observe, higher concentrations of CH3C(O)CH2O2 relative to 

HO2 were used by an average factor of 2. This would make their results more susceptible to 

uncertainties in the CH3C(O)CH2O2 self-reaction rate parameters which was not reinvestigated in 

their work.  

 The branching fraction for the alkoxy formation from the CH3C(O)CH2O2 self-reaction, 

R2, is lower than that observed by Bridier et al, Emricha and Warneck, and the corresponding 

IUPAC recommended value which is an average of the two works.21, 27, 66 The work by Bridier et 

al. deconvoluted overlapping UV kinetic traces as previously discussed and the work by Emricha 

and Warneck monitored yields of PAN formed after adding NO2 to the system. In the latter, PAN 

was the only detected species and the yields were expected to be from the reaction of NO2 with 

CH3C(O)O2 which are formed in the decomposition of CH3C(O)CH2O (R2b). However, NO2 can 

also react with CH3C(O)CH2O2 to form an organic nitrate, which complicated their analysis. As a 

result of this complexity, they used their results to provide an upper limit on the branching 

fraction, which was ultimately lower than the values reported by Bridier et al. The reason for the 

discrepancy between our results and the literature values is uncertain; however, our direct 

detection of HO2 and OH is a more constrained tracking of the CH3C(O)CH2O pathway and 

reduces uncertainties in UV cross-sections and complex side chemistry resulting from nitrate 

formation.  

All experimental data in this work showed evidence for prompt OH formation. This was 

modeled in the kinetic fits using the CH3C(O)CH2 + O2 reaction (R5b). However, there is 
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currently no evidence for a mechanism for OH generation from this reaction based on the 

theoretical work reported here as well as in recent studies.17, 72-74 The Cl + HO2 reaction cannot 

resolve the discrepancy because prompt OH is observed when investigating the CH3C(O)CH2O2 

self-reaction. The possibility of contamination in the CH3C(O)CH3 sample was considered. A 

maximum contamination in the CH3C(O)CH3 sample (0.1%) with an absorption cross-section of 

10-18 (λ =351 nm) under our experimental conditions leading to 100% OH product would only 

yield [OH] ~1 × 1011 molecule cm-3 when photolyzed. In the instance that the maximum potential 

OH concentration arising from an impurity would be achieved and, it is still not enough to 

explain our experimental observations which averaged higher prompt OH concentrations. 

Therefore, the observed prompt OH generation remains unexplained. 

Finally, the chaperone effect of CH3C(O)CH3 on the HO2 self-reaction observed in this 

work can be compared to a previous study at lower temperatures31 as well as to the CH3OH 

chaperone effect which has been studied more extensively.67-69 The first observation of the 

CH3C(O)CH3 chaperone mechanism enhancement was described by Grieman et al.31 at 

significantly lower temperatures and reported a preliminary enhancement coefficient greater than 

that for CH3OH. The work presented here shows the same trend at room temperature under our 

concentration conditions where the enhancement coefficient due to CH3C(O)CH3 complexation 

with HO2 is seen to be approximately three times greater compared to the analogous case with 

CH3OH. In fact, even at room temperature it is easily observable for CH3C(O)CH3, whereas it is 

considered negligible for CH3OH.  

For further comparison, the analogous enhancement coefficient for H2O at room temperature is 

k²H2O = (0.6 ± 0.42) ´ 10-29 cm6 molecule-2 s-1,68 approximately an order of magnitude smaller 

than that observed for CH3C(O)CH3. The chaperone effect parameters for CH3C(O)CH3 are 

Page 34 of 42

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 35 

presented in Table 4 along with those for CH3OH for comparison. Part of the reason for the 

greater enhancement of the HO2 self-reaction, for CH3C(O)CH3 compared to CH3OH, is the 

larger equilibrium constant for the formation of the hydrogen-bonded complex 

(Kc(R15)/Kc(R14) = 2). However, the rate constants for the reactions of HO2 with the respective 

hydrogen-bonded complexes appear to be approximately the same, but the temperature 

dependence for these values is unknown. More experimental work is needed and an opportunity 

for a theoretical explanation is apparent. Regardless, the increased reaction rate for the HO2 self-

reaction must be considered in laboratory studies of kinetics involving HO2 in the presence of 

significant concentrations of CH3C(O)CH3, even at room temperature. At lower temperatures, 

particularly those relevant to the tropopause, the chaperone effect has been observed to greatly 

increase31 and needs to be considered in environments containing CH3C(O)CH3. We are 

currently undertaking a thorough study of the temperature dependence of this effect on HO2 and 

CH3C(O)CH2O2 chemistry. It should also be noted that no acetone concentration dependence 

and, therefore, no chaperone dependence was found for the cross-reaction between HO2 and 

CH3C(O)CH2O2 (R1). (See S12 in the SI.) 

Table 4. Parameters related to the chaperone effect that enhances the HO2 self-reaction rate 
via the reaction with the H-bonded complexes formed between HO2 and CH3C(O)CH3 (this 
work) or CH3OH. Our values found for CH3C(O)CH3 at 298 K are compared to those 
previously found for CH3OH. 
 

Parameter HO2•CH3C(O)CH3 Parameter HO2•CH3OH  

k″A (cm6 molecule-2 s-1) (4.0 ± 0.2) ´ 10-29 k″M (cm6 molecule-2 s-1) 
(1.09 - .99

+ 2.7) ´ 10-29 a 
 

(1.52 ± 0.69) ´ 10-29 b 

Kc(R15) (cm3 molecule-1) 
(measured) 

 
(recommended) 

 
(2.0 ± 0.89) x 10-18  

 
(1.4 ± 0.84) ´ 10-18 c 

 
Kc(R14) (cm3 molecule-1) 

 
(recommended) 

 
 
 

1.0 ´ 10-18 c 
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k16 (cm3 molecule-1 s-1) (2.0 ± 1.0) ´ 10-11 k13 (cm3 molecule-1 s-1) (2.1 ± 0.7) x 10-11 a,d 

Range of %  
(H-bonded complex) 

 

[(CH3)2CO] (molecule cm-3) 
  

(4.0 – 9.2) 
 

(2.1 – 5.1) ´ 1016 

Range of %  
(H-bonded complex) 

 

[CH3OH] (molecule cm-3) 
 
 

(0.36 – 0.70) 
 

(3.8 – 7.5) ´ 1015 

         aRef. 67 bRef. 68; cRef. 35, no uncertainty reported; dAveraged over temperatures < 298 K 
(See text.) 
 
V. CONCLUSIONS 

 This work measured the rate constants and branching fractions for the reactions between 

CH3C(O)CH2O2 and HO2, and the associated self-reactions by simultaneously and independently 

monitoring the time-dependent CH3C(O)CH2O2, HO2, and OH concentrations by UV absorption 

spectroscopy and infrared 2f-heterodyne detection. Kinetic simulations were used to fit the data 

and determine the uncertainties using a Monte Carlo algorithm. The capacity of this work to 

monitor three species independently and simultaneously greatly constrains the analysis and gives 

confidence in the results. Avoiding the need to deconvolve overlapping UV spectra by the use of 

IR kinetic spectroscopy of individual species results in a more straightforward analysis. The UV 

cross-sections for CH3C(O)CH2O2 were measured for the spectral region λ = 290-320 nm and 

determined to be higher than the currently recommended values36 but lower than those observed 

by Bridier et al.21 The CH3C(O)CH2O2 self-reaction rate constant is (4.8 ± 0.8) × 10-12 molecule-1 

cm3 s-1 and the branching fraction for alkoxy formation inferred from secondary chemistry is 

0.33 ± 0.13. The rate constant is lower than the currently recommended values as is the 

branching fraction. It is not surprising that there is disagreement in the branching fractions 

considering that the previous studies for the branching fraction were not in agreement with each 

other and the kinetic rate was not measured in either of the two studies, but was used in their 

analyses. The cross-reaction between CH3C(O)CH2O2 and HO2 experiments resulted in a rate 

constant and branching fraction for OH formation of (5.50 ± 0.53) × 10-12 cm3 molecule-1 s-1 and 
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0.30 ± 0.04, respectively. This rate constant is again smaller than the previously reported value 

whereas the branching fraction is larger. The higher yields of OH observed in this work are more 

consistent with analogous reactions33, 36, 66, 76 and ultimately lead to less hydro peroxide product 

being formed from the reaction between CH3C(O)CH2O2 and HO2 than previously reported. To 

fit the experimentally observed OH profiles, a prompt OH formation pathway was necessary, but 

the mechanism for this remains unclear. The CH3C(O)CH3 chaperone effect had a large effect on 

the rate of the HO2 self-reaction and was also required to properly fit the experimental results 

even at room temperature. The chaperone coefficient, k²A (T = 298 K) = (4.0 ± 0.2) × 10-29 cm6 

molecule-2 s-1, and equilibrium constant, Kc(R15) = (2.0 ± 0.89) × 10-18 cm3 molecule-1, were 

determined and should be considered in future peroxy experiments involving HO2 and 

CH3C(O)CH3. 
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