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SUMMARY 

Small non-coding piRNAs act as sequence-specific guides to repress complementary targets in 

Metazoa. Prior studies in Drosophila ovaries have demonstrated the function of piRNA pathway 

in transposon silencing and therefore genome defense. However, the ability of piRNA program to 

respond to different transposon landscape and the role of piRNAs in regulating host gene 

expression remain poorly understood. Here, we comprehensively analyzed piRNA expression 

and defined the repertoire of their targets in Drosophila melanogaster testes. Comparison of 

piRNA programs between sexes revealed sexual dimorphism in piRNA programs that parallel 

sex-specific transposon expression. Using a novel bioinformatic pipeline, we identified new piRNA 

clusters and established complex satellites as dual-strand piRNA clusters. While sharing most 

piRNA clusters, two sexes employ them differentially to combat sex-specific transposon 

landscape. We found several host genes targeted by piRNAs in testis, including CG12717/pita, a 

SUMO protease gene. piRNAs encoded on Y chromosome silence pita, but not its paralog, to 

exert sex- and paralog-specific gene regulation. Interestingly, pita is targeted by endogenous 

siRNAs in a sibling species, Drosophila mauritiana, suggesting distinct but related silencing 

strategies invented in recent evolution to regulate a conserved protein-encoding gene. 
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INTRODUCTION 

PIWI-interacting (pi)RNA is a class of small non-coding RNAs named after their interaction with 

PIWI-clade Argounate proteins. piRNAs guide PIWI proteins to complementary RNAs, thereby 

specifying the target of PIWI silencing. Unlike miRNAs and siRNAs that are ubiquitously 

expressed, the expression of piRNAs is restricted to gonads in many animals. As a result, 

perturbation of the piRNA program often compromises reproductive functions with no obvious 

defects in soma. Drosophila melanogaster is one of the most used model organisms to study 

piRNA biogenesis and function. In fact, piRNAs were first described in fly testes (Aravin et al., 

2001; Vagin et al., 2006). However, most subsequent studies were performed using ovaries as a 

model system. Work on female gonads has shown that most piRNAs have homology to 

transposable elements (TEs), suggesting TEs as major targets of piRNAs (Brennecke et al., 2007). 

Studies on fly ovaries also identified large intergenic regions dubbed piRNA clusters that harbor 

nested TE fragments, which act as genomic source loci of piRNAs. A peri-centromeric region on 

chr2R called 42AB was found to be the most active piRNA cluster in ovaries. It remains largely 

unexplored to what extent these findings from ovaries are applicable to the male counterpart. To 

date, we still know very little about how sexually dimorphic the Drosophila piRNA program is, 

besides that there is a single locus on Y chromosome called Suppressor of Stellate (Su(Ste)) that 

produces piRNAs only in males.  

 Importantly, Drosophila as an animal model offers unique value to studying sexual 

dimorphism of the piRNA program in general. In zebrafish, piRNA pathway mutants are always 

phenotypically males (Houwing et al., 2007, 2008; Kamminga et al., 2010), rendering it nearly 

impossible to probe the impact of piRNA loss in females. In mice, an intact piRNA program is only 

required for male fertility, while murine females are insensitive to piRNA loss (Carmell et al., 2007; 

Deng and Lin, 2002; Kuramochi-Miyagawa et al., 2004). Contrary to fish and mouse, fly fertility is 

dependent on a functional piRNA pathway in both sexes (Aravin et al., 2001; Brennecke et al., 

2007; Lin and Spradling, 1997; Vagin et al., 2006). Therefore, Drosophila provides an unparalleled 

opportunity to study whether, and if so how, the piRNA program can be modified in each sex to 

safeguard reproductive functions.  

In this study, we comprehensively analyzed the piRNA profile in Drosophila melanogaster 

testis and compared it to the female counterpart. Besides TEs, we found complex satellites as 

another class of selfish genetic elements targeted by the piRNA pathway in gonads of both sexes. 

Our analysis showed that TE-silencing piRNA program is sexually dimorphic, and it shows 

evidence of adaptation to sex-specific TE landscape. To understand the genomic origins of 
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differentially produced piRNAs, we sought to de novo define genome-wide piRNA clusters in testis. 

However, we noticed that the standard pipeline used for ovary piRNAs failed to detect known 

piRNA clusters in testis, so we developed a new bioinformatic algorithm to tackle this problem. 

Using the new algorithm, we were able to identify novel piRNA clusters and to quantify their 

activities more accurately in both sexes. Notably, piRNA source loci are employed differentially in 

males and females, and the sex bias of piRNA cluster expression appears to match that of their 

TE contents. We also found two loci producing piRNAs with the potential to repress host protein-

encoding genes, including a newly identified locus on Y that produces piRNAs against 

CG12717/pita. Expression of pita, but not its paralog veloren, is de-repressed in multiple piRNA 

pathway mutants, indicating that piRNAs silence its expression and can distinguish paralogs with 

sequence similarities. Finally, we explored the evolutionary history of pita and found it to be a 

young gene conserved in the melanogaster subgroup. Intriguingly, pita is targeted by another 

class of small non-coding RNAs, endogenous siRNAs, in the sibling species Drosophila 

mauritiana, suggesting distinct small RNA-based silencing strategies invented in recent evolution 

to regulate a young yet conserved gene.  

 

RESULTS 

Drosophila piRNA program is sexually dimorphic 

To characterize the piRNA profile in male gonads, we sequenced 18-30nt small RNAs from testes 

and compared them with published ovary small RNA datasets (ElMaghraby et al., 2019). Mapping 

and annotation of small RNA reads using the pipeline shown in Figure S1 revealed large 

differences in the expression of major classes of small RNAs between testes and ovaries. In 

agreement with previous findings (Czech et al., 2008), TE-mapping 23-29nt piRNAs are the most 

abundant class of small RNAs in ovaries, while 21-23nt microRNAs constitute a minor fraction 

and an even smaller one for 21nt endogenous (endo-) siRNAs (Figure 1A). In contrast, miRNAs 

constitute a larger fraction in testes, so do endo-siRNAs that map to protein-encoding genes, 

consistent with a previous report (Wen et al., 2015). To define the piRNA population, we 

eliminated reads mapping to other types of non-coding RNA (rRNA, miRNA, snRNA, snoRNA 

and tRNA) from 23-29nt small RNAs. Remaining reads show a strong bias for U at the first 

nucleotide (“1U bias”: 70.9%), the feature of bona fide piRNAs (Figure 1B). The piRNA-to-miRNA 

ratio is distinct between sexes: ~10 in ovary and ~2 in testis. In both sexes, piRNAs mapping to 

TEs take up the largest fraction of total piRNAs. However, whereas 66% of piRNAs mapped to 

TEs in ovaries, only 40% mapped to TEs in testes (Figure 1B). Meanwhile, larger fractions of total 
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piRNAs mapped to protein-encoding genes (including introns) and intergenic regions in testes 

(24.6% and 30.0%, respectively) than ovaries (19.6% and 10.7%, respectively). These results 

suggest that distinct piRNA programs operate in male and female gonads. 

Testis piRNAs also map to several known complex satellites: HETRP/TAS (a sub-

telomeric satellite repeat), Responder (Rsp) and SAR (related to 1.688 repeat family) (Figure 1C; 

Figure S2A). Complex satellite-mapping small RNAs in testis exhibit 1U bias and size distribution 

that peaks around 24-26nt, consistent with their piRNA identities. Both strands of complex 

satellites produce piRNAs, and their production depends on Rhi (see accompanying manuscript), 

a protein that marks dual-strand piRNA clusters and is required for their expression (Klattenhoff 

et al., 2009; Mohn et al., 2014; Zhang et al., 2014). Similarly, ovary small RNAs also map to 

complex satellites and show features of bone fide piRNAs, including 1U bias, size distribution that 

peaks around 24-26nt, small RNA production from both strands and dependency on Rhino. 

Moreover, piRNAs from complex satellites show ping-pong signature, an enrichment for 10nt 

overlap between the 5’ ends of complementary piRNA pairs, except for Rsp in testis (Figure 1C; 

Figure S2B). These results show that complex satellites are sources of piRNAs in both sexes, 

pointing to a possible role of piRNAs in regulating satellite DNA and associated heterochromatin 

in the gonad.  

We next analyzed piRNAs targeting different TE families. Comparison of small RNA 

profiles in testis and ovary showed that piRNAs targeting different TEs are expressed at different 

levels in two sexes (Figure 2A). Top 3 TEs targeted by piRNA are all different in testis and ovary, 

and, among top 10, only 3 are shared between sexes (Figure 2B). The most differentially targeted 

TEs are two telomere-associated TEs, HeT-A and TAHRE, which ovary makes 106 and 74 times 

more antisense piRNAs, respectively, than testis. In contrast, several elements such as baggins1, 

invader3 and copia are targeted by more piRNAs in testis. piRNAs targeting all but one (copia) 

TE families show stronger ping-pong signature in ovary, as measured by ping-pong z-score 

(Figure 2A). In conclusion, different TE families are targeted by piRNAs differentially in two sexes.     

 

Distinct piRNA programs in two sexes parallel sex-specific TE expression 

To explore if sex differences in TE-targeting piRNA programs are accompanied by differential 

expression of TEs themselves, we set out to compare expression levels of different TE families 

in two sexes. Since piRNA pathway efficiently represses TEs, their expression in wild-type 

animals does not reflect their full expression potentials that can be achieved when piRNA 
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silencing is removed. Hence, we analyzed TE expression in testes and ovaries of rhi mutants that 

lose piRNA production from dual-strand clusters in both sexes (see accompanying manuscript) 

and controls.  

Profiling TE expression in two sexes by polyA-selected (polyA+) RNA-seq demonstrated 

clear sexual dimorphism. Overall, TE expression in piRNA pathway mutant testes and ovaries is 

weakly correlated (Spearman’s ρ: 0.26; Figure S3A). Among the 10 most expressed TE families 

in two sexes, only 5 overlap, though the same element, copia, has the highest expression in both 

ovary and testis (Figure 2C). There are more TE families expressed above each of the three 

expression cutoffs (1000, 100 and 25 RPM) in ovaries than testes (Figure S3A). The most ovary-

biased TEs include Blood, max, Burdock and two telomere-associated TEs, HeT-A and TART 

(Figure 2E). Only a few TE families are expressed higher in testis than ovary (Figure 2E; Figure 

S3A). In this group, doc2 shows the highest expression in testis (87 RPM, 8.5-fold higher than 

ovary). Several elements are expressed at lower levels but have stronger biases for expression 

in testis: expression of Tom could only be detected in testis but not in ovary, and Transib2 is 

expressed 28-fold higher in testis than ovary. Overall, the majority of TE families demonstrate 

strong differences in their expression between sexes.  

To quantify the effect of piRNA pathway in suppressing TEs in two sexes, we calculated 

levels of TE de-repression upon disruption of piRNA pathway. Few TE families remained 

unaffected by rhi mutation, often accompanied by unperturbed antisense piRNA production (e.g., 

gypsy, gypsy10 and tabor). There are 9 TE families up-regulated more than 100-fold in ovary. In 

contrast, no TE is up-regulated that strongly in testis (Figure 2D). Overall, the vast majority of TEs 

show stronger de-repression in ovaries, with gypsy12 (389-fold), Burdock (317-fold), HeT-A (239-

fold) and TART (80-fold) being the most prominent examples, as all of them exhibited no or mild 

de-repression (<4-fold) in testes (Figure 2E). We found only 6 TEs that show stronger (at least 4-

fold) de-repression in testis than ovary (Transib2, BS2, baggins1, Dm297, invader3, invader6). 

Altogether, our results show that piRNAs regulate the expression of different TE families to distinct 

extents in two sexes, with many TEs silenced more in ovary and only a few silenced more in testis.  

To explore the link between TE expression and piRNA programs in two sexes, we 

identified a set of 36 TE families repressed by piRNA pathway in at least one sex (see methods). 

For these TE families, there is a positive correlation between sex bias of piRNA production and 

sex bias of TE de-repression (Spearman’s ρ: 0.53, P<0.001; Figure 3A). For example, disruption 

of piRNA pathway by rhi mutations dramatically increases expression of three telomere-

associated TEs (HeT-A, TAHRE and TART) in ovaries, where there are abundant piRNAs 
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targeting these elements. On the contrary, much fewer piRNAs target these telomeric TEs in 

testes and expression of these TEs remained very low in rhi mutant males (Figure 3B; Figure 2A 

and 2E). This result indicates that telomeric TEs have a strong, intrinsic bias in their expression 

towards the female germline, and that piRNA pathway appears to have adapted to this bias 

generating respective antisense piRNAs in female, but not male, gonads. In contrast to ovary-

biased TEs like telomeric elements, testis-biased TEs such as Transib2 and baggins1 are 

targeted by more antisense piRNAs in testis than ovary (Figure 3B; Figure 2A and 2E). Some 

TEs, such as copia, mdg3 and I-element are strongly repressed by piRNAs in both sexes. For 

such elements, the sex bias in piRNA production does not always match that of TE repression 

(Figure 3A). Taken together, these findings suggest that, for most TEs, piRNA programs in males 

and females have adapted to differential TE activities between sexes.  

To further explore whether differential expression of piRNAs between sexes has functional 

consequences, we studied Burdock, an LTR retro-transposon targeted by 53 times more piRNAs 

in ovary (3,756 RPM) than testis (70 RPM) (Figure 2A). We used a reporter composed of a 

fragment of Burdock expressed under the control of heterologous nanos promoter that drives 

expression in germline of both sexes (Handler et al., 2013). While reporter was efficiently silenced 

in ovaries of wild-type flies, it was strongly de-repressed in piRNA pathway mutants (rhi-/-) (Figure 

3D), indicating that the piRNA program efficiently silences Burdock in female germline. In contrast, 

we observed strong reporter expression in testes of wild-type males, and the disruption of piRNA 

pathway in rhi mutants did not lead to an observable increase in its expression (Figure 3C). This 

finding shows that Burdock is not silenced in testes, likely as a result of very few Burdock-targeting 

piRNAs in males (Figure 2A). Notably, expression of endogenous Burdock is high in ovary (when 

piRNA production is disrupted) but low in both wild-type and mutant testis (Figure 2E; Figure 3B). 

Thus, similar to telomeric TEs, the ability of piRNA pathway to repress Burdock in female but not 

male germline correlates with an intrinsic bias for its expression in females. We conclude that 

differential expression of TE-targeting piRNAs in male and female gonads can have functional 

consequences in their abilities to silence TEs, suggesting a sexually dimorphic TE-silencing 

piRNA program operating in the gonad. 

 

Definition of piRNA clusters in testis with a new algorithm   

To get deeper understandings of the piRNA program in male gonads, we sought to define the 

genomic origin of piRNAs and compare it between two sexes. Since genome-wide identification 

of piRNA clusters has only been done in ovary, we decided to systematically search for genomic 
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loci that generate piRNA in testis. We noticed that two major clusters in testis identified to date, 

Su(Ste) and AT-chX, both contain internal tandem repeats, i.e., they are made of many copies of 

almost identical sequences (Aravin et al., 2001; Kotov et al., 2019). As a result, most piRNAs 

produced by these two loci mapped to the genome at multiple positions. However, the algorithm 

employed in previous studies to systematically define piRNA clusters in ovary only uses piRNAs 

that map to the genome at single unique positions (Brennecke et al., 2007; Mohn et al., 2014), 

raising the question of whether it is an appropriate approach to detect clusters like Su(Ste) 

composed primarily of internal tandem repeats. In fact, both Su(Ste) and AT-chX clusters were 

initially identified by different approaches (Aravin et al., 2001; Nishida et al., 2007).  

Even though piRNAs produced from Su(Ste) and AT-chX cannot be mapped to single 

unique genomic loci, most of them mapped to several local repeats inside the respective clusters 

but nowhere else in the genome (Figure 4A). Taking advantage of this property, we developed a 

new algorithm that takes into account local repeats to define piRNA clusters (Figure S4A and 

S4B). Briefly, in addition to uniquely-mapped piRNAs, the algorithm searches for piRNA 

sequences that map to multiple positions within a single genomic region but nowhere else in the 

genome. This approach ensures that the identified region as a whole generates piRNAs, though 

the exact origin within the region remains unknown. Unlike the previous approach that uses 

exclusively uniquely-mapped piRNAs, this algorithm successfully identified Su(Ste) and AT-chX, 

two major piRNA clusters in testis that contain local repeats (Figure 4E and 4F).  

We applied this new algorithm to systematically identify piRNA clusters active in testes. 

We recovered piRNA clusters known to be active in testes as well as piRNA clusters previously 

defined in ovaries (e.g., 42AB, 38C, 20A and flam) (Figure 4C; Table S1). Furthermore, our search 

identified several novel piRNA loci. One of the novel piRNA clusters is located on Y chromosome 

flanked by FDY and Mst77Y genes (Figure 4C and 4F), which we called h17 cluster using 

heterochromatin banding numbers (Gatti and Pimpinelli, 1983). Another novel locus is h52-1, 

flanked by eIF4B and CG17514 genes on chr3L. h52-1 harbors tandem local repeats composed 

of nested TE fragments that cannot be found elsewhere in the genome. Similar to piRNA clusters 

identified in ovaries, only a few clusters active in testes produce piRNAs from one genomic strand 

(e.g., flam and 20A, so-called ‘uni-strand clusters’), and the majority are dual-strand clusters that 

generate piRNAs from both genomic strands (Figure 4E). In sum, our algorithm successfully found 

previously known piRNAs clusters and identified novel ones in Drosophila testes. 

 To compare new algorithm with the approach that considers only uniquely-mapped 

piRNAs, we applied both techniques to analyze the same testis piRNA dataset. This comparison 
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showed that major piRNA clusters in testis can be divided into two groups (Figure 4B). The first 

group (42AB, 38C, 20A and flam) contains piRNA clusters that harbor mostly unique sequences, 

so including local repeats or even all reads do not substantially change their identification and 

quantification. On the other hand, the second group of genomic loci (Su(Ste), AT-chX, h17, 

Hsp70B and h52-1) is composed of piRNA clusters that contain many local repeats, and, 

accordingly, our new algorithm identified more than 10-fold more piRNAs produced from these 

loci (Figure 4B). Importantly, mapping of all piRNA reads (i.e., including multi-mappers not 

captured by our algorithm) only adds a negligible amount of piRNAs to these clusters, except for 

Hsp70B (Figure 4B). Thus, this algorithm is not only useful for finding new piRNA source loci but 

also provides a more accurate quantification of piRNA production from previously known clusters.  

 

Sex difference in piRNA cluster expression 

To compare the expression of piRNA clusters between sexes, we first applied our algorithm to 

published ovary piRNA datasets (Figure 4D; Table S1) (ElMaghraby et al., 2019). Thus, piRNA 

clusters were defined and their activities were quantified in both sexes using the same algorithm, 

allowing for fair comparison. Surprisingly, our analysis revealed that AT-chX, originally described 

as a piRNA cluster in testes, is also highly active in ovaries. AT-chX locus consists of local repeats 

(Kotov et al., 2019), so piRNAs produced from this locus were excluded in previous studies that 

analyzed only uniquely-mapped reads. In fact, AT-chX is the second most active piRNA cluster 

in ovary, producing ~7% of total piRNAs.  

Comparison between piRNA clusters in males and females revealed a clear sex difference: 

a small number of loci produce the majority of piRNAs in testis, which is not the case for ovary 

(Figure 5A). The two most active piRNA clusters in testes, Su(Ste) on Y chromosome and AT-

chX on X chromosome, produce ~43% and ~31% of total piRNAs in testes, respectively (Figure 

4C). They are followed by the novel piRNA cluster on Y chromosome, h17, that produces ~4% 

piRNAs. Along with another 6 loci, the top 9 piRNA clusters in testis account for 81.8% of total 

piRNAs. In comparison, only 30.4% of total piRNAs are made from the top 9 clusters in ovary, 

with the most active locus 42AB producing ~11% of total piRNAs (Figure 4D). Whereas a few loci 

dominate the global piRNA population in testis, the ovary piRNA profile is shaped by many loci 

producing piRNAs in comparable amounts.   

Next, we compared expression levels of different piRNA clusters in male and female 

gonads. Females lack Y chromosome, so they do not have piRNAs produced by Y-linked Su(Ste) 
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and h17 clusters. For major clusters present in both male and female genomes, we observed 

pronounced sex differences (Spearman’s ρ = 0.07; Figure 5B). For instance, 38C produces more 

piRNAs than 42AB, 80EF and 40F7 in testes, but the opposite trend is found in ovaries. Some 

loci such as Sox102F on chr4 (Mohn et al., 2014; Zhang et al., 2014) appear to be active only in 

ovaries but not in testes (Figure 5F). These differentially expressed piRNA clusters located on 

autosomes, which both males and females have two copies, exemplify the sex-specific usage of 

piRNA loci. Moreover, we examined expression levels of major piRNA clusters on chrX (AT-chX, 

flam and 20A), which females have two copies (XX) and males have only one (XY). We found 

that a larger fraction of piRNAs originate from AT-chX in testes than ovaries, but the reverse was 

found for flam and 20A, suggesting that copy numbers of piRNA clusters do not correlate well 

with their expression. Altogether, these findings illustrate a sexually dimorphic employment of 

piRNA clusters, where different loci are engaged differentially in a sex-specific manner.  

Different piRNA clusters have distinct TE contents, so their differential expression might 

sculpt sex-specific piRNA programs with distinct TE-silencing capacities in males and females. 

To explore a link between the expression of piRNA cluster and its TE content, we computed 

cumulative sex bias of the TE content of each major piRNA cluster (Figure 5C). This was done 

by summing sex biases of individual TEs in the piRNA cluster weighted by their length 

contributions to the cluster (see example in Figure 5C). The sex bias of cluster TE content 

matches the sex bias in piRNA cluster expression, suggesting a link between the expression of 

piRNA clusters and TEs they control. To substantiate this finding, we analyzed sequence 

compositions of three differentially expressed piRNA clusters: 42AB (ovary-biased), 38C (testis-

biased) and Sox102F (ovary-specific). The top 6 TEs most enriched by length in ovary-biased 

42AB (batumi, gypsy12, FW, DMRT1b, copia2 and max) are all ovary-biased in their expression 

(Figure 5D; Figure S3A). Importantly, these 6 TEs are completely absent in testis-biased 38C 

cluster. In contrast, three testis-biased TE families, hobo, BS2 and Transib2, are more enriched 

in 38C than in 42AB (Figure 5E; Figure S3A). Moreover, ovary-specific Sox102F cluster harbors 

a single autonomous transposon, Tc1-2, which has higher activity in ovary (Figure 5F; Figure 

S3A). These examples show that differential expression of piRNA clusters in two sexes often 

matches the differential activities of TEs they control, supporting the notion that piRNA clusters 

are employed in a sex-specific fashion to cope with distinct TE landscape in male and female 

gonads.  

 

piRNA clusters composed of local repeats produce piRNAs that target host genes 
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Our analysis indicated that 13.8% of testis piRNAs might potentially be involved in targeting host 

genes as they can be mapped to protein-encoding genes in antisense orientation with a small 

number (0 to 3) of mismatches between piRNA and gene sequences (Figure 1B). To understand 

the genomic origin of these piRNAs, we further analyzed sequence compositions of piRNA 

clusters. We found that two clusters, Hsp70B and h17, both of which contain local repeats, 

generate piRNAs that have the potential to target host genes.   

The Hsp70B cluster spans ~35Kb between two paralogous Hsp70B genes on chr3R, and 

it is active in both ovary and testis (Figure 6A). The body of Hsp70B cluster contains several TEs. 

Even though there are piRNAs mapping to these TEs, they can be mapped elsewhere in the 

genome as well, rendering it impossible to be certain that they originate from Hsp70B locus. In 

fact, this cluster was previously identified through the presence of uniquely-mapped piRNAs from 

flanking non-repetitive genes (Mohn et al., 2014). However, our algorithm that takes into account 

local repeats revealed piRNAs generated from a ~354bp local repeat at Hsp70B locus, which 

occupies nearly all inter-transposon space within this cluster. Importantly, these piRNAs mapped 

exclusively to this local repeat at Hsp70B cluster but nowhere else in the genome. Intriguingly, 

these repeats have a ~92% sequence identity to an exon of the nod gene, which encodes a 

kinesin-like protein necessary for chromosome segregation during meiosis (Carpenter, 1973; 

Hawley and Theurkauf, 1993; Zhang et al., 1990). Hsp70B cluster generates piRNAs that are 

antisense to nod with a 91.3% averaged nucleotide identity to it. This level of sequence similarity 

is close to that between Suppressor of Stellate piRNAs and their Stellate targets, the first known 

case of piRNA repression (Aravin et al., 2001; Vagin et al., 2006), suggesting that piRNAs 

produced from Hsp70B locus might be able to repress the nod gene. 

The second locus producing piRNAs that might target host genes is the novel piRNA 

cluster h17 on Y chromosome, which is only present in XY males (Figure 6B). This cluster spans 

more than 200Kb and includes two loci duplicated from chr2L and chrX, respectively, that contain 

almost the entire CG12717 gene (which encodes a SUMO protease) and small parts of Paics 

(which encodes an enzyme involved in purine biogenesis) and ProtA (which encodes protamine, 

a sperm chromatin protein) (Mendez-Lago et al., 2011). These gene-homologous sequences are 

further duplicated locally on Y to over 20 copies and take up nearly all space in between TEs at 

h17 cluster (Figure 6B; Figure S5B). However, these gene-related sequences likely do not retain 

coding potentials as they are frequently interrupted by TE sequences. h17 cluster produces 

piRNAs antisense to CG12717, Paics and ProtA genes, with averaged levels of nucleotide identity 
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92.5%, 93.9%, and 91.0%, respectively. Together, two piRNA clusters, Hsp70B and h17, encode 

piRNAs with the potential to target both TEs and host genes.  

We quantified expression of piRNAs antisense to nod, CG12717, Paics and ProtA genes 

from these two clusters. Even though these piRNAs all possess over 90% identity to their putative 

targets, their abundances differ dramatically (Figure 6C). CG12717 gene is targeted by abundant 

piRNAs (4,310 RPM), comparable to the 15th most targeted TE family in testis. piRNAs against 

nod are expressed at 813 RPM (~5-fold less compared to CG12717), while the levels of piRNA 

against Paics or ProtA are low (both ~50 RPM). In addition, nearly the entire length of CG12717 

gene is targeted by piRNAs, whereas only small parts of nod, Paics and ProtA are targeted. These 

findings suggest that CG12717 and nod might be regulated by piRNAs in testis.  

 

piRNA-guided repression of SUMO protease CG12717/pita during spermatogenesis 

To examine the role of piRNAs in gene regulation, we employed RNA-seq to analyze expression 

of host genes in testes of three different piRNA pathway mutants: aub, zuc and spn-E (Nishida et 

al., 2007; Pane et al., 2007; Schmidt et al., 1999; Stapleton et al., 2001). Transcriptome profiling 

revealed that only two genes, CG12717 and frtz, exhibited ≥2-fold up-regulation in all three piRNA 

pathway mutants (Figure 7A). Unlike CG12717, there are very few, if any, antisense piRNAs 

targeting frtz, so its up-regulation likely reflects a secondary phenotype following TE de-repression. 

Strikingly, expression of CG12717 increased more than 10-fold in all three mutants (Figure 7C), 

indicating that it is indeed strongly repressed by the piRNA pathway. Meanwhile, we observed no 

statistically significant up-regulation of nod, Paics or ProtA in these three mutants (Figure 7C), 

correlating with fewer piRNAs against these genes than CG12717 (Figure 6C). While CG12717 

is expressed at a very low level in testes of wild-type males, it is highly expressed in ovaries 

(Figure 7D), consistent with the fact that CG12717-targeting piRNAs are encoded on Y 

chromosome. Thus, transcriptome profiling identifies CG12717 as a target of piRNA repression 

and suggests that abundant antisense piRNAs with high target coverage might be required for 

efficient silencing. 

piRNA-guided cleavage of target RNAs often triggers the production of secondary piRNAs 

from target RNAs in a process dubbed ping-pong cycle (Brennecke et al., 2007). Examination of 

piRNA sequences revealed abundant piRNAs derived from the entire length of CG12717 mRNAs 

(Figure 6C). In contrast, we found few piRNAs processed from transcripts of nod, Paics or ProtA. 

Furthermore, sense piRNAs derived from CG12717 mRNAs and antisense piRNAs produced 
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from h17 cluster demonstrated a strong ping-pong signature (Z10=16.8; Figure 7E), characteristic 

of active ping-pong cycle. This finding further suggests the direct cleavage of CG12717 transcripts 

guided by h17 piRNAs. Finally, we performed RNA in situ hybridization chain reaction (in situ 

HCR) to examine CG12717 expression. Expression of CG12717 is very low in wild-type testis, 

but it was significantly increased in testes of aub, zuc and spn-E mutants (Figure 7B). Upon 

release of piRNA silencing in these three mutants, CG12717 is specifically expressed in 

differentiating spermatocytes, but not in germline stem cells or mitotic spermatogonia. 

Interestingly, Stellate is expressed at the same stage when the silencing by Su(Ste) piRNAs is 

removed (Aravin et al., 2004). As our results indicate that expression of CG12717, a SUMO 

protease gene related to Ulp2 in yeast (Berdnik et al., 2012), is strongly repressed by piRNAs, we 

propose to name it pita (piRNA target). 

To understand how piRNA-dependent regulation of pita has evolved, we performed a 

blastN search using Drosophila melanogaster pita gene against genomes of other Drosophila 

species. We found multiple copies of pita-related sequences in genomes of Drosophila simulans 

species complex (D. simulans, D. sechellia and D. mauritiana) (Figure 7F), but not in more 

distantly related species like D. erecta or D. yakuba. Similar to h17 cluster in D. melanogaster, 

these pita-related sequences reside in TE-rich regions (either peri-centromeric heterochromatin 

or unassigned scaffolds) in D. simulans species complex. While all pita-related sequences are 

exclusively located at h17 on Y chromosome of D. melanogaster, pita-homologous sequences 

can be found on different chromosomes in genomes of D. simulans species complex. For 

instance, in D. mauritiana, pita-homologous sequences can be found on at least chrY, chrX, chr3L 

and chr3R (Figure 7G). Therefore, duplications of pita-related sequences into heterochromatin 

have occurred in all four species.   

To investigate whether heterochromatic pita-homologous sequences produce small RNAs 

in testes of other species, we analyzed published small RNA datasets from testes of D. simulans 

and D. mauritiana (Kotov et al., 2019; Lin et al., 2018). We found no small RNAs mapping to the 

orthologous pita gene in D. simulans testes, but abundant ones in D. mauritiana testes (Figure 

7H). Unexpectedly, unlike 23-29nt pita-mapping piRNAs in D. melanogaster, pita-mapping small 

RNAs in D. mauritiana are mostly 21nt long, indicating that they are endo-siRNAs. These endo-

siRNAs have on average 93.5% identity with the D. mauritiana pita gene. Notably, similar to other 

dual-strand piRNA clusters described in D. melanogaster ovaries (Czech et al., 2008; Le Thomas 

et al., 2014), h17 cluster in D. melanogaster testes also generates pita-mapping endo-siRNAs, 

though much less abundant than 23-29nt piRNAs (Figure 7H). Examination of heterochromatic, 
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pita-homologous sequences in D. mauritiana genome revealed that most of them are arranged 

head-to-tail (Figure 7G). However, there are four instances where pita-homologous sequences 

are arranged head-to-head (Figure 7G and 7I), which could potentially generate hairpin RNAs 

(hpRNAs), the preferred substrate for processing into endo-siRNAs by Dicer. Thus, targeting of 

pita by small RNAs in testis seems to be conserved in two Drosophila species. While pita is 

repressed mostly by piRNAs in D. melanogaster, it is targeted nearly exclusively by endo-siRNAs 

in D. mauritiana, suggesting two related but distinct regulation strategies employed in sibling 

species that diverged less than 5 million years ago.  

In addition to pita, there is another SUMO protease, veloren (velo) in D. melanogaster 

genome. pita and velo are paralogs whose homologous domains share 75% nucleotide identity 

(Figure S5A). In agreement with the sequence similarity, functions of Pita and Velo in SUMO 

deconjugation pathway were shown to be partially redundant (Berdnik et al., 2012). Phylogenetic 

analysis showed that, while velo is found at syntenic locations on chromosome 3 throughout the 

Drosophila genus, pita is much younger and was only born after the split of D. melanogaster and 

ananassae species subgroups (Figure 7F). These results indicate that pita and velo have evolved 

from a common ancestor gene, via inter-chromosomal duplication from chr3 to X chromosome.  

Considering the 75% nucleotide identity between the parts of pita and velo genes in D. 

melanogaster, pita-targeting piRNAs produced from h17 cluster have a potential to target velo 

transcripts. However, we found that none of the pita-antisense piRNAs can be mapped to velo 

transcript perfectly. Moreover, ~200-fold fewer piRNAs have a potential to target velo with one to 

three mismatches. Transcriptome profiling in testes of aub, zuc and spn-E mutants showed that, 

unlike pita, velo is not repressed by piRNAs (Figure 7C). In addition, while pita is only expressed 

in ovaries, velo is expressed in both testes and ovaries and, in fact, has a higher expression level 

in testes (Figure 7D). These results show that Y-linked h17 piRNAs repress specifically pita, but 

not its paralog, velo, suggesting that a high degree of complementarity is required for efficient 

piRNA silencing. Therefore, piRNAs distinguish closely related paralogs to achieve sex- and 

paralog- specific gene regulation. 

Taken together, our results allowed us to reconstruct the evolutionary history of two 

paralogous, Ulp2-like SUMO protease genes. First, the pita gene was born via inter-chromosomal 

duplication after the split of D. melanogaster and ananassae species subgroups. This then 

permitted the differentiation of velo and pita functions, though these two genes remain in part 

functionally redundant in D. melanogaster (Berdnik et al., 2012). Next, divergence between pita 

and velo sequences created an opportunity for paralog-selective gene regulation by small RNA-
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guided mechanisms. This was achieved by duplications of pita sequences into heterochromatin 

in genomes of D. melanogaster and D. simulans species complex. It is plausible that, initially, 

heterochromatic, pita-homologous sequences did not play a role in gene regulation, as illustrated 

by the absence of pita-mapping small RNAs in D. simulans. However, subsequent expansion and 

interaction with TE sequences might have enabled the evolution of two distinct repression 

mechanisms, via production of pita-targeting piRNAs and endo-siRNAs, that dominated in D. 

melanogaster and D. mauritiana, respectively. Repression of pita by Y-linked piRNAs led to its 

specific repression in D. melanogaster testis, implicating the piRNA pathway in establishing 

distinct expression patterns of closely related paralogs after gene duplication.  

 

DISCUSSION 

Previous studies systematically analyzed piRNA profiles in female gonads of D. melanogaster, 

revealing an essential role of piRNAs in regulation of many TEs (Brennecke et al., 2007; Li et al., 

2009; Malone et al., 2009). However, these studies only provided a single snapshot of the 

relationship between TE and piRNA defense system, as they are insufficient to understand how 

the piRNA program might adapt to changing TE repertoire and different levels of their expression. 

To this end, several studies explored the piRNA pathway in other species of Drosophila (Malone 

et al., 2009; Rozhkov et al., 2010; Saint-Leandre et al., 2020). These studies revealed that piRNA 

profiles are different across species, suggesting an adaptation of the defense mechanism to 

distinct challenges. However, drastic differences in both TE contents and piRNA cluster 

sequences even among closely related Drosophila species (Kofler et al., 2015; Lerat et al., 2011; 

Malone et al., 2009) make it difficult to disentangle different factors that sculpt species-specific 

piRNA programs. Here, we examined TE expression in males and females of the same species, 

revealing strong differences in TE activities between sexes. This allowed us to compare piRNA 

programs in two sexes with similar genomic contents (except Y chromosome).  

Another obstacle to understanding responses of the piRNA program to TEs is properly 

assessing TE expression. D. melanogaster genome includes over 100 different TE families whose 

expression levels can be measured by standard methods such as RNA-seq. However, TE 

expression in wild-type animals is greatly suppressed by the piRNA pathway (>100-fold for some 

families) (ElMaghraby et al., 2019). Therefore, in order to understand true expression potentials 

of TEs, it is necessary to study their expression upon removal of piRNA silencing, which is difficult 

to do in species other than model organisms like D. melanogaster. In this work, we examined the 

TE expression in piRNA pathway mutants, revealing genuine potentials of TE expression in both 
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sexes. Combined analysis of TE and piRNA expression showed responses of the piRNA program 

to distinct TE expression profiles in two sexes. 

Analysis of the genomic origin of piRNAs represents an important but challenging task. As 

piRNA sequences are short (23-29nt) and often derive from repetitive genomic regions, a large 

fraction of sequenced piRNA reads can be mapped to multiple genomic loci, preventing an 

unambiguous assignment of their origin. Accordingly, algorithms employed in previous studies 

only used the small fraction of piRNA reads that can be mapped to the genome at single unique 

positions to identify genomic regions that generate piRNAs. We took advantage of the fact that 

some genomic repeats are local, i.e., they reside within one genomic region and are absent in the 

rest of the genome, to develop a new algorithm for piRNA cluster definition and analysis (Figure 

4A and Figure S4). This approach was successful in identifying new piRNA clusters. Furthermore, 

it also provided a more accurate quantification of the piRNA cluster expression. We found that 

Hsp70B cluster generates piRNAs against the nod gene. In addition, we discovered a novel 

cluster, h17, on Y chromosome that generates piRNAs against three host genes and ensures the 

strong silencing of SUMO protease, CG12717/pita, during spermatocyte differentiation.  

Our identification of the novel h17 cluster on Y expanded known functions of entirely 

heterochromatic Y chromosome (Figure 4F and Figure 6B). Three functionalities have been 

assigned to Y by the early 1980s (Gatti and Pimpinelli, 1983). First, together with X chromosome, 

Y encodes rDNA loci that express rRNAs and mediates meiotic pairing with X. Second, Y encodes 

six protein-encoding genes, so-called “fertility factors”, whose protein products are required for 

completion of spermatogenesis. Finally, Y chromosome harbors the Su(Ste) locus that generates 

piRNAs to suppress Stellate genes to safeguard normal spermatogenesis (Aravin et al., 2001; 

Vagin et al., 2006). A handful of new protein-encoding genes were discovered on Y in the past 

two decades (Bernardo Carvalho et al., 2009; Krsticevic et al., 2010), however, many of them 

appeared dispensable. Our finding that Y chromosome encodes a novel piRNA cluster and 

produces piRNAs to regulate expression of the pita gene assigns a new function to Y chromosome.  

 

Sexual dimorphism of TE expression and TE-silencing piRNA programs  

D. melanogaster is an excellent model to study TE regulations and host-TE interactions, as its 

genome harbors many TE families that are transcriptionally and transpositionally active, 

generating new insertions in the population (Kofler et al., 2015). Our results indicate that 

expression of both TEs and piRNAs is sexually dimorphic. The majority of TE families are strongly 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 25, 2020. . https://doi.org/10.1101/2020.08.25.266585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266585
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

expressed in ovaries, though some TEs are more active in testes. In line with this, our results 

indicate a stronger TE-silencing piRNA program in female gonads (Figure 2).  

For TEs to be evolutionarily successful, they need to evolve strategies to maximize their 

chance to be inherited and expanded through generations. For example, TEs often hijack 

germline gene expression programs to be preferentially active in germ cells. Germline-biased 

expression leaves the choice of expression to either female or male germline, or both. Importantly, 

the two sexes employ distinct evolutionary strategies and have different contributions towards the 

zygote. While the major contribution of sperm is its genome, oocyte contributes large amounts of 

yolk, various protein factors, RNAs and organelles such as mitochondria, in addition to its genome. 

This sexual asymmetry in their contributions to the next generation has important implications for 

reproduction strategies of TEs. TEs active in the male germline need to complete the entire life 

cycle from transcription to genomic insertion before sperm maturation, in order to propagate. In 

contrast, once transcribed, TEs active during oogenesis could finish their life cycle in the zygote 

after fertilization, as long as transcribed TE transcripts are deposited into the oocyte. The latter 

strategy is also used by mammalian L1 retrotransposon that is expressed during gametogenesis, 

but genomic insertions might occur later during early embryogenesis (Kano et al., 2009). Thus, 

the expression bias towards ovaries observed for most TEs can be explained by an advantage 

for their proliferation, specifically, the extended window to finish their life cycle, in female germline.  

There are a few TEs that bias testis for expression, suggesting that there are likely male-

specific vulnerabilities exploitable by these elements. For example, male germ cells use a testis-

specific gene expression machinery (e.g. tTAF and tMAC) to transcribe meiotic and post-meiotic 

genes (Beall et al., 2007; Hiller et al., 2004). TEs might exploit this tissue-specific transcriptional 

machinery to enable their sex-biased expression. It will be important in the future to uncover 

molecular mechanisms underlying differentially expressed TEs between sexes.  

Analysis of piRNA profiles in testis and ovary indicates that piRNA programs have adapted 

to sex-biased TE expression (Figure 3). The most striking example is the nearly exclusive 

expression of telomeric TEs and corresponding antisense piRNAs in the female germline. Our 

results suggest that differential expression of piRNA clusters in two sexes together with differential 

TE-targeting capacity of each cluster contributes to the sex-specific, TE-targeting piRNA program. 

We found that piRNA cluster expression is sexually dimorphic. Besides the Su(Ste) locus, we 

identified another major cluster on Y chromosome that is only active in XY males. However, sex-

biased expression is not restricted to Y-linked clusters, as many X-linked and autosomal clusters 

have differential activities between sexes as well. Besides differential expression, genomic 
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analysis showed differences in piRNA cluster TE contents, suggesting that different piRNA 

clusters are, to some extent, specialized to target different sets of TEs. Importantly, sex bias in 

cluster expression and their TE-targeting potentials are linked: clusters preferentially targeting 

ovary-biased TEs are more active in ovary, while testis-biased clusters tend to target testis-biased 

TEs (Figure 5). Hence, piRNA clusters appear to be employed differentially by two sexes to 

counteract specific TE threats they face. What determines the differential expression of piRNA 

clusters between sexes awaits future studies. Previous work suggests that TE promoters 

embedded in piRNA clusters retain their activities (Mohn et al., 2014). Contribution of TE 

promoters to piRNA precursor transcription from piRNA clusters might explain the correlation 

between expression of clusters and their TE targets.      

 

Satellite DNA as target of piRNA silencing  

Satellite DNAs can be classified as either simple or complex satellites based on the length of 

repeating units, and they occupy large portions of Drosophila genome, particularly at peri-

centromeric and sub-telomeric regions (Hsieh and Brutlag, 1979; Karpen and Spradling, 1992; 

Larracuente and Presgraves, 2012; Lohe et al., 1993). We found piRNAs expressed from three 

major families of complex satellites: sub-telomeric HETRP/TAS, Responder (Rsp), and 

SAR/1.688 (including 359bp). In fact, piRNAs can be mapped to both strands of complex satellites 

in gonads of both sexes, and they often possess ping-pong signature (Figure 1C). Thus, our 

results expand the previous observation of piRNAs mapping to one strand of Rsp (Saito et al., 

2006) and establish complex satellites as dual-strand piRNA clusters and potential targets of 

piRNA silencing in Drosophila germline of both sexes. Our analysis was focused on complex 

satellites, as simple satellite repeats are still largely intractable to sequencing technologies today 

(Khost et al., 2017). However, a recent study reported that transcripts from AAGAG simple 

satellite repeats regulate heterochromatin in male germline and are required for male fertility (Mills 

et al., 2019). It will be interesting to determine whether simple satellites produce piRNAs and, if 

so, whether their piRNA production is required for male fertility.  

 piRNAs loaded onto the nuclear Piwi protein guide heterochromatin assembly (Le Thomas 

et al., 2013; Rozhkov et al., 2013; Sienski et al., 2012; Wang and Elgin, 2011). For this reason, 

satellite piRNAs might play a role in establishing germline heterochromatin, similar to 

heterochromatin formation guided by siRNAs in fission yeast (Hall et al., 2002; Volpe et al., 2002). 

While the function of complex satellites remains mostly elusive, Rsp has been implicated in a 

meiotic drive system called segregation distortion (Hartl, 1973; Larracuente and Presgraves, 2012; 
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Wu et al., 1988). During male meiosis, the Segregation Distorter (SD) allele enhances its own 

transmission to haploid cells at the cost of wild-type (SD+) allele in SD/SD+ heterozygous males, 

violating Mendelian law of inheritance. Importantly, segregation distortion requires the presence 

of a sufficient number of Rsp satellite repeats in trans. Though described more than 60 years ago 

(Sandler et al., 1959), the molecular mechanism of segregation distortion remains unknown. 

Intriguingly, mutations of aubergine (aub), a PIWI protein, were found to be enhancers of SD (Gell 

and Reenan, 2013). Together with our data, these data suggest that piRNA pathway may play a 

role in segregation distortion during spermatogenesis.  

 

Regulation of host genes by piRNAs  

Though the central and conserved function of piRNA pathway seems to be TE repression, other 

functions were also described in several organisms (reviewed in Ozata et al., 2019). The role of 

piRNAs in regulating host gene expression is particularly intriguing and remains somewhat 

controversial. The first described piRNAs, Su(Ste) piRNAs, silence the expression of Stellate 

genes (Aravin et al., 2001; Vagin et al., 2006). However, Stellate genes and their piRNA 

suppressors appear to resemble selfish toxin-antitoxin systems rather than representing an 

example of host gene regulation (Aravin, 2020). Since the discovery of piRNA pathway, there 

have been several studies reporting host protein-encoding genes regulated by Drosophila piRNAs 

(reviewed in Rojas-Ríos and Simonelig, 2018). In this work, we analyzed the ability of Drosophila 

piRNAs to regulate host genes in testes, by examining gene-targeting piRNAs and changes in 

host gene expression across three piRNA pathway mutants. We found piRNAs targeting four host 

genes: nod (a kinesin-like protein), CG12717/pita (a SUMO protease), Paics (a metabolic enzyme) 

and ProtA (a sperm chromatin protein). These four genes are targeted by antisense piRNAs 

generated from two piRNA clusters that contain sequence homology to them. However, only one 

of the four, CG12717/pita, is substantially repressed (over 10-fold) by piRNAs (Figure 7). As pita-

silencing piRNAs are encoded on Y chromosome and thus only expressed in males, they are 

responsible for differential expression of pita in two sexes. Indeed, in wild-type files, pita is 

specifically silenced in male gonads while highly expressed in female counterparts. Thus, our 

results establish the ability of piRNAs to repress host protein-encoding genes, and, at the same 

time, suggest that this role is likely restricted to a small number of genes.   

Our results indicate that piRNA-guided repression of host genes requires a sufficient 

number of targeting piRNAs. While all four genes are targeted by piRNAs with similar levels of 

sequence identity (91-94%, i.e., about 2 mismatches per piRNA), the abundance of piRNAs 
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against each gene differs drastically. There are much more pita-targeting piRNAs than the other 

three gene targets, at a level comparable to the 15th most targeted TE. Furthermore, while pita is 

targeted along almost the entire length, only small regions of other three genes are targeted by 

piRNAs. These differences in piRNA abundance and distribution of target sites could explain 

strong repression of pita, in contrast to the other three genes. It is possible that these genes are 

still regulated by piRNAs at specific stages, the question that remains to be further investigated. 

Importantly, abundant pita-silencing piRNAs do not repress the pita paralog, velo, that has a 75% 

sequence identity with pita, indicating that a high complementarity between piRNA and target may 

be important for efficient silencing. In agreement with these, a previous report indicated that a 

similar level of sequence identity (~76%) is insufficient for the silencing of vasa by AT-chX piRNAs 

(Kotov et al., 2019). Therefore, both high expression and high complementarity with targets might 

be required for efficient piRNA silencing in D. melanogaster.  

This conclusion is important for analyzing the potential of piRNAs to repress host protein-

coding genes. Unlike miRNAs, sequences of piRNAs are extremely diverse. Accordingly, if 

mismatches between piRNA and its target are well tolerated, a large number of cellular mRNAs 

should be targeted and repressed by piRNAs. Indeed, some host genes were proposed to be 

repressed by a few piRNA species that have multiple mismatches to mRNA sequences (Gonzalez 

et al., 2015; Klein et al., 2016; Rojas-Ríos et al., 2017; Saito et al., 2009). Our results suggest 

that such a spurious targeting by individual piRNAs is unlikely to cause repression. In fact, a high 

threshold for efficient target repression might permit production of diverse piRNA sequences 

against genuine targets such as TEs, without unintended interference with host gene expression.  

 

The role of piRNA in evolution  

Analysis of pita repression revealed a remarkable picture of evolutionary innovation (Figure 7). 

piRNA-dependent repression of pita occurs in D. melanogaster but not in its sibling species, 

suggesting its rather recent origin. Efficient silencing of pita is linked to the presence of multiple 

copies of pita-homologous sequences in a piRNA cluster inside heterochromatin. Interestingly, 

duplications of pita sequences into, and their expansion within, heterochromatin can be found in 

three closely related species of D. simulans complex, in addition to D. melanogaster. However, 

distribution and copy number of pita-related sequences differ among these four species. In fact, 

both h17 locus that generates pita-silencing piRNAs and its two flanking protein-encoding genes, 

FDY and Mst77Y, evolved after the split of D. melanogaster and D. simulans species complex 

(Carvalho et al., 2015; Krsticevic et al., 2010; Mendez-Lago et al., 2011), suggesting that the 
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entire locus is unique to D. melanogaster. Furthermore, no small RNAs are generated from 

heterochromatic pita sequences in D. simulans, while endo-siRNAs are made against pita in D. 

mauritiana. The neutral theory of molecular evolution provides the most parsimonious 

interpretation of these results. This theory suggests that the initial duplication of pita sequences 

into heterochromatin might have been a random event that did not play a role in regulating the 

ancestral pita gene. However, subsequent evolution of pita-related sequences inside 

heterochromatin gave rise to two different modes of regulations, piRNA and endo-siRNA, in two 

different but closely related species. The emergence of small RNA-mediated repression was 

probably facilitated by the fact that pita itself was recently evolved and retains partially redundant 

functions with its paralog, velo (Berdnik et al., 2012), allowing independent regulation of two 

paralogs.  

The evolutionarily innovative role of piRNAs in regulating host genes in Drosophila has 

interesting parallels in other organisms. Pachytene piRNAs expressed during spermatogenesis 

in mammals evolved very fast and are generally poorly conserved (Özata et al., 2020). The 

function of pachytene piRNAs is under active debate as no obvious targets can be easily 

discerned by analysis of their sequences (Aravin et al., 2006; Girard et al., 2006). Recently, knock-

out of one pachytene piRNA cluster led to unexpected conclusion that a small fraction of piRNAs 

promote biogenesis from other piRNA clusters and regulate the expression of a few host genes, 

while the vast majority do not target any transcripts (Wu et al., 2020). Thus, mammalian pachytene 

piRNAs can be considered a selfish system that occasionally involves in regulation of the host 

gene expression. Species-specific regulation of host genes by piRNAs in both Drosophila and 

mouse suggests that piRNA pathway is used in evolution to create innovation in gene regulatory 

networks that might contribute to speciation. More generally, piRNAs might promote the 

evolvability of animal species. Though it is difficult to establish the function of any molecular 

mechanism in evolution, this proposal makes a testable prediction that host genes repressed by 

piRNAs differ even among closely related species. Future studies in non-model organisms will 

shed light on the role of piRNAs in evolution and speciation. 
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MAIN FIGURE TITLES AND LEGENDS 

Figure 1. Analysis of small RNA profiles in testis and ovary. 

(A) Size distribution plots of microRNAs (gray), remaining small RNAs that map to TE consensus 

(red) and protein-encoding gene exons (black), in testis (left) and ovary (right).  

(B) Annotation of piRNA reads in testis (left) and ovary (right). 1U nucleotide bias (%) for overall 

piRNA population and each category is shown next to labels. See also Figure S1.  

(B) Characterization of piRNAs mapping to three known complex satellites in two sexes. Left 

panels of each sex are size distribution of piRNAs mapping to consensus sequences of each 

complex satellite. Right panels are distributions of 5’-to-5’ distances of piRNA pairs, showing an 

enrichment for 10nt (i.e., ping-pong signature), except for Rsp in testis. 1U nucleotide bias (%) 

and ping-pong z-score are shown above plots. See also Figure S2. 

 

Figure 2. Expression of piRNAs and TEs are both sexually dimorphic.  

(A) Heatmaps showing the abundance of antisense piRNA (left) and ping-pong z-score (right) for 

each TE family in two sexes. TE families are sorted by sex bias of piRNA expression, defined as 

the log2 ratio of antisense piRNA abundance in testis over ovary. TEs with more than 2-fold 

differences in antisense piRNAs are colored as testis-biased (blue) and ovary-biased (pink), 

respectively, with the remaining having no obvious bias (gray).  

(B) Top 10 TEs targeted by the most abundant antisense piRNAs in testis (left) and ovary (right). 

Heights of slices correspond to relative abundance in each sex, and the sum of top 10 TEs is then 

scaled to the same height between sexes. Each TE family is given a unique color, and the same 

TE family is connected by a line to help visualize distinct rank-orders between sexes. Names of 

TE families are shown following the same order, though not directly next to respective slices.  

(C) Top 10 most expressed TE families in piRNA pathway mutant testis (left) and ovary (right). 

rhi-/- was used, where piRNA production from genome-wide dual-strand piRNA clusters collapses. 

Slice heights and colors were depicted as described in (B), though the same TE can be marked 

by a different color from (B).  

(D) Scatter plot displaying the fold-change of TE expression in piRNA pathway mutant (rhi-/-) testis 

(left, blue) and ovary (right, pink) over controls. Venn diagrams of the number of TEs showing 

100-, 10- and 4-fold de-repression in two sexes are shown on the right.  
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(E) Expression of 36 TE families that are regulated by rhi (see methods) in testis (left) and ovary 

(right). TE families are sorted by sex bias of their expression in piRNA pathway mutant (rhi-/-), 

defined as the log2 ratio between sexes. Heatmaps display TE levels in control and mutant, while 

bar graphs show the fold-change of expression in mutant over control.  

 

Figure 3. Sexually dimorphic piRNA programs parallel sex-specific TE expression. 

(A) Scatter plot displaying the correlation between sex biases of TE and TE-antisense piRNA. For 

each TE family, the loss of antisense piRNAs in rhi mutants was calculated in each sex (ctrl RPM 

over mut RPM). The sex bias of piRNAs was defined as the log2 ratio of piRNA loss in female 

over male. Similarly, TE de-repression in rhi mutants was calculated in each sex (mut RPM over 

ctrl RPM), and the sex bias was defined as the log2 ratio of TE de-repression in female over male. 

TE families that show a correlation between the sex bias of antisense piRNA and that of TE de-

repression are colored as orange, with the rest as blue. 

(B) Histograms showing profiles of two sex-biased TEs for each sex. Antisense piRNA levels refer 

to those in control gonads, TE levels refer to those in piRNA pathway mutants (rhi-/-), and the fold-

change is calculated as mutant over control for TEs and the reverse for antisense piRNAs.  

(C) Confocal images of the apical tip of testis (left) and stage 7-8 nurse cells in ovary (right) that 

express a Burdock-fused GFP reporter. The reporter is expressed by nanos promoter that drives 

germline expression in both sexes, thus enabling the examination of piRNA silencing of Burdock 

sequences independent of natural expression patterns of Burdock transposon. Scale bars: 20µm.   

 

Figure 4. Definition of piRNA clusters in testis and ovary using a new algorithm.  

(A) Three types of piRNA reads, defined based on their mapping positions. Uniquely-mapped 

reads can be mapped to only one position in the genome and their origin is unambiguous. Reads 

derived from local repeats can be mapped to several positions in the genome; however, all of 

these mapping positions are locally clustered in a single genomic region. On the other hand, non-

local multi-mappers can be mapped to multiple positions that are not restricted to one genomic 

region (typically mapped to more than one chromosome). Previously, only uniquely-mapped 

reads were used to define piRNA clusters and quantify their expression, as the genomic origin of 

multi-mappers is ambiguous. Inclusion of multi-mappers derived from local repeats, as shown in 

this study, allows identification of new piRNA clusters as well as a more accurate quantification 
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of piRNA production from known clusters. At the same time, it preserves the certainty that reads 

are generated from genomic loci in question. See Figure S4 for detailed pipeline.   

(B) Histogram comparing numbers of mapped reads for major piRNA clusters using different read-

inclusion criteria as defined in (A). For each cluster, the number of mapped reads generated by 

different methods is normalized to the method that includes both unique and local repeat reads 

(the middle column). See also Figure S4 and methods. 

(C) Expression of the top 9 most active piRNA clusters in testis. Blue bars depict the contribution 

of each cluster to total piRNAs (%) and orange dots show cluster lengths according to dm6 

genome assembly. Insert is a pie chart of the contribution of top 9 loci to total piRNAs in testis.  

(D) Same as in (C) but for ovary.  

(E) UCSC genome browser view of a peri-centromeric region (chrX) encompassing the entire 

flamenco locus (purple) and the distal part of AT-chX piRNA cluster (green). Below genomic 

coordinates (dm6) are piRNA coverage tracks using different read-inclusion criteria as defined in 

(A). Note that, whereas flamenco produce piRNAs that can be mostly mapped to unique genomic 

positions, AT-chX generates piRNAs that map to local repeats in this cluster, but nowhere else in 

the genome. Addition of non-local multi-mapper reads does not change the profile, indicating that 

the vast majority of piRNAs produced by the cluster are captured by unique+local mappings.   

(F) UCSC genome browser view of the entire Y chromosome that harbors two Su(Ste) loci (blue) 

and the novel h17 piRNA cluster (orange). piRNA coverage tracks using different read-inclusion 

criteria are shown below genomic coordinates (dm6). At the bottom, all known Y-linked protein-

encoding genes are drawn for reference (not to exact scale). Note that piRNA profiles of Su(Ste) 

and h17 clusters collapse if piRNAs derived from local repeats are excluded.  

 

Figure 5. piRNA clusters are differentially employed to tame sex-specific TE expression.  

(A) Plot showing the cumulative contribution of top piRNA clusters to the total piRNA populations 

in testis (left) and ovary (right), up to 100 clusters.  

(B) Heatmaps showing piRNA production from major piRNA clusters. Note that Su(Ste) and h17 

clusters are Y-linked so there are no piRNAs from these loci in females that lack Y chromosome. 

(C) Bar graphs displaying the sex bias of piRNA cluster expression (left) and cumulative sex bias 

of the TE context for each cluster (right). Sex bias of piRNA cluster expression is defined as the 

log2 ratio of piRNA cluster expression in ovary over testis shown in (B), so ovary-biased ones are 
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positive in value. Cumulative sex bias of cluster TE content is calculated by summing the sex bias 

of TEs (as described for Figure 2E) weighted by their length contributions to the cluster (equation 

shown on the right). An example is shown on the bottom right for a hypothetical cluster composed 

of two TEs with lengths and sex biases labeled accordingly for illustration. Only TEs showing 

strong sex biases were used in calculation. See also methods. 

(D) TE composition of ovary-biased 42AB cluster. Shown are fractions of 42AB cluster occupied 

by sequences from top 6 TE families.  These 6 TEs are completely absent in 38C, a testis-biased 

piRNA cluster. Expression of these 6 TEs is all ovary-biased (Figure S3A).  

(E) Contributions of 3 testis-biased TEs (Figure S3A) to the ovary-biased 42AB cluster and testis-

biased 38C cluster. These TEs were selected as the most enriched by length in 38C compared 

to 42AB.  

(F) The Sox102F gene generates piRNAs in ovary, but not in testis. This locus harbors a single 

autonomous TE, Tc1-2, that has ovary-biased expression (Figure S3A). piRNA coverage tracks 

show both uniquely-mapped and local repeat-derived reads.  

 

Figure 6. Hsp70B and h17 piRNA clusters encode piRNAs that target host genes. 

(A) Hsp70B piRNA cluster (top) and the putative target, nod (bottom). piRNA coverage tracks 

using different read-inclusion criteria are shown below RefSeq and genomic coordinates (dm6) 

for Hsp70B cluster. ~354bp local repeats homologous to a 320bp exonic region of nod are 

depicted as solid blocks, which fill up most inter-TE space at this locus. Note that “unique+local” 

piRNA track does not include TE-derived piRNAs that map outside this locus, but it picks up bona 

fide local repeats that are homologous, but not identical, to nod.  

(B) h17 piRNA cluster on Y chromosome. piRNA coverage tracks using different read-inclusion 

criteria are shown. Sequences with high levels of sequence similarity to protein-encoding genes 

are depicted as colored blocks (not to exact scale): CG12717 (green), Paics (orange), ProtA 

(blue). Note that gene-homologous islands fill up most inter-TE space at this locus. Genomic 

coordinates are based on dm6 genome assembly. 

(C) Coverage of sense (unique, 0 mismatch) and antisense piRNAs (with up to 3 mismatches) 

over four putative, protein-encoding gene targets of testis piRNAs. Antisense piRNA abundance 

is shown for each gene. 
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Figure 7. Regulation of CG12717/pita by small RNA pathways.  

(A) MA plots showing gene expression changes from polyA+ RNA-seq of aub (top), zuc (middle) 

and spn-E (bottom) mutant testes versus heterozygous sibling controls. Genes are marked red 

when passing a stringent statistical cutoff (adjusted P<0.001, from DESeq2). Additional coloring 

includes: CG12717/pita (green), annotated Stellate transcripts (orange), frtz (purple), and the 

mutated gene in each mutant (blue). 

(B) Confocal images of pita mRNAs detected by in situ HCR in aub (top), zuc (middle) and spn-E 

(bottom) mutant testes along with respective heterozygous sibling controls. Probes were designed 

against a ~400bp sequence unique to pita and absent on Y (Figure S5B), so they do not target 

h17 piRNA precursors. Note that de-repression of pita in piRNA pathway mutants is observed 

specifically in differentiating spermatocytes (pointed to by orange arrows). Scale bar: 20µm.   

(C) Heatmaps showing fold-change of five protein-encoding genes in three mutant testes 

according to polyA+ RNA-seq shown in (A).  

(D) Bar graphs displaying modENCODE data of pita and its paralog velo expression in D. 

melanogaster gonads of both sexes.  

(E) Analysis of ping-pong processing of pita-mapping piRNAs. Histogram shows distribution of 5’-

to-5’ distances of complementary piRNA pairs with an enrichment for 10nt (i.e., ping-pong 

signature). To select secondary piRNAs processed from pita transcripts, only reads that map 

perfectly to pita mRNAs in sense orientation and do not map perfectly to h17 cluster were used 

in this analysis. Antisense piRNAs were selected allowing up to 3 mismatches.  

(F) Cladogram of major species in Drosophila genus (left) and the evolutionary history of velo, 

pita and pita-related sequences in genomes of these species (right). Orthologs were identified 

based on sequence homology and synteny. Shown in purple are locations of additional pita copies 

in each species and copy numbers in parenthesis.  

(G) Cartoon depicting distribution of pita-homologous sequences in D. mauritiana genome. 

Orthologous pita is marked blue, orthologous velo is marked green, and the duplicated, candidate 

sources of pita-targeting endo-siRNAs are marked red. Note that they scatter across peri-

centromeric heterochromatin of chrX and chr3, as well as chrY and scaffolds (not shown).  

(H) Profiles of pita-mapping small RNAs in testes of D. melanogaster (top) and D. mauritiana 

(bottom). Size distributions are shown on the left. Coverage plots over the orthologous pita gene 

in each species are shown on the right, including: cumulative alignment of heterochromatic, 
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duplicated copies of pita over the syntenic, orthologous pita (top, solid bar), stranded coverage of 

23-29nt piRNAs (middle, histogram) and 19-22nt endo-siRNAs (bottom, histogram) over the 

orthologous pita gene.  

(I) Illustration showing two representative head-to-head copies of pita homology (red) in the peri-

centromeric heterochromatin of D. mauritiana X chromosome. pita-related sequences are flanked 

by TEs and are part of a large inverted repeat that could potentially permit hpRNA biogenesis.  
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SUPPLEMENTARY ITEM TITLES AND LEGENDS 

Figure S1. Analysis pipeline of gonad small RNAs. Related to Figure 1. 

Flow chart showing step-wise isolation of piRNAs from total small RNAs and subsequent 

mappings to different annotations (repeats, protein-encoding genes and genome).  

 

Figure S2. Coverage of piRNAs over consensus sequences of complex satellites and 
examples of complementary Rsp-mapping piRNA pairs in two sexes. Related to Figure 1. 

(A) Coverage plots of piRNAs over Rsp (top), HETRP (middle) and SAR (bottom), in testis (left) 

and ovary (right). 

(B) Examples of complementary pairs of Rsp-mapping piRNAs. Note that in ovary (red) they show 

an enrichment for 10-nt overlap, i.e., ping-pong signature, but in testis (blue) they show near 

perfect-complementarity with no evidence for ping-pong signature.   

 

Figure S3. TE levels in piRNA pathway mutants and curation of TEs regulated by Rhi in at 
least one sex. Related to Figure 2,3.  

(A) Bar graphs showing TE levels in piRNA pathway mutant (rhi) testes (orange) and ovaries 

(blue). TEs that have at least 25 RPM in either sex is shown at the top, with the rest at the bottom.  

(B) Table reporting manual curation of 36 confidently affected TE families by rhi-/-. Silencing 

potential is TRUE when there are normally >100 RPM antisense piRNAs and they show >2-fold 

reduction in rhi mutants. TEs are deemed de-repressed when having >3-fold up-regulation. Note 

a few unexpected cases where TE de-repression is not accompanied by piRNA loss, the ovary 

ones of which were described before (Klattenhoff et al., 2009).   

 

Figure S4. An algorithm that includes local repeats in piRNA cluster definition and analysis. 
Related to Figure 4.  

(A) Flow chart showing steps of the new algorithm that includes local repeats in piRNA cluster 

definition and analysis. See also methods.  

(B) Histogram showing the distribution of “max distances” defined in (A) to identify a meaningful 

cutoff (2Mb) for distinguishing local from non-local repeats. See also methods.  
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Figure S5. Characterization of pita homology in D. mel. Related to Figure 6,7.  

(A) Homology between two D. melanogaster paralogs: velo and CG12717/pita. The homologous 

regions are marked using BLAT and they share 75% nucleotide sequence identity. 

(B) Alignment of duplicated, partial copies of CG12717 at h17 on D. melanogaster Y to its 

CG12717 gene (left), and their genomic coordinates (right). Note that there are two small regions 

of CG12717 absent on Y. RNA in situ HCR was targeted against the ORF region unique to 

CG12717 gene.  

 

Table S1. Genome-wide piRNA clusters in testis and ovary as well as major piRNA clusters 
defined in this study.  
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MATERIALS AND METHODS 

Fly stocks  

Stocks and crosses were raised at 25 °C. The following stocks were used: aubQC42 (BDSC4968), 

aubHN2 (BDSC8517), zucDf (BSDC3079), spn-Ehls3987 (BDSC24853) and spn-E1 (BDSC3327) were 

obtained from Bloomington Drosophila Stock Center; rhi2 and rhiKG were gifts of William Theurkauf; 

zucHM27 was a gift from Trudi Schüpbach; nosP-GFP-Burdock was a gift from Julius Brennecke. 

Heterozygous siblings were used as controls for all experiments.  

 

RNA in situ hybridization chain reaction (HCR) 

A kit containing a DNA probe set, a DNA probe amplifier and hybridization, amplification and wash 

buffers were purchased from Molecular Instruments (molecularinstruments.org) for CG12717 

transcripts. To avoid targeting the h17 region on Y, we designed probes against a ~400bp unique 

region present in CG12717 on X but absent on Y chromosome. The CG12717 probe set (unique 

identifier: 3916/E064) initiated B3 (Alexa546) amplifier. In situ HCR v3.0 (Choi et al., 2018) was 

performed according to manufacturer’s recommendations for generic samples in solution.  

 

Image acquisition and analysis 

Confocal images were acquired with Zeiss LSM 800 using a 63x oil immersion objective (NA=1.4) 

and processed using Fiji (Schindelin et al., 2012). Single focal planes were shown in all images, 

where dotted outlines were drawn for illustration purposes.  

 

RNA-seq  

RNA was extracted from 160-200 pairs of dissected testes of aubQC42/HN2, spn-E1/hls3987, zucHM27/Df 

and respective heterozygous sibling controls in TRIzol (Invitrogen). PolyA+ selection was done 

using NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB E7490), followed by strand-

specific library prep with NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB E7760) 

according to manufacturer’s instructions. Libraries were sequenced on Illumina HiSeq 2500 

yielding 11-17 million 50bp single-end reads. PolyA-selected RNA-seq of rhi mutants and controls 

were downloaded from NCBI SRA (see the accompanying manuscript for testis and GSE126578 

for ovary, 2 biological replicates per sex per genotype). 
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RNA-seq analysis  

To quantify expression levels of protein-encoding genes across different piRNA pathway mutants 

(aub, zuc and spn-E), we used kallisto 0.46.1 (Bray et al., 2016). Three heterozygous controls 

were pooled as triplicates of controls to be analyzed against duplicates of each of the three piRNA 

pathway mutants. Transcript-level quantification was pooled to obtain gene-level quantification. 

Differential gene expression was done with DESeq2 (Love et al., 2014). Expression of CG12717 

and veloren in ovary and testis from modENCODE (Brown et al., 2014) was extracted from 

FlyBase (Thurmond et al., 2019).  

For analysis of TE expression and TE fold-change in piRNA pathway mutants of both sexes, rhi 

mutants were used where piRNA production from germline-specific dual-strand clusters was 

abolished. Reads mapped to rRNA were discarded using bowtie 1.2.2 allowing 3 mismatches. 

Reads were then mapped to TE consensus from RepBase17.08 using bowtie 1.2.2 with -v 3 -k 1 

and normalized to the total number of reads mapped to dm6 genome. For simplicity, reads 

mapped to LTR and internal sequences were merged for each LTR TE given their well correlative 

behaviors. Only TEs that have ≥5 RPM expression in piRNA pathway mutants of either sex were 

kept for the analysis (n=87). A pseudo-count of 1 was added before calculating TE fold-change 

in piRNA pathway mutants.  

 

Identification of TEs regulated by rhi  

To identify a set of TEs regulated by rhi in at least one sex, we looked for TEs that have at least 

100 RPM in rhi mutant ovaries or at least 25 RPM in rhi mutant testes. Next, we filter out TEs that 

show less than 3-fold de-repression in both sexes. From the initial 87 TEs defined above, these 

led to a total of 36 TEs regulated by rhi in at least one sex shown in Figure 2E and Figure 3A. See 

Figure S3B for detailed profiles of these 36 TEs. 

 

piRNA-seq 

RNA extraction was done as above for RNA-seq. 18-30nt small RNAs were purified by PAGE 

(15% polyacrylamide gel) from ~1µg total RNA. Purified small RNA was subject to library prep 

using NEBNext Multiplex Small RNA Sample Prep Set for Illumina (NEB E7330) according to 

manufacturer’s instructions. Adaptor-ligated, reverse-transcribed, PCR-amplified samples were 
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purified again by PAGE  (6% polyacrylamide gel). Two biological replicates per genotype were 

sequenced on Illumina HiSeq 2500 yielding 15-20 million 50bp single-end reads. 

 

piRNA-seq analysis of TEs, complex satellites and genes 

To isolate piRNAs, adaptor-trimmed total small RNAs were size-selected for 23-29nt (cutadapt 

2.5) and those mapped to rRNA, miRNA, snRNA, snoRNA and tRNA were discarded (bowtie 

1.2.2 with -v 3). piRNAs were first mapped to RepBase17.08 to obtain the portion mapping to TEs 

and complex satellites; the rest was then mapped to gene sequences derived from the gtf file 

downloaded from Ensembl (BDGP6.28.99) (Yates et al., 2019); reads unmapped to repeats and 

genes were then mapped to dm6 to infer the portion mapping to inter-genic regions, and the 

unmapped ones were listed under “others” category. A pipeline is also drawn in Figure S1. For 

TE-antisense piRNA analysis, piRNA reads were mapped, normalized and processed as done 

for polyA+ RNA-seq (see above). For complex satellite-mapping small RNAs, we plotted size 

distribution, analyzed nucleotide bias at position 1 and calculated coverage along consensus 

sequences using bedtools v2.28.0. Ping-pong signature analysis (i.e., 5’-to-5’ distances between 

complementary piRNA pairs) was done with custom scripts. Ping-pong z-score was calculated 

using 1-9nt and 11-23nt as background distribution for an enrichment of 10nt. For piRNAs 

antisense to protein-encoding genes of interest, we downloaded gene sequences from FlyBase 

(Thurmond et al., 2019) and mapped piRNAs to them using bowtie 1.2.2. For mRNA-derived 

sense piRNAs, we mapped piRNAs to genome and kept ones with unique mapping and zero 

mismatch (bowtie 1.2.2 with -v 0 -m 1) to the gene regions and orientations of interest.   

 

A pipeline tolerating local repeats for piRNA cluster analysis 

We first separated rRNA-depleted 23-29nt small RNA reads that map to one unique location in 

the genome and others that have multiple mapping positions (“multi-mappers”). For all multi-

mappers, we filtered out those who map to more than one chromosome arm, retaining only ones 

with multi-mapping positions on a single chromosome arm (“intra-chromosomal repeats”). Then, 

for each of the reads we kept as intra-chromosomal repeats, we calculated the maximum distance 

(“max distance”) of all mapping positions. In order to enforce the local requirement, we hoped to 

identify a cutoff distance for max distances, which is large enough to contain known piRNA loci 

but small enough to allow certain resolution of neighboring loci. To this end, we analyzed a pool 

of 50bp DNA fragments tiling the entire dm6 genome and plotted a histogram of max distances 
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for all intra-chromosomal repeats (Figure S4B). This revealed a density of intra-chromosomal 

repeats having max distances smaller than ~500Kb, as well as four pronounced peaks with larger 

max distances. Sequence analysis uncovered the identities of these peaks: the peak with ~600Kb 

max distance corresponds to AT-chX, the peak with ~1.8Mb max distance represents Su(Ste), 

and the other two peaks mostly contain Y-specific simple repeats. We thus set a 2Mb tolerance 

threshold of max distances to allow local repeats in piRNA cluster analysis. In other words, we 

defined local repeats as repeats that have all copies contained within a window smaller than 2Mb 

and merged their normalized counts with unique sequences for piRNA cluster analysis. Alignment 

was done using bowtie2 to dm6 genome. To compare this new pipeline with other standard 

approaches (permitting only unique mappers or allowing all multi-mappers with randomly 

assigned locations), we calculated the number of reads mapped to major piRNA clusters using 

different methods (Figure 4B). A summary of this pipeline is shown on Figure S4A. 

 

Definition of piRNA clusters  

23-29nt small RNAs were mapped to dm6 genome using the above-mentioned pipeline tolerating 

local repeats and generated coverage profiles across 1Kb windows that tile the genome. 1Kb 

windows including highly expressed miRNA, snRNA, snoRNA, hpRNA or 7SL SRP RNA were 

excluded. 1Kb windows with low read-coverage (≤100bp) were also excluded. Then, 1Kb 

windows that produce at least certain amounts of piRNAs were extracted for cluster definition 

(≥10RPM for testis, ≥50RPM for ovary). Neighboring 1Kb widows within 3Kb were merged. If 

merged windows were ≥5Kb, they were merged again within 15Kb. This yields 844 piRNA clusters 

in testis and 525 piRNA clusters in ovary, after manual curation. Major piRNA clusters described 

before in ovaries (Brennecke et al., 2007; Mohn et al., 2014) were all recovered with similar 

resolution. To compare expression levels of major piRNA clusters between sexes, cluster 

boundaries were manually curated to guarantee identical regions being compared. piRNA clusters 

defined in this study for both sexes are listed in Table S1.  

 

TE content of piRNA clusters 

TE annotation in dm6 genome was downloaded from UCSC Table Browser (Karolchik et al., 

2004). piRNA cluster boundaries were defined as described above. For piRNA cluster of interest, 

the TE content is calculated as length contribution to the entire cluster length by individual TEs. 

TE contents add up to less than 100%, as TEs do not fill completely the cluster length.   
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Sex bias of piRNA cluster TE content 

Sex bias of individual TEs was first computed as log2 ratio of expression levels in piRNA pathway 

mutants (rhi) between sex (ovary over testis). Sex bias of piRNA cluster TE content was then 

computed as the cumulative sex bias of individual TEs inside the cluster, weighted by their length 

contribution to the cluster. Using all expressed TEs or only ones that show pronounced sex bias 

generated comparable results. To eliminate noise, we only used TEs that exhibit strong, ≥10-fold 

sexual difference in expression (n=24). An equation and an example are shown in Figure 5C. 

 

BLAT and BLAST analysis  

To characterize the unannotated sequence between annotated repeats in piRNA clusters, inter-

repeat sequences were analyzed using BLAT on UCSC Genome browser (Kent, 2002). For 

example, an inter-TE sequence at Hsp70B locus was used to BLAT against dm6 genome, which 

revealed the homology with an exon of nod gene (Figure 6A). Homology between CG12717 and 

veloren was done with both BLAT and BLAST, which yielded similar results. Characterization of 

CG12717-homologous sequences at h17 locus (Figure S5B) was done by multiple sequence 

alignment with the Needle program (ebi.ac.uk/Tools/psa/emboss_needle/).  

 

Phylogenetic analysis 

The longest transcripts of veloren and CG12717 in D. melanogaster genome were used to BLAST 

against nucleotide collection with blastN program. Orthologs of these two genes in other 

Drosophila species were identified based on high nucleotide similarity and synteny. In all 

orthologs identified for both genes, we found the same flanking protein-encoding genes, 

confirming their ortholog identities. Occasionally, BLAST with CG12717 revealed the veloren 

ortholog in that species as well; but only in D. mauritiana, D. simulans  and D. sechellia genomes 

are there additional hits with high sequence homology to CG12717, other than the orthologous 

CG12717 and veloren. These additional CG12717-related sequences are in some cases 

annotated as predicted genes, but all buried in TE-rich heterochromatin (close to centromere or 

in highly repetitive unassigned scaffolds). To examine the organization of CG12717-related 

sequences in D. mauritiana genome in detail, we ran BLAST using D. mauritiana CG12717 gene 

against its genome (assembly: GCA_004382145.1), which revealed additional unannotated 
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regions with high sequence similarity to CG12717. Those located on chrX and chr3 were drawn 

in Figure 7G. The instance where two adjacent CG12717-related sequences are arranged head-

to-head on chrX is illustrated in Figure 7I, and the other three such instances are found in 

unassigned scaffolds. To uncover the identity of flanking unannotated sequences, we BLAST the 

50Kb region encompassing CG12717-related sequences against TE consensus (RepBase17.08). 

The cladogram was drawn for illustration (Drosophila 12 Genomes Consortium, 2007). 

 

Analysis of testis small RNAs in non-D. melanogaster species 

Testis small RNA libraries from non-D. melanogaster species was downloaded from NCBI SRA: 

D. simulans SRR7410589 (Lin et al., 2018) and D. mauritiana SRR7961897 (Kotov et al., 2019). 

Adaptor-trimmed reads were mapped to the orthologous CG12717 gene, D. simulans GD15918 

and D. mauritiana LOC117148327, respectively (bowtie 1.2.2 with -v 3 -k 1). Coverage was 

plotted along the orthologous CG12717 gene. 

 

Data visualization and statistical analysis 

Most data visualization and statistical analysis were done in Python 3 via JupyterLab with the 

following software packages: numpy (Oliphant, 2015), pandas (McKinney, 2010) and altair 

(VanderPlas et al., 2018). The UCSC Genome Brower (Kent et al., 2002) and IGV (Robinson et 

al., 2011; Thorvaldsdóttir et al., 2013) were used to explore sequencing data and to prepare 

browser track panels shown.   

 

Data and code availability 

Sequencing data will be uploaded to NCBI SRA.  
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Figure S5. Chen et al.
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