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S1. Retrieval algorithm14

As outlined in Sect. 2.2, we exploit the change in the fractional depth of solar Fraun-15

hofer lines, which occurs due to the additive nature of the SIF signal. We chose a retrieval16

window ranging from 663 nm – 685.3 nm to include as many solar Fraunhofer lines as pos-17

sible, while avoiding out-of-band signals and atmospheric absorption lines. The required18

spectral basis functions (or principal components – PCs) for the data-driven retrieval are19

derived from TROPOMI measurements over areas assumed to be void of SIF. Specifically,20

we gridded our far-red SIF retrievals over land to a 0.1◦ x 0.1◦ resolution on a monthly21

basis with biweekly sampling and use only soundings over areas with absolute SIF val-22

ues lower than 0.05mW/m2/sr/nm.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

strategy
✿✿✿✿✿✿✿

allows
✿✿✿

us
✿✿✿

to
✿✿✿✿✿✿✿✿✿

optimize
✿✿✿✿✿

the
✿✿✿✿✿✿✿✿

number
✿✿✿

of23

✿✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿✿✿

spectra
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

radiance
✿✿✿✿✿✿

levels
✿✿✿✿✿

that
✿✿✿✿✿✿

occur
✿✿✿✿✿

also
✿✿✿✿✿

over
✿✿✿✿✿✿✿✿✿✿

vegetated
✿✿✿✿✿✿

areas.
✿

Over the ocean,24

we defined ocean deserts as regions with chlorophyll concentrations less than 0.03mg/m3
25

in the annual average, based on monthly data from 2017 on a 0.1◦ resolution (downloaded26

from https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MY1DMM CHLORA). Fig. S127

exemplifies the spatial distribution of potential training areas over land in June 201928

together with the (static) ocean deserts.29

In a first step towards selecting the training data, potential training spectra are iden-30

tified on a weekly basis by screening all TROPOMI soundings with respect to potential31

training areas, radiance levels within the retrieval window (<50/80mW/m2/sr/nm over32

ocean/land), and cloud fractions (< 0.1). Co-located measurements from the Suomi NPP33

(National Polar-orbiting Partnership) VIIRS (Visible Infra-red Imaging Radiometer Suite)34

instrument are used for cloud-screening. The S5P-NPP Cloud product contains the num-35
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ber of VIIRS pixels inside a TROPOMI ground pixel, which are identified as confidently36

cloudy, probably cloudy, probably clear, and confidently clear. In order to estimate an37

effective cloud cover, we compute the weighted average of these four values using 1, 0.75,38

0.25, and 0 as weights. Soundings that meet all initial criteria are then partitioned into39

ten radiance bins to select training spectra with a balanced distribution of radiance levels.40

Typically, there are 100 orbits per week and we sample about ten spectra per orbit and41

radiance bin, resulting in 10k soundings to perform a singular value decomposition (SVD)42

and derive the necessary principal components (PCs) for the retrieval. The SVD is done43

separately over 1) land and ocean as well as for 2) each single spatial row of the detector44

array (448 in total). We do this for two reasons: 1) reflected radiance levels over land45

are typically higher and display stronger variations compared to water bodies, and 2) the46

spectral and radiometric characteristics change slightly across the focal plane. A linear47

combination of a few PCs can then be used to model all spectra with sufficient accuracy,48

including sensor specific features. Fig. S2 illustrates the retrieval strategy based on the49

sample spectrum recorded over the upwelling zone with elevated red SIF values at Peru’s50

coastline (same spectrum as in Fig. 1, location is shown in Fig. 3). The left column of51

Fig. S2 shows the first ten (ocean) PCs of the spatial row of interest (242/448) together52

with the percentage of their explained variance. Even though this is a purely statistical53

approach to reduce the dimensionality of the training data set, a physical meaning can be54

attached to some PCs. PC1 can be interpreted as an average spectrum explaining more55

than 97% of the variance in the training data, which includes the fractional depth of solar56

Fraunhofer lines in the absence of any SIF emission. PC2 likely combines typical changes57
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in the spectral reflectance of our reference targets and the slope of the solar irradiance.58

Another typical instrumental effect can be identified in PC4, which represents a subtle59

wavelength shift. Additionally, to be able to model variations in the spectral reflectance,60

we use a set of six Legendre polynomials, each multiplied element-wise with PC1 in or-61

der to preserve the fractional depth of the Fraunhofer lines.
✿✿✿✿✿✿✿✿✿✿

Variations
✿✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

spectral62

✿✿✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿

may
✿✿✿✿✿✿✿✿✿✿

originate
✿✿✿✿✿✿

from
✿✿✿✿

the
✿✿✿✿✿✿✿✿

surface
✿✿✿

or
✿✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

atmosphere
✿✿✿✿✿✿✿

(path
✿✿✿✿✿✿✿✿✿✿✿

radiance),
✿✿✿✿✿

but
✿✿✿✿

any63

✿✿✿✿✿✿

elastic
✿✿✿✿✿✿✿✿✿✿✿

scattering
✿✿✿

in
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿✿✿✿

window
✿✿✿✿✿✿✿✿✿

(devoid
✿✿✿✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿✿✿✿

absorption
✿✿✿✿✿✿

lines)
✿✿✿✿✿✿✿✿✿✿✿

represents64

✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

multiplicative
✿✿✿✿✿✿✿

effect
✿✿✿✿

and
✿✿✿✿✿✿

does
✿✿✿✿

not
✿✿✿✿✿✿✿

affect
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

fractional
✿✿✿✿✿✿✿

depth
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Fraunhofer
✿✿✿✿✿✿

lines.65

Lastly, two spectral functions are necessary to allow for wavelength shifts of the red SIF66

peak wavelength as well as varying slopes. For this purpose, we performed a SVD over a67

set of shifted Gaussians (+/-2 nm with increments of 0.1 nm) with respect to the standard68

red SIF approximation, a Gaussian peaking at 683 nm with a full width at half maximum69

of 25 nm (Abbott & Letelier, 1999).70

In sum, the forward model can now be written as

FTOA =
10∑

i=1

(αi ·PCi) +
6∑

j=1

(βj ·Pj ⊙PC1) +
2∑

k=1

(γk · hk), (1)

where αi, βj, and γk are the state vector elements, PCi are the principal components of71

the SVD, Pj are the Legendre polynomials, the ⊙ operator denotes element-wise multi-72

plication, and hk are the two functions to model the fluorescence emission spectrum (bold73

characters indicate variables with a spectral component). In total, we provide 10 PCs, 674

Legendre polynomials, and two functions to model the fluorescence emission spectrum to75

the retrieval. This means there are initially 18 state vector elements to model the top-of-76

atmosphere (TOA) radiance spectra (FTOA) through an ordinary least squares fit. The77
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number of provided PCs is somewhat arbitrary, but has effects on retrieval accuracy and78

precision as reported by Guanter et al. (2013) and Joiner et al. (2013). However, Köhler,79

Guanter, and Joiner (2015) proposed to optimize the number of free model parameters80

by making use of a stepwise model selection, which is also implemented in TROPOMI’s81

far-red SIF retrieval (Köhler et al., 2018). Specifically, we use a backward elimination82

algorithm to automatize the selection of required model parameters with respect to the83

goodness of fit balanced by model complexity (number of state vector elements). It has84

been shown that a potential overfitting (fitting noise) can be avoided, while results remain85

stable, independent of the number of PCs initially provided to the retrieval. We find that86

on average 7 out of 18 state vector elements are automatically selected. PC1 and hk87

are exceptions from being removed by the backward elimination algorithm to assure that88

the retrieval estimates the red SIF emission even if its contribution is not significant, in89

which case hk would be dropped by the algorithm. In a final step, the inferred spectrally90

resolved red SIF estimate is averaged between 680–685 nm (covering the red SIF peak) to91

report one value.92

S2. Sensor Noise93

As detailed in Köhler et al. (2018), fewer detector pixels are co-added at the edges of94

the swath (viewing zenith angles > 60◦), resulting in a considerably lower Signal-to-Noise95

Ratio (SNR) for the affected spatial rows. Using spatial rows below/above 20/427 to96

retrieve SIF is possible in principle but associated with significantly higher uncertainties,97

which is why we exclude these spatial rows from our analysis.98
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The SNR within the retrieval window can be estimated by building the ratio between99

the mean signal level and the standard deviation of the residual. The measurement noise100

of grating spectrometers is expected to scale with the square root of the signal level.101

By means of fit residuals for one single day (06/05/2018) we set up spatial row specific102

SNR models as A + B ·
√
signal level, where A represents the signal independent noise103

contribution (read-out noise) and B is the scaling factor of the shot noise (function of104

signal magnitude). The validity is tested on a different day (07/15/2018) by comparing105

our SNR model (averaged over spatial rows 20-427) to single retrieval SNRs and the official106

estimates attached to the L1B data in Fig. S3. The goal is to verify the applicability and107

performance of our forward model (Eq. 1). Since our SNR estimates agree with the official108

SNR estimates, we can conclude that there are no over/underfitting issues in the retrieval.109

S3. Filtering110

Poor retrievals can be identified by the reduced χ2 (χ2
red), a common statistical metric111

for the goodness of fit. The χ2
red estimation requires knowledge about the measurement112

noise/SNR. Here, we use our SNR estimates, which follow the expected scaling with the113

square root of the signal level. In contrast, visible discontinuities in the official SNR114

estimates likely originate from stepping through distinct light levels during the pre-flight115

calibration. In Fig. S4, we compare the retrieved χ2
red to the expected distribution, which116

can be estimated through the degrees of freedom (166), computed by the number of117

spectral points in the retrieval window (173) minus the number of state vector elements118

(7 on average). If we naively use all retrievals by disregarding the trained range of signal119

levels, the χ2
red distribution is shifted towards higher values with a median of 1.17, pointing120
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to an underfitting of spectra (Fig. S4, left column). However, once we filter for trained121

radiance levels (Fig. S4, right column), the χ2
red distribution approaches the expected122

distribution with a median value of 1.03. In order to filter poor retrievals, we accept only123

retrievals with χ2
red estimates inside the 95% range of expected values, that is 0.8 < χ2

red <124

1.23.125

Fig. S5 illustrates that negative red SIF estimates occur primarily in the vicinity of126

optically thick clouds, even when the χ2
red filter is applied (Fig. S5c). Since the affected127

retrievals are classified as satisfactory, we hypothesize that there is an additive spectral128

signature in the L1B spectra that is unaccounted for, which is modeled sufficiently well129

by the two spectral functions designed to retrieve the SIF emission. One possibility which130

might confuse the retrieval algorithm and obtain negative red SIF estimates consists of131

an added signal that is more pronounced in the shortwave part of the retrieval window132

and decreases with wavelength. In this context, it should be noted that negative retrieval133

results are not unphysical per se as long as they can be explained by the retrieval noise.134

However, the retrieval noise leads to positive as well as negative outliers and we observe135

predominantly negative red SIF values if the stringent radiance filter (Fig. S5d) is not136

applied. Overall, the following filter criteria are employed to exclude unphysical retrieval137

results from the analysis:138

• 0.8 < χ2
red. < 1.23139

• Radiance levels <50/80mW/m2/sr/nm over ocean/land140

• Air-Mass-Factors < 4141

• Viewing Zenith Angles < 60◦142
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S4. ”Zorro”-Experiment143

We conducted an experiment in which we added an artificial SIF signal to real mea-144

surements in order to demonstrate the validity of our retrieval approach for various sur-145

face types and atmospheric conditions. Additionally, this experiment allows us to as-146

sess the retrieval accuracy and precision. We used one day (07/15/2018) of TROPOMI147

orbits (including about 13M single soundings) and added two realistic SIF intensities148

(SIF@683nm=0.5 / 1mW/m2/sr/nm) with randomly varying spectral shapes (incl. di-149

verse slopes and peak wavelengths) as shown in Fig. S6. In addition, we degraded the150

measurements by adding random noise according to the model in Sect. S2, because the151

original noise level would cancel out when calculating the difference between experiment152

and reference. For illustration purposes (improved spatial coverage), we applied a relaxed153

filter of radiance levels (<150mW/m2/sr/nm) before gridding the original and experi-154

mental retrieval results to a 0.2◦ x 0.2◦ resolution. The difference map exposes the input155

pattern and illustrates that the retrieval itself performs well, even outside the trained156

range of radiance levels. However, some areas in the reference map (based on original re-157

trievals) display strongly negative red SIF values pointing to spectral signatures in the L1B158

spectra, which can interfere with the retrieval in the vicinity or presence of optically thick159

clouds (see Fig. S5). The comparison between input and ∆SIF@683nm values includes160

only soundings satisfying all filter criteria (Sect. S7). It can be seen that the retrieval is161

highly accurate (unbiased), indicating that there is no significant crosstalk between the162

spectral functions used by the retrieval. The standard deviation of ∆SIF@683nm can be163

regarded as the mean precision error, which amounts to 0.4mW/m2/sr/nm. However, the164
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estimation of single measurement precision errors requires that ocean and land data are165

analyzed separately with respect to radiance levels as it is done in the following section.166

S5. Uncertainty Estimates167

Attaching reliable single measurement precision errors is challenging, because red SIF168

is computed as a superposition of spectral basis functions (multiplied with the two corre-169

sponding state vector elements), while the final reported value is an average of the spec-170

trally resolved red SIF in a subset (680-685nm) of the retrieval window (663-685.3nm).171

In order to bypass an explicit computation, we estimate the precision errors based on the172

”Zorro” experiment. In particular, we use the difference between the original retrievals173

and the retrievals with added pattern plus noise (∆SIF@683nm). Similar to the SNR, it174

can be assumed that the error is driven by radiance levels. Therefore, we compute signal175

level dependent error functions for ocean and land separately using the standard deviation176

of ∆SIF@683nm in distinct radiance bins. To assess the quality of our error estimates,177

we collected the July 2018 retrievals over potential training areas (surfaces where no SIF178

emission is expected; ocean deserts and land where our far-red SIF retrievals are near179

zero) and evaluate the standard deviation in distinct radiance bins. Fig. S7 shows that180

the predicted single retrieval uncertainties are slightly higher than actually observed over181

SIF free areas. There is a close agreement over the ocean, resulting in a self consistency182

and reinforcing confidence in the approach to estimate the uncertainties. Over land, the183

uncertainty estimates could either be too conservative or simply reflect the challenge to184

model strong variations in the surface reflectance properties of vegetation. Note that ob-185

servations over SIF free areas are not available for low radiance levels, the typical radiance186
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range of vegetation. The lack of training data in the relevant radiance levels could explain187

the higher uncertainties. However, there is a general consistency between the shapes of188

predicted and observed single measurement precision errors. Over land, we consider the189

predicted uncertainties to be more realistic than the observed ones, because the prediction190

is also based on photosynthetically active areas, while the observations are only based on191

soundings which could have been included in the training data.192

S6. Extended MODIS nFLH comparison193

In the main manuscript, a quantitative comparison between TROPOMI red SIF and194

MODIS nFLH is only shown on a monthly basis. For a more detailed comparison, Fig. S7195

shows zonal averages of overlapping grid boxes for different aggregation levels in time196

(daily, weekly, monthly, seasonal) together with the spatial coverage of available grid197

boxes. The spatial coverage (before co-location) illustrates the potential benefit from198

TROPOMI red SIF observations, which show an improved spatial coverage on all investi-199

gated time scales. Similar to Fig. 2 in the main manuscript, we find remarkably consistent200

absolute values as well as latitudinal variations across time scales with small discrepancies201

arising at low latitudes. Given the tendency to retrieve negative values in the vicinity of202

optically thick clouds, it seems likely that undetected artifacts in the TROPOMI mea-203

surements cause a low bias in those regions.204
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Figure S1. Potential training areas in June 2019, assumed to be void of SIF.
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Figure S2. Sample retrieval based on one sounding recorded in the vicinity of Peru’s

coastline (location is shown in Fig. 3). The left columns show all spectral functions (10

PCs, 6 Legendre Polynomials element-wise multiplied with PC1, and two functions to

model the red SIF emission), which were provided to the retrieval algorithm, while the

red boxes indicate the automatically chosen ones. The upper panel on the right shows the

measured TROPOMI spectrum in band 5 together with the retrieval window (shaded area

in red). The second panel is a zoom-in on the retrieval window and shows the measured

(black) and modeled (red) spectrum. The residual is shown in the bottom panel.
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Figure S3.
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✿
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✿✿✿✿✿✿✿
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fit
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residuals
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✿

single retrieval SNRs and
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χ2
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✿✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿

color
✿✿✿✿✿✿

table

✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿

right
✿✿✿✿✿✿✿✿✿✿✿

indicating
✿✿✿✿

the
✿✿✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

soundings
✿✿✿✿

per
✿✿✿✿

bin.
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Figure S4. Expected vs observed χ2
red distribution.

May 29, 2020, 12:22pm



X - 16 :

a) VIIRS RGB 07/15/2018 b) All Retrievals

c) 0.8 < χ
red.

2  < 1.23
d) Radiance level ocean/land < 50/80 mW/ m2

/sr/nm,

 Air−Mass−Factor < 4, Viewing Zenith Angle < 60°

−0.50

−0.25

0.00

0.25

0.50

S
IF

@
6
6
3
 n

m
 [
m

W
/ m

2
/s

r/
n
m

]

Figure S5. Impact of the filter criteria. The VIIRS RGB image (a) is shown together

with the gridded retrievals (one day, 07/15/2018) after applying no filter (b), the χ2
red

filter only (c), and additionally the radiance, air-mass-factor, and viewing zenith filter

(d).
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Figure S6. Summary of the ”Zorro”-Experiment
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Figure S7. Predicted and observed uncertainties over the ocean and land. Predictions

are based on the standard deviation of ∆SIF@683nm from the ”Zorro”-experiment in dis-

tinct radiance bins. Observations are comprised of the July 2018 retrievals over potential

training areas.
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Figure S8. Overlapping zonal averages of TROPOMI red SIF and Aqua/MODIS

nFLH together their spatial coverage (before co-location) on a daily, weekly, monthly,

and seasonal basis.

May 29, 2020, 12:22pm



X - 20 :

red SIF@683nm [mW/ m2
/sr/nm]

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−2 −1 0 1 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2 n=52070

predicted uncertainty:

σ=0.55 mW/m
2
/sr/nm

mean=−0.05 mW/m
2
/sr/nm

observed uncertainty:

σ=0.38 mW/m
2
/sr/nm

far−red SIF@740nm [mW/ m2
/sr/nm]

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−2 −1 0 1 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n=171503
predicted uncertainty:

σ=0.44 mW/m
2
/sr/nm

mean=0.04 mW/m
2
/sr/nm

observed uncertainty:

σ=0.45 mW/m
2
/sr/nm

Figure S9.
✿✿✿✿✿✿

Single
✿✿✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿✿✿✿

results
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(05/2018-12/2019)
✿✿✿✿✿

over
✿✿✿✿✿✿✿✿

barren
✿✿✿✿✿✿✿✿✿

surfaces
✿✿✿✿✿✿✿

(Fig. 4
✿✿✿

in

✿✿✿

the
✿✿✿✿✿✿✿

main
✿✿✿✿✿✿✿✿✿✿✿✿✿

manuscript)
✿✿✿✿

are
✿✿✿✿✿✿

used
✿✿✿

to
✿✿✿✿✿

test
✿✿✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

on
✿✿

a
✿✿✿✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿

scale.

✿✿✿✿

The
✿✿✿✿✿

red
✿✿✿✿

line
✿✿✿✿✿✿✿✿✿✿✿✿

represents
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

predicted
✿✿✿✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿✿✿

density
✿✿✿✿✿✿✿✿✿✿✿✿

(assuming
✿✿✿✿

the
✿✿✿✿✿✿

area
✿✿✿

is
✿✿✿✿✿

void

✿✿

of
✿✿✿✿✿✿

SIF),
✿✿✿✿✿✿✿

while
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

histograms
✿✿✿✿✿✿

show
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿✿✿✿

density.
✿✿✿✿✿

For
✿✿✿✿

the
✿✿✿✿

red
✿✿✿✿✿

SIF

✿✿✿✿✿✿✿✿✿✿

retrievals,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿✿✿✿✿

(standard
✿✿✿✿✿✿✿✿✿✿✿

deviation
✿✿✿

of
✿✿✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿✿✿✿✿

results)
✿✿✿✿✿✿✿✿✿

appears
✿✿✿

to

✿✿

be
✿✿✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿

lower
✿✿✿✿✿✿

than
✿✿✿✿✿✿✿✿✿✿✿

predicted
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(predicted/observed:
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

0.55/0.38mW/m2/sr/nm),
✿✿✿✿✿✿

while

✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

prediction
✿✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

match
✿✿✿✿✿✿✿✿✿✿✿✿✿

remarkably
✿✿✿✿✿

well
✿✿✿✿

for
✿✿✿✿✿

the
✿✿✿✿✿✿✿✿

far-red
✿✿✿✿✿

SIF
✿✿✿✿✿✿✿✿✿✿

retrievals

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(0.44/0.45mW/m2/sr/nm).
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Table S1. Global radiant power of SIF per wavelength unit in [TW/µm] derived from

gridded monthly averages (sum of integrals in Fig. 2 of the main manuscript).

July 2018 October 2018 January 2019 April 2019

red SIF@683nm (ocean) 42.11 43.97 37.47 49.95

MODIS nFLH (ocean) 49.05 59.83 52.16 54.22

red SIF@683nm (land) 39.73 22.52 26.97 26.87

far-red SIF@740nm (land) 279.57 164.41 150.38 166.77
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