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REVIEW

Polo-like kinases: a team that plays

throughout mitosis
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When the first mutant allele of the Drosophila gene polo
was first characterized over 10 years ago, attention fo-
cused on the defects that centrosome behavior exhibited
at various stages of development (Sunkel and Glover
1988). The subsequent realization that the serine-threo-
nine kinase it encodes is highly conserved from yeasts to
humans has provoked a flurry of investigation into the
function of the enzyme. A role for the polo-like kinases
(plks) in regulating centrosome behavior has been borne
out in several organisms, and the enzymes have attracted
further attention recently with the realization that they
regulate multiple stages of mitotic progression. In this
article we review the current status of our understanding
of the functions of plks from the time of commitment to
M phase in the activation of Cdc25, through the activa-
tion of the anaphase promoting complex (APC), to the
regulation of late mitotic events essential for cytokine-
sis. We discuss how to reconcile the sometimes appar-
ently disparate observations made upon plk function in
different organisms.

The team members

The plks are recognizable as a team because in addition
to a highly conserved amino-terminal catalytic domain,
their carboxyl termini contain three conserved regions,
the polo boxes (for review, see Glover et al. 1996; Lane
and Nigg 1997). Whereas in the yeasts and Drosophila
only a single plk gene has been identified to date (Lla-
mazares et al. 1991; Kitada et al. 1993; Ohkura et al.
1995), the higher vertebrates have multiple plk genes of
which PIk1 is most similar to Drosophila polo. Two
other plks, Snk and Fnk, have been described in mouse,
as well as their human counterparts, hSnk and Prk [Clay
et al. 1993; Lake and Jelinek 1993; Hamanaka et al. 1994,
Holtrich et al. 1994; Golsteyn et al. 1994; Li et al. 1996;
B. Ouyang and W. Dai (GenBank accession no.
AF059617)]. We suggest that it may be appropriate to
adopt a new nomenclature for these enzymes, and we
will refer to Snk as P1k2, and to Fnk/Prk as P1k3, but will
for the time being continue to use this nomenclature
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side by side with the original terms. A fourth mouse
enzyme, Sak, which also appears to have a cell-cycle
function was described as being as polo-related kinase by
Fode and colleagues (1994). At the moment, however, we
reserve judgement as to whether it is a bona fide family
member, because although it shows high homology with
plks in the catalytic domain, it lacks the three charac-
teristic polo boxes in the carboxyl terminus.

Positioning the players: the timing and localization
of plk is consistent with multiple M-phase functions

All the plks so far examined share the common property
of associating with the spindle poles early in mitosis.
This is remarkable given the disparate architecture of
these microtubule organizing centers (MTOCsS) in differ-
ent organisms, and indeed between different cell types in
the same organism (Fig. 1). The Saccharomyces cerevi-
siae Cdc5p and Schizosaccharomyces pombe Plol ki-
nases are found in association with the spindle pole bod-
ies (SPBs), although their precise location with respect to
SPB ultrastructure has not been determined (Shirayama
et al. 1998; D. Mulvihill, H. Ohkura, D. Glover, and L
Hagan, in prep.). Immunolocalization studies reveal that
the fission yeast enzyme moves onto the SPB and the
forming spindle at mitotic entry, but is lost from the
spindle about half way through anaphase when SPB as-
sociation becomes dramatically weaker. The metazoan
counterparts are found at the centrosomes from prophase
until anaphase (Golsteyn et al. 1995; Lee et al. 1995;
Adams et al. 1998; Logarinho and Sunkel 1998; Qian et
al. 1998). In addition, a punctate distribution of the en-
zyme over chromatin from prophase until anaphase in
positions that correspond to the centromeres has been
described in Drosophila and mouse (Logarinho and
Sunkel 1998; Wianny et al. 1998). A change in the local-
ization of the animal cell plks occurs at the onset of
anaphase, when the plks are no longer found in the cen-
tromeres but accumulate in the central spindle where
they remain clearly visible in the midbody at telophase
after the centrosomal staining is lost (Figs. 2 and 3). The
animal cell centrosome is usually a corpuscular struc-
ture comprised of microtubule nucleating pericentriolar
material organized around a pair of centrioles. However,
there are no centrioles in the mammalian oocyte, and
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Figure 1. Plks localize to spindle poles of
radically different architecture. Fission
yeast cells immunostained to reveal Plol
(A) and DNA (B). The enzyme associates
with the SPBs of the middle cell at the on-
set of mitosis, and remains there until part-
way through anaphase. The spindle stain-
ing of the later mitotic cell can be seen
more clearly in the inset (taken from D.
Mulvihill, H. Ohkura, D. Glover, and L
Hagan, in prep.). (C) Metaphase II spindle of
a mouse oocyte. (Red) DNA; (green) micro-
tubules; (blue) Plk1. Plk can be seen asso-
ciated with the centromeres of chromo-
somes, and at punctate foci along the
spindle poles, which lack centrioles and so
are unusually broad (taken from Wianny et
al. 1998).

consequently the meiotic spindles have very broad poles
(Maro et al. 1985). Nevertheless, despite these differ-
ences in spindle architecture, mouse plkl maintains its
ability to localize to the broad poles of the meiotic
spindle where it is associated with a string of multiple
punctate foci (Wianny et al. 1998). This localization of
Plk to specific components of the spindle apparatus at
different stages of mitosis or meiosis is likely to reflect
temporally and spatially distinct functions of the en-
zyme.

The timing of activity of plks throughout the cell di-
vision cycle also gives general support to the notion that
plk function is required at several points during mitotic
progression. In syncytial Drosophila embryos, for ex-
ample, the peak of polo kinase activity at late anaphase—
telophase is quite distinct from the peak of cyclin-depen-
dent kinase 1 (cdkl; also known as p34°4°? and MPEF)
activity on the entry into mitosis (Fenton and Glover
1993). This would be consistent with a late mitotic func-
tion for the enzyme. At the same time, a role in centro-
some separation is not excluded because of the peculiari-
ties of the syncytial nuclear division cycles. These ac-
celerated cycles first occur at intervals of (10 min, and to
accomplish the cycle within this short time frame, cen-
trosome separation begins during the telophase of the

previous cycle, the time at which polo is maximally ac-
tive.

The profiles of plk activity in S. cerevisiae and S.
pombe are pointers to the differences in mitotic regula-
tion between these two organisms. Charles and cowork-
ers (1998) assayed the profile of Cdc5p kinase activity
across the division cycle in budding yeast cells released
from a G, arrest. They found a single peak of activity
during the cycle that rises to its maximum after the his-
tone HI kinase activity associated with the mitotic B-
type cyclin Clb2p, and ahead of maximal anaphase-pro-
moting complex activity (see also below). Unexpectedly,
studies by Mulvihill and coworkers (D. Mulvihill, H.
Ohkura, D. Glover, and 1. Hagan, in prep.) show two
well-separated peaks of Plol kinase activity during each
division cycle. The first peak is after Plol has been
loaded onto the poles and is coincident with spindle for-
mation and actin ring formation, processes that are im-
plicated from the mutant phenotype to be regulated by
the enzyme (Ohkura et al. 1995). The second peak occurs
late in mitosis and is coincident with septum formation,
consistent with the third postulated role of Plol. Viewed
in this context, it is certainly possible that the single
peak of activity in the syncytial Drosophila embryos
could represent overlapping enzymatic functions that

Figure 2. Localization of Plkl in dividing HeLa cells. Cells are stained to reveal DNA (blue); microtubules (red); and Plk1 (green).
Overlap of microtubule and Pkl staining appears yellow. Plk1 is associated with the punctate centrosomes at metaphase (A) and early
anaphase (B). The enzyme becomes associated with the mid-zone region of the spindle in early- and late-anaphase (C). As cytokinesis
takes place, Plkl is found at the mid-body at the center of the cleavage furrow (D). (Previously unpublished micrographs of A. Tavares,

University of Dundee, UK).
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coincide in timing in these rapid nuclear division cycles,
and which may be separated temporally in dividing cells.

The broad peak of Plkl activity in dividing mamma-
lian cells may also be best explained if the enzyme has
temporally overlapping functions. The activation of P1k1
in cultured mammalian cells appears to follow closely
the onset of cdkl activity (Golsteyn et al. 1995;
Hamanaka et al. 1995; Lee et al. 1995). However, the
enzyme then appears to remain active until beyond the
point at which cdkl activity has begun to decay (Lee et
al. 1995; Kotani et al. 1998).

The first chukka': entry into M phase

Plks and the Cdk1 activation loop

The activity of Cdkl-cyclin B is required throughout the
cell to bring about the changes in cellular architecture
during mitosis. In most eukaryotes, the activity of Cdkl
reflects the balance between the action of inhibitory ki-
nases of the Weel/Mikl type and their opposing phos-
phatases, homologs of the product of the fission yeast
gene cdc25 (Nurse 1990). Once the balance is tipped in
favor of the Cdc25 phosphatase, then a positive feedback
loop is established whereby Cdkl can contribute to-
wards maintaining Cdc25 in a hyperphosphorylated and
active state to drive an irreversible commitment to mi-
tosis. The discovery by Kumagai and Dunphy (1996) that
Plx associates with, phosphorylates, and can thereby ac-
tivate the Xenopus c¢dc25C gene product in vitro raised
the intriguing question of whether plk could be the “trig-
ger’ kinase that initiates the onset of the G,-M transi-
tion. This exciting discovery led to a series of recent
studies showing that Plx1 does participate in the Cdkl-
cyclin B amplification loop in meiotic maturation in
Xenopus oocytes (Abrieu et al. 1998; Karaiskou et al.
1998: Qian et al. 1998). Qian and colleagues (1998)
showed that Plx1 was normally activated concurrently
with Cdk1 during meiosis, and that when it was micro-
injected into oocytes, it could accelerate the rate of ac-
tivation of Cdc25 and Cdkl-cyclin B. When PIx1 is im-
munodepleted or neutralized with antibodies, the acti-
vation of Cdc25 and cdkl-cyclin B is suppressed (Abrieu
et al. 1998; Qian et al. 1998). The reversal of the anti-

'The game of polo is divided into three to six periods, or chukkas. Players
may use the intervals between chukkas to change ponies (Hobson 1993).
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body-mediated inhibition in vitro by addition of Cdc25
suggests that Plx is upstream of Cdc25. Thus it seems
that PIx1 is capable of activating Cdc25 and being part of
the positive-feedback loop that amplifies Cdkl-cyclin B
activity both in vivo and in a cell-free system (Fig. 4). On
the other hand, PIx1 does not seem to be required for the
activation of cdkl-cyclin A, which in turn fails to acti-
vate PIx1 (Abrieu et al. 1998).

However, if PIx1 is truly a part of the feedback activa-
tion loop, its activation, like the activation of the major-
ity of Cdc25 (Kovelman and Russell 1996), must lie
downstream of the activation of the activity that first
triggers Cdkl. Several pieces of evidence suggest this is
the case. First of all, in the absence of Plx1 activity, the
phosphorylation and activation of Cdc25 are not pre-
vented but only delayed indicating that other kinases are
capable of fully phosphorylating Cdc25 (Qian et al.
1998). Moreover, Plx1 itself requires phosphorylation to
be activated upon entry into M phase, thus pointing to-
wards an alternative trigger (Karaiskou et al. 1998; Qian
et al. 1998). In addition, Karaiskou et al. (1998) also ob-
serve that the activation of Plx1 seems to occur slightly
later than the activation of Cdkl-cyclin B, and it is to-
tally prevented by the Cdk-specific inhibitor p21CIP.
This suggests that at least in this system, Plx1 kinase
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Figure 4. Model for the participation of Plks in the Cdk am-
plification loop. In most eukaryotes, Cdkl (CDC2) is activated
by the Cdc25 phosphatase, and inhibited by the Weel /Mik1/
Mytl group of kinases. In Xenopus Plk (Plx) is shown as an
activator of Cdc25, and a repressor of Mytl. Once Cdkl has
been activated then it triggers a positive feedback loop (light
blue arrows) that can promote the further activation of Cdc25,
possibly mediated through Plo kinase. Whether another kinase
X acts as the initial trigger for this loop by activating either
Cdc25 or Cdkl (CDC2) is discussed in the text.

GENES & DEVELOPMENT 3779


http://genesdev.cshlp.org/
http://www.cshlpress.com

Downloaded from genesdev.cshlp.org on July 31, 2020 - Published by Cold Spring Harbor Laboratory Press

Glover et al.

activation depends on cdkl activity and that its initial
activation is mediated by a small proportion of cdkl-
cyclin B that has escaped inhibition by inhibitory ki-
nases. The same may be true in other systems, as Mundt
and coworkers (1997) observed that overproduction of
Plk1 in HeLa cells did not lead to obvious advancement
into mitosis as would expected for a mitotic trigger. But
why should the positive feedback loop be triggered in
this particular way and at this specific time? Is it perhaps
more reasonable to think of the amplification loop as a
means of activating both plkl and cdkl mitotic kinases,
in which case there is still a need to search further for the
triggering event.

What is the relationship between M-phase entry
and centrosome/SPB separation?

In contrast to these newly emerging biochemical studies,
genetic analyses upon both Drosophila and fission yeast
have rather emphasized a role for plk activity in centro-
some assembly and separation in the formation of the
bipolar spindle (Fig. 5). One notable feature of the polo’
allele of Drosophila was a failure of the CP190 centro-
somal antigen, to assemble into centrosomes in mutant
syncytial embryos that display highly disorganized
spindle microtubules (Sunkel and Glover 1988). Spindle
defects were also seen in mitotic cells in the larval cen-
tral nervous system, including characteristic monopolar
spindles in which it appears that centrosomes have failed
to separate (Llamazares et al. 1991). Similarly, in fission
yeast either disruption of the ploI gene or its overexpres-
sion resulted in the formation of monopolar spindles as a
consequence of the failure of the SPB to complete either
its duplication or separation (Ohkura et al. 1995). Like-
wise, studies of the loss of plk function in higher eukary-
otes have also indicated a requirement for the correct of
the spindle poles early in mitosis. Microinjection of anti-
plkl antibodies into HeLa cells, or anti-Plx1 antibodies
into individual blastomeres of the Xenopus embryo also
resulted in the formation of monopolar spindles (Lane
and Nigg 1996; Qian et al. 1998).

The relationship between the process of separation of
the spindle pole MTOC and entry into M phase is not
clear. Whereas the injection of anti-Plkl antibodies led
to mitotic arrest with a monopolar spindle formed
around a smaller than usual centrosome in the immor-
talized HeLa cell line, nonimmortalized human cells
were found to arrest in G, (Lane and Nigg 1996). This
suggests that a requirement for plk function during entry
into mitosis has in some way been overcome by the on-
cogenic events that led to the establishment of the HeLa
cell line. Although the underlying basis for this finding is
not understood, one possibility might be that the tumor
cells have lost a checkpoint present in normal cells that
prevents full commitment to mitosis if centrosomes are
not properly matured.

Recent experiments in fission yeast also point strongly
towards the importance of local events at the SPB in
regulating commitment to mitosis as well as spindle for-
mation and suggest that the Plol kinase may play a criti-
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Figure 5. Common aspects of the mutant phenotypes of S.
pombe plol and D. melanogaster polo’ mutants. Monoastral
spindles in an S. pombe plol cell (A), and a D. melanogaster
polo® neuroblast (B). (Red) DNA; (green| spindle microtubules;
(blue) SPB or centrosomal-associated antigens. The centrosomal
associated antigen shown in blue in the Drosophila cell is often
not found at the spindle pole, and in this micrograph can be seen
associated with the spindle microtubules (arrowheads). An S.
pombe plol cell (C) and a D. melanogaster spermatid (D) in
which the previous two rounds of cytokinesis has failed. Both
cells are tetranucleate. In the spermatid, the nuclei are the four
clear spherical structures, the dark structure being the mitocho-
drial aggregate. A and C were provided by Hiro Ohkura (Uni-
versity of Edinburgh, UK), and B by Richard Adams (University
of Edinburgh, UK). D is taken from Carmena et al. (1998).

cal role in these processes. The absolute requirement for
Cdc25 activity to mediate mitotic entry can be com-
pletely by passed by stf1, a semidominant mutant of the
spindle pole component Cutl2 (Bridge et al. 1998). An
attractive explanation is that semidominant cut12 alle-
les (like stf1.1) could influence commitment to mitosis
through the inappropriate activation of the Cdc2 ampli-
fication mechanism at the SPB in the absence of Cdc25.
Could an interaction between the semidominant Cutl2
protein of the stf1.1 mutant and Plol kinase provide an
inappropriate trigger for the activation of p34°°?? Be-
cause stf1.1 cells can drive mitosis in the complete ab-
sence of Cdc25 (Hudson et al. 1991), the stfI mutation
must be counteracting the activity of Weel, perhaps by
inhibiting the enzyme directly. In this respect, it is note-
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worthy that hyperphosphorylation of the Xenopus
p34°4°? inhibitory kinase Mytl is reduced strongly in
cycling extracts in which Plx1 is inactivated (Abrieu et
al. 1998).

The association of plks and p34°%2 with the spindle
pole upon commitment to mitosis is a common feature
in all systems characterized to date, suggesting that ele-
ments of the controls emerging from the analyses of fis-
sion yeast may be universally conserved. For the mo-
ment, however, it must remain an open question
whether the monopolar spindles seen in animal or yeast
cells following perturbation of plk function are caused by
an inability to mature the spindle pole sufficiently for
mitosis, or a weak commitment to mitosis because of
insufficient cdc2 activation by a defective amplification
loop. Alternatively polo kinases may be required to regu-
late the functions of other proteins essential for spindle
formation such as the mitotic motor proteins. Indeed the
consequences of losing polo function do resemble the
consequences of loss of motors such as KLP61F of Dro-
sophila (Heck et al. 1993) and Cut7 of fission yeast
(Hagan and Yanagida 1992).

The second chukka: do plks play
through the metaphase-anaphase transition?

A function for centromeric plk?

The centrosomal localization of plks would seem to cor-
relate with a function in establishing the bipolar spindle
on mitotic entry. What of the enzyme localized at cen-
tromeres? The loss of plk from the centromeres at the
onset of anaphase suggests that the enzyme might func-
tion in regulating centromere behavior at this crucial
transition in M phase. Defects in chromosome segrega-
tion in male meiosis were in fact reported in the first
description of the polo’ allele. When the segregation of
marked chromosomes was followed, most nondisjunc-
tion appeared to take place in the second meiotic divi-
sion suggestive of defects in the separation of sister chro-
matids (Sunkel and Glover 1988).

Meiotic defects were also reported in the early studies
of a temperature-sensitive cdc5 mutant. In mitosis, the
mutant arrests with a bipolar spindle at the late stages of
nuclear division (Byers and Goetsch 1974). In meiosis, it
exhibits abnormal behavior of the SPBs in the first divi-
sion, and a failure of spindles to elongate in meiosis II
(Schild and Byers 1980). However rather unexpected re-
sults were reported by Sharon and Simchen (1990a,b)
who examined chromosome segregation when mono-
nucleate cells arrested with two SPBs in meiosis I were
shifted to the permissive temperature. Interestingly,
some chromosomes were found to segregate reduction-
ally and others equationally in a manner reflecting a
property of specific centromeres. Thus it seems that both
in Drosophila and budding yeast, plk function is required
to mediate the appropriate pattern of chromosome seg-
regation at anaphase in the meiotic divisions. These ob-
servations could be consistent with a proposed role for
the plks in regulating the APC, which directs the degra-

Polo-like kinases in mitosis

dation of chromosomal proteins postulated to maintain
the cohesion of sister chromatids (Ciosk et al. 1998).

Do polo-like kinases regulate the APC!

In budding yeast and mammalian cells, the timing of
late-mitotic plk activity has been shown by direct com-
parison to precede the activity of the APC (Charles et al.
1998; Kotani et al. 1998). The APC functions as a cell-
cycle-regulated ubiquitin-protein ligase (E3) responsible
for the degradation of mitotic cyclins, as well as the ana-
phase inhibitors Pdslp of budding yeast and Cut2 of fis-
sion yeast, the cohesin Scclp, and Aselp, a protein as-
sociated with the spindle mid-zone. Little is known of
the mechanisms that regulate the timing of APC activa-
tion, although members of the Fizzy-Cdc20 protein fam-
ily are reported to bind to and activate the complex. This
family of proteins are highly conserved. In Drosophila
the genes fizzy and fizzy-related are both required for the
APC-dependent degradation of cyclins. In budding yeast,
Cdc20p is required for the destruction of Pdslp, whereas
arelated protein Hetlp/Cdhlp is involved in destruction
of mitotic cyclins and Aselp. Thus there appear to be at
least two major pathways of APC activity; one required
for sister-chromatid separation and the other for cyclin B
degradation (for review, see Townsley and Ruderman
1998; Wolf and Jackson 1998).

Two groups have demonstrated recently that cdc5 mu-
tants of S. cerevisiae are defective in their ability to de-
grade the mitotic cyclin Clb2p without affecting the deg-
radation of Pdslp or the Clb5p cyclin (Charles et al.
1998; Shirayama et al. 1998). These observations raise
the question of whether the inability to resolve the mi-
totic spindle in cdc5 mutants, is because of loss of APC
activity responsible for mitotic cyclin degradation. Sev-
eral experiments substantiate this notion. First of all,
overexpression of the wild-type, but not ‘kinase-dead’
mutant, enzyme decreases the levels of Clb2p and in-
creases APC activity (Charles et al. 1998). Secondly,
overexpression of an amino-terminally truncated form of
Cdc5 (that increases the stability of the enzyme) is le-
thal, but the lethality can be suppressed in mutants with
reduced APC activity.

A novel mutant allele of CDC5 has been described
recently that appears to be defective in mitotic exit fol-
lowing DNA damage (Toczyski et al. 1997). Normally
budding yeast cells become extensively delayed in mito-
sis following DNA damage, but eventually adapt to this
checkpoint arrest and exit mitosis. Charles and cowork-
ers (1998) find that this mutant form of Cdc5p was less
effective at stimulating APC activity even though the
kinase is catalytically active. This suggests that the mu-
tation may affect substrate recognition by kinase, and
consequently adaptation to the checkpoint delay could
be caused by a defect in the ability to activate Clb2p
proteolysis.

Suggestions that polo-like kinases can activate the
APC have also come from recent studies with animal-
cell-derived systems. Descombes and Nigg (1998) have
shown that the Xenopus homolog Plx1 is required for the
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destruction of APC targets that drive exit from M phase.
Working with Xenopus egg extracts that are arrested in
the second meiotic metaphase as a result of the activity
known as cytostatic factor (CSF), they find that the ad-
dition of a catalytically inactive mutant form of Plx1
blocks the destruction of cyclin B and the inactivation of
Cdk1 that is triggered normally by addition of Ca**. If
exogenous APC-dependent substrates, such as the fis-
sion yeast Cut2, were added to the extracts, their degra-
dation was also prevented in the presence of the inactive
mutant protein. Finally, M-phase exit would not take
place in this system following immunodepletion of Plx1,
but could be restored by the addition of catalytically ac-
tive enzyme. Thus it seems that Plx activity is a com-
ponent of the pathway that overcomes CSF arrest. In
Xenopus, CSF activity is known to require a MAP kinase
cascade under the control of c-Mos (Sagata 1997). c-Mos
itself is normally proteolytically degraded during Ca**
mediated activation, but is stable in extracts to which
the catalytically inactive Plxl1 has been added.
Descombe and Nigg (1998) postulate that Plx1 is most
likely to lie downstream of the c-Mos/MAP kinase cas-
cade in this pathway of events. It could either inactivate
a hypothetical inhibitor of the APC present in CSF ar-
rest, or act directly to activate the APC in concert with
members of the fizzy—Cdc20p family of proteins.

The latter hypothesis finds support in the recent work
of Kotani and coworkers (1998), who found that mouse
Plk1 would coimmunoprecipitate with several substrate
polypeptides, of which two proved to be the APC com-
ponents Cdcl6p and Cdc27p. They also showed that if
activated by Cdk1, bacterially expressed plk would phos-
phorylate the bacterially expressed APC proteins
Cdcl6p, Cdc27p, and Tsgdp directly, and phosphorylate
and activate purified mammalian APC. Although the
biochemical study of Kotani et al. (1998) is extremely
convincing, the generality of their findings remains to be
established. It is not clear whether p34°°? can univer-
sally activate plk as p34°9°? consensus phosphorylation
sites are not conserved on the plks of different species.
Moreover, neither Cdkl nor MAP kinase was found ca-
pable of activating Plk by other workers (Hamanaka et
al. 1995; Lee et al. 1995).

Although some aspects of the cdc5 and polo mutant
phenotypes in S. cerevisiae and D. melanogaster are con-
sistent with a function in APC regulation, the effects of
perturbing plk function in some other organisms appear
at first sight less supportive of such a role. It is possible
that different organisms have evolved alternative ways
of coordinating the essential late mitotic activity of the
plks with other mitotic functions that may or may not
include a direct involvement in APC activation. There
is, for example, no indication of metaphase arrest in S.
pombe plol disruptants. If such cells have sufficient re-
sidual enzyme to evade the block to the formation of a
bipolar spindle, then they arrest after exit from mitosis
prior to cytokinesis (Ohkura et al. 1995). Of course, it is
possible that there is sufficient residual Plol function in
these cells to activate the APC. A similar argument may
be advanced in the case of polo’ mutants of Drosophila,
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in which during spermatogenesis cyclin B degradation
appears to take place normally in mutant cells that show
defects both in chromosome segregation and cytokinesis
during meiosis (Carmena et al. 1998).

It is also possible that the earlier arrest seen in cdcb
mutants may be a peculiarity of S. cerevisiae. In the bud-
ding yeast, SPB duplication takes place during S phase,
and a short intranuclear spindle begins to form at a point
corresponding to the beginning of G,, rather than at the
onset of M phase. Is it also significant that, so far, Cdc5p
appears to be unique in the plk family in that it contains
‘destruction boxes’ (Charles et al. 1998). Cdc5p is ulti-
mately itself destroyed by APC-activated proteolysis,
and this is prevented in hctl/cdhl mutants. Its prote-
olysis, together with Cdc20p, may assist in switching off
cyclin and Pdslp hydrolysis, respectively, as cells enter
G, phase. The stability of plks does appear to vary be-
tween species. Fang and coworkers (1998) report that in
Xenopus extracts Plkl is an APC substrate. In Dro-
sophila, however, the maternally provided Polo kinase is
sufficiently enduring to provide function sufficient for
development to late larval stages, which would be incon-
sistent with its destruction at cell division (Sunkel and
Glover 1988). However, it is always possible that local
degradation of the enzyme at specific sites within the
cell could regulate polo activity within each cell cycle.

The third chukka: late M-phase roles of the plks
plol™ is required for actin ring and septum formation

The original observations of the mutant phenotypes of
plo1 disruptants of S. pombe revealed not only a failure
of spindle formation, but also failure to form the actin
ring and septum, prerequisites for cytokinesis (Fig. 5).
The function of the enzyme in these late mitotic events
was further illustrated by the dramatic ability of ploI™*
overexpression to drive the formation of multiple septa
in cells arrested at any stage of the cell cycle (Ohkura et
al. 1995). Thus overexpression of Plol kinase overcomes
the normal dependency of septation upon the comple-
tion of mitosis.

It should therefore perhaps come as no surprise to
learn that the two peaks of Plol kinase activity seen by
D. Mulvihill, H. Ohkura, D. Glover, and I. Hagan (in
prep.) correspond to the timing of actin ring formation
and septation, respectively. The initiation of cytokinesis
occurs upon commitment to mitosis when a ring of a
protein Dmf1, is deposited underneath the plasma mem-
brane at the cell equator. Dmf1 is rapidly joined by fila-
mentous actin and a number of other proteins (Sohr-
mann et al. 1996). The later stage of septation is con-
trolled by a regulatory network headed by a G protein,
Spgl (Schmidt et al. 1996). Spgl is found associated with
the SPB throughout the cell cycle and is activated upon
commitment to mitosis (Sohrmann et al. 1996). The abil-
ity of Plol to induce septation in interphase may be be-
cause of premature maturation of the SPB, which could
inappropriately activate the SPB-bound Spgl network.
Alternatively the timing of the second peak of kinase
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activity at the end of mitosis may argue for a direct role
for Plol in activating the Spgl pathway in a normal mi-
tosis. Support for either of these models comes from a
genetic screen that set out to identify mutants that are
only able to grow in the presence of elevated levels of
Plol (H. Ohkura, F. Cullen, I. Hagan, and D. Glover, in
prep.). This screen has identified a large number of new
mutant alleles of genes encoding different components
of the Spgl and ring formation pathways.

The late nuclear division mutants of S. cerevisae

In the budding yeast, CDC5 is one of several genes that
have a similar mutant phenotype of arrest at the stage of
late nuclear division. Interestingly, several of these genes
are the budding yeast homologs of other members of the
fission yeast Spgl network. They include, for example,
the S. cerevisiae genes TEM1 and CDC15, counterparts
of the S. pombe genes spgl and cdc7. It is undetermined
whether the products of these genes, like Cdc5p, show
the same association with the SPB.

The cytological consequences of overexpressing Cdc5p
protein kinase in budding yeast have never been re-
ported. However, Lee and Erikson (1997) found that
when they expressed mammalian Plkl1 in budding yeast
cells, it would drive the formation of multiple septa
within the bud neck. It could therefore be that Cdc5p
might also play an analogous role in septation to Plol in
fission yeast cells, but that in the budding yeast an ear-
lier role in APC regulation obscures this function.

Although neither Plol nor Cdc5p have been localized
yet to the forming septum in fission yeast or budding
yeast, respectively, it is tantalizing that when the mam-
malian Plk1 is expressed in budding yeast cells, this en-
zyme is seen to localize not only to the spindle poles, but
also the cytokinetic bud neck filaments (Lee et al. 1998).
Interestingly Lee and colleagues (1998) also report that
the localization of Plk1 in neck filaments is prevented by
mutations in polo box 1. These same mutations also lead
to inability to complement the cdc5 mutation, and yet
kinase activity in vitro is not affected. It is therefore
tempting to conclude that the plk function is disrupted
because of mislocalization of the kinase. It will be of
great interest to know whether these same sequences
direct the localization of plks in their native organisms.

A requirement for plks for cytokinesis in animal cells

The plks of animal cells localize to the central spindle
region in late anaphase and the midbody at telophase
(Golsteyn et al. 1995; Lee et al. 1995), sites that might
imply a role for the enzyme in cytokinesis in animal
cells. Until recently, however, evidence for such a role
was lacking. Lane and Nigg (1996) were unable to ob-
serve any cytokinesis defects following the injection of
anti-Plk antibodies into cultured cells. On the other
hand, Mundt and coworkers (1997) did see the formation
of multinucleate cells following the overexpression of
the enzyme suggesting that the precise level of enzyme
activity may be important for the correct execution of
cytokinesis.

Polo-like kinases in mitosis

The first clues to the possible functional significance
of the localization of plks to the central region of the
spindle in late mitosis came from the observation that
Plk1 could associate with a kinesin-like protein known
as both CHO1 and MKLP1 and could phosphorylate this
protein in vitro (Lee et al. 1995). Subsequently it was
found that Drosophila polo kinase associates with the
homologous motor protein, encoded by the gene pava-
rotti (par) (Adams et al. 1998). It appears significant that
mutations in pav prevent cytokinesis and show the for-
mation of a defective spindle mid-zone region in late
anaphase. Direct evidence for plk function in cytokinesis
can be seen from defects at several stages of spermato-
genesis in a number of hypomorphic mutant alleles of
Drosophila polo (Carmena et al. 1998) (Fig. 5). Once
again, the earliest abnormalities observed were a failure
to form the correct mid-zone and midbody structures at
late anaphase-telophase, accompanied by a failure to as-
semble components of the contractile ring correctly. In
fact, Polo and Pav proteins appear to be mutually depen-
dent for their correct localization. Polo kinase fails to
localize to spindle poles or the spindle mid-zone in pav
mutants (Adams et al. 1998), and Pav—KLP accumulates
at the spindle poles in meiosis in polo males and often
fails to become associated with the spindle mid-zone.
This suggests models in which the failure of the two
proteins to localize correctly in either mutant could be
caused by a direct consequence of the disruption to
spindle morphology, or because Polo kinase requires
Pav-KLP for its movement to the correct site on the
spindle. In either case, it is possible that the motor prop-
erties of Pav-KLP might be changed as a consequence of
phosphorylation by Polo kinase.

Could the plks be a component of the signaling system
that initiates cytokinesis? Rappaport has provided com-
pelling evidence that in Echinoderm embryos asters can
dictate the position of the cleavage furrow (Rappaport
1961), whereas in cultured animal cells it is suggested
that a signal can originate from the mid-zone of the
spindle (Cao and Wang 1996). These two general hypoth-
eses could be reconciled if the signaling molecule(s), for
which Polo-like kinase could be one prime candidate,
were initially localized at the poles, and subsequently at
the central spindle anticipating the position of the cleav-
age furrow, and if the extent of this relocalization were
to vary between different cell types. The work of
Giansanti and her colleagues (1998) suggests that the
structure of the contractile ring and the central spindle
at late anaphase are mutually dependent. Thus it seems
likely that the plks could have several substrates in the
cleavage furrow, both associated with the central spindle
and the contractile ring.

The importance of these studies is that they present a
unifying role for the plks in regulating the early events of
cytokinesis. The fission yeast Plol, like its animal cell
counterparts, localizes to the spindle poles at the onset
of mitosis, but structures analogous to the central
spindle and cleavage furrow are not found in fission yeast
cytokinesis. However, other proteins required for septa-
tion, such as the protein kinase encoded by cdc7, are also
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found at the SPBs. This establishes the SPBs as a poten-
tial source for signaling molecules that regulate the on-
set of cytokinesis in the fission yeast. Animal cells may
show a variation in this theme by which the Plks be-
come redistributed from the spindle poles and centro-
meres to the central region of the spindle at the later
stages of division. This could be an evolutionary adapta-
tion that has paralleled the increase in size and complex-
ity of the metazoan mitotic spindle in comparison with
its yeast counterpart.

Extra time: do plks have roles outside
of M phase?

The budding yeast gene CDC28 for cyclin-dependent ki-
nase is well documented to have roles not only in mito-
sis, but also throughout the cell cycle. Could this be true
for CDC5? There is indeed evidence for an additional
role for CDC5, in the initiation of DNA replication. In
fact, CDC5 was first cloned as a multicopy suppressor of
certain mutant alleles of DBF4 (Kitada et al. 1993), a gene
encoding a protein that targets the Cdc7p protein kinase
to the prereplicative origin recognition complex (ORC)
for the initiation of DNA replication (related to the fis-
sion yeast cdc7 protein kinase essential for septation). A
possible role for Cde5p in DNA replication was later put
forward by Hardy and Pautz (1996), who showed that
both Cdc5p and Cde7p kinases could interact with Dbf4.
Moreover cdc5 mutants showed a plasmid-maintenance
defect and a genetic interaction with a mutant gene en-
coding a component of the ORC, orc2. As the transition
from the postreplicative to the prereplicative initiation
complex occurs late in M phase, it is possible that an-
other late mitotic function of Cdc5p kinase is to regulate
this transition. This could be achieved by phosphorylat-
ing proteins of the ORC, or more directly by modifying
the Dbf4p protein so that it can subsequently recruit
Cdc7p to origins.

Whereas the yeasts can achieve cell-cycle progression
utilizing a single cyclin-dependent kinase, mammals
have evolved multiple forms of both Cdks and their ac-
tivating Cdc25 phosphatases. At least three plks have
been described in mammalian cells, the specific func-
tions of which are still obscure. The existence of these
multiple forms mirrors the presence of multiple forms of
Cdks and Cdc25s in mammals, and by analogy suggests
that the plks could play related but nonoverlapping roles
at different stages in the progression through the cell
cycle.

Studies of the function of the different mammalian
enzymes in budding yeast serve only to confirm that
these proteins are family members. Lee and Erikson
(1997) showed that P1k1l would complement a cdc5 tem-
perature-sensitive mutation, and more recent work has
indicated that human PIk3 (Prk) also has this ability
(Ouyang et al. 1997). Thus any differing function of the
Plk family members in mammalian cells appears to have
no significance in complementation tests with lower eu-
karyotes.

However, there is evidence for a requirement for some
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plks in the G, stage of the mammalian cell cycle. The
genes for mouse P1k2 (Snk) and P1k3 (Fnk) are both im-
mediate-early response genes, whose expression is in-
duced by the addition of growth factors to serum-de-
prived G, cells but then declines before the end of G,
(Simmons et al. 1992; Donohue et al. 1995). Some mouse
PIk3 (Fnk) protein is also present in quiescent cells prior
to mitogenic stimulation that results in a transient phos-
phorylation and activation of the protein (Chase et al.
1998). The induction of Plk2 and P1k3 transcripts during
G, contrasts with the transcription of Plkl after the
G, /S transition (Hamanaka et al. 1995). Transient ecto-
pic expression of Plk1 can induce quiescent cells to enter
S phase (Hamanaka et al. 1994), but because the enzyme
normally has negligible activity in G, (Hamanaka et al.
1994; Golsteyn et al. 1994) it is possible that it is acting
nonphysiologically in these experiments in substituting
for either P1k2 or Plk3.

Human Plk3 (Prk) shows a relatively low kinase activ-
ity during mitosis, G, and G, /S phases and peaks during
late S/G, stages of the cell cycle (Ouyang et al. 1997).
This timing correlates with the completion of DNA syn-
thesis and the activation of p34cdc2 kinase. As with
Plk1, P1k3 (Prk) can phosphorylate Cdc25 in vitro, sug-
gesting it too may play a role in regulating the onset of M
phase. In support of this idea, Ouyang and colleagues
also report that the enzyme can potentiate the proges-
terone-induced meiotic maturation of Xenopus oocytes
meiotic maturation, but it is probably prudent to be cau-
tious in interpreting the consequences of this heterolo-
gous expression. Likewise, mouse Plk3 (Fnk) protein lev-
els are reported to increase as cells progress from G; to
mitosis, whereupon the enzyme becomes phosphory-
lated. This modification correlates with increases in ki-
nase activity. Later in mitosis, P1k3 (Fnk) is dephos-
phorylated, and by the time cells enter G,, it is all pre-
sent as the dephosphorylated form (Chase et al. 1998).
Moreover, this mitotic activation of P1k3 (Fnk) requires
the function of Cdk1. Thus it seems that P1k3 (Fnk) may
have two different functions: for cells to re-enter the cell
cycle in response to mitogenic factors and during mito-
sis.

What about future polo games?

There is much still to learn about how the activity of the
plks is regulated. We already know that regulation can
occur through transcription, through the biosynthesis
and stability of the protein, by post-translational mecha-
nisms—especially phosphorylation, and through the
changing pattern of the intracellular location of the en-
zyme throughout the cell cycle. It is still a particular
puzzle as to where exactly plks lie in the network of
mitotic phosphorylation events: What are the kinases
that activate the plks? What are the substrates of the
enzymes? The increase of Plk activity at mitosis corre-
lates with phosphorylation, and phosphatase treatment
reduces the activity of Plkl1, Polo, and Plx1 substantially
(Lee et al. 1995; Tavares et al. 1996; Mundt et al. 1997,
Qian et al. 1998). However, there remain uncertainties as
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Table 1. plk substrates

Polo-like kinases in mitosis

Putative
substrate Comments Reference
G,-M Cdc25 activated by phosphorylation Kumagai and Dunphy (1996)

Mytl a putative substrate from in vivo studies
a microtubule-associated protein

Spindle function Asp

B-tubulin

KLP61F KLP required for centrosome separation

MKLP1 KLP found in spindle mid-zone

Pav-KLP KLP required for spindle mid-zone structure
APC Cdc27 APC component

Cdcl6 APC component
Cytokinesis MKLP1 KLP found in spindle mid-zone

Pav-KLP KLP required for spindle mid-zone structure

Abrieu et al. (1998)
A. Tavares (unpubl.)
Tavares et al. (1996)
A. Tavares (unpubl.)
Lee et al. (1995)

A. Tavares (unpubl.)
Kotani et al. (1998)
Kotani et al. (1998)
Lee et al. (1995)

A. Tavares (unpubl.)

to how this fits into the cdkl regulatory cascade, as we
discussed, and it is likely that there are further activating
kinases to be identified. The function of the conserved
carboxy-terminal domain of the protein also remains a
mystery. The polo boxes may have a function in direct-
ing the correct subcellular localization of the enzyme as
suggested by Lee et al. (1998), or association with cur-
rently unidentified regulatory subunits. Other regulatory
functions may also be attributed to this regions of the
protein, as small truncations of the carboxyl terminus
result in an substantial increase in the activity of the
kinase (Lee and Erikson 1997; Mundt et al. 1997).

The Sak protein kinase is a closely related enzyme, but
lacks the conserved polo boxes found in other plks. What
exactly is its relationship to the plks? It does appear to
have a cell-cycle function, and is only expressed in cells
with proliferative capacity. Its mRNA levels increase
from late G, to M phase; antisense RNA or overexpres-
sion of Sak suppresses cell growth; and, overexpression
of Sak protein increases the incidence of multinucleated
cells, suggesting a possible role in cytokinesis (Fode et al.
1994, 1996). This is perhaps just one of many mitotic
kinases about which we currently know very little.

The list of proteins phosphorylated by the plks is
steadily growing (Table 1). They include components of
the Cdk1 activation loop, APC components, and several
microtubule-associated proteins some of which were
identified by Tavares et al. (1996) by comparing phos-
phorylated proteins in wild-type and polo mutant em-
bryo extracts. Genetic studies may help in searching for
substrates and/or interacting proteins. A recently pub-
lished study shows a strong synergistic interaction
between mutations in the genes polo and abnormal
spindle (asp) (Gonzalez et al. 1998). asp encodes a 220-
kD microtubule-associated protein essential for the cor-
rect behavior of the spindle poles and M-phase microtu-
bules (Saunders et al. 1997), and is indeed an excellent
Polo kinase substrate in vitro becoming an MPM-2 epi-
tope upon phosphorylation (A. Tavares and C. Avides,
unpubl.). It will be interesting to determine whether
phosphorylation by Polo kinase modifies Asp protein
function. Another gene that may play an important role
in regulating Polo function is encoded by the gene scant
(White-Cooper et al. 1996). Females transheterozygous

for mutations in polo and scant produce embryos show-
ing abnormal behavior of the spindle poles. We await the
molecular identification of the scant gene product with
anticipation.

Finally, an understanding of these aspects of mitosis
will be important in the treatment of human cancer. A
growing number of reports indicates that tumor cells dis-
play abnormal centrosome behavior (e.g., Lingle et al.
1998) sometimes associated with loss of p53 function
(e.g., Fukasawa et al. 1996). Although the conventional
view has been that the mitotic abnormalities observed
for over a century in human tumors is rather a down-
stream consequence of other oncogenic events, this is
not entirely clear. Mitotic abnormalities could in the
first instance contribute to the generation of aneuploidy
that is so important for tumor development. Some sup-
port for this comes from the finding of oncogenic lesions
in genes that regulate mitotic checkpoints controlling
either the onset of anaphase or cytokinesis (Cahill et al.
1998). Levels of Plkl have been shown to be elevated in
tumor cells (Holtrich et al. 1994; Wolf et al. 1997; Yuan
et al. 1997), and one report has shown the enzyme to be
able to cause oncogenic focus formation in NIH-3T3
cells, the transformed cells being capable of forming tu-
mors in nude mice (Smith et al. 1997). Individuals with
defective DNA damage checkpoint responses such as
found in ATM or Li-Fraumeni syndrome have an el-
evated incidence of cancer. It is perhaps highly signifi-
cant in this regard that cdc5 was identified in screens for
yeast genes that fail to down-regulate the checkpoint
response on prolonged exposure to the insult (Toczyski
et al. 1997). Thus the plks may not only play critical
roles in the process of oncogenesis, but also they may
well represent future therapeutic targets.
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