

Movie 1 Movie of an air bubble collapsing onto a wall showing numerical schlieren (left) and log-scale pressure field (right). Gas volume fraction α_g is shown as a shaded area of decreasing opacity with decreasing α_g (left), while the $\alpha_g=0.5$ isoline is shown as a solid curve (right) representing a pseudo-phase-interface. Time and pressure correspond to a bubble with $R_0=400\,\mu$ m exposed to a driving pressure of $p_\infty=10^7\,\mathrm{Pa}$. Note that the frame rate is ten times higher at the beginning of the movie. Movie 1 shows the configuration with a smooth wall (no crevice, $R_C=0$) and an attached bubble with the stand-off distance $S/R_0=0.1$.

Movie 2 Smooth wall (no crevice, $R_C = 0$), attached bubble $S/R_0 = 0.35$. See caption Movie 1.

Movie 3 Smooth wall (no crevice, $R_C = 0$), attached bubble $S/R_0 = 0.6$. See caption Movie 1.

Movie 4 Smooth wall (no crevice, $R_C = 0$), detached bubble $S/R_0 = 1.1$. See caption Movie 1.

Movie 5 Small crevice $(R_C/R_0 = 0.15)$, attached bubble $S/R_0 = 0.1$. See caption Movie 1.

Movie 6 Small crevice $(R_C/R_0 = 0.15)$, attached bubble $S/R_0 = 0.35$. See caption Movie 1.

Movie 7 Small crevice $(R_C/R_0 = 0.15)$, attached bubble $S/R_0 = 0.6$. See caption Movie 1.

Movie 8 Small crevice $(R_C/R_0 = 0.15)$, detached bubble $S/R_0 = 1.1$. See caption Movie 1.

Movie 9 Large crevice $(R_C/R_0 = 0.75)$, attached bubble $S/R_0 = 0.1$. See caption Movie 1.

Movie 10 Large crevice $(R_C/R_0 = 0.75)$, attached bubble $S/R_0 = 0.35$. See caption Movie 1.

Movie 11 Large crevice $(R_C/R_0 = 0.75)$, attached bubble $S/R_0 = 0.6$. See caption Movie 1.

Movie 12 Large crevice $(R_C/R_0 = 0.75)$, detached bubble $S/R_0 = 1.1$. See caption Movie 1.