
ar
X

iv
:1

80
4.

01
08

2v
2

 [
qu

an
t-

ph
]

 1
2

Se
p

20
18

Classical Verification of Quantum Computations

Urmila Mahadev∗

September 14, 2018

Abstract

We present the first protocol allowing a classical computer to interactively verify the result of an efficient

quantum computation. We achieve this by constructing a measurement protocol, which enables a classical

verifier to use a quantum prover as a trusted measurement device. The protocol forces the prover to behave

as follows: the prover must construct an n qubit state of his choice, measure each qubit in the Hadamard or

standard basis as directed by the verifier, and report the measurement results to the verifier. The soundness

of this protocol is enforced based on the assumption that the learning with errors problem is computationally

intractable for efficient quantum machines.

1 Introduction

We propose a solution to the open question of verifying quantum computations through purely classical means. The

question is as follows: is it possible for an efficient classical verifier (a BPP machine) to verify the output of an

efficient quantum prover (a BQP machine)? This question was first raised by Daniel Gottesman in 2004 ([Got04]).

In the absence of any techniques for tackling this question, two weaker formulations were considered. In the first,

it was shown that if the verifier had access to a small quantum computer, verification of all efficient quantum

computations was possible ([BFK08], [FK17], [ABOE08], [ABOEM17]). The second formulation considered a

classical polynomial time verifier interacting with two entangled, non communicating quantum provers (rather

than just one machine), and showed that in this setting it was possible to verify the result of an arbitrary quantum

computation ([RUV12]). Although both lines of work initiated extensive research efforts, the question of classical

verification by interaction with a single quantum computer has remained elusive.

In this paper, we answer this question affirmatively: we show that a classical polynomial time verifier (a BPP

machine) can interact with an efficient quantum prover (a BQP machine) in order to verify BQP computations.

We rely on the additional assumption that the verifier may use post-quantum cryptography that the BQP prover

cannot break. More specifically, we rely on quantum secure classical encryption schemes, such as those based on

the learning with errors problem ([Reg05]). These schemes can be used to encrypt classical bits (or quantum states)

in a way in which an efficient quantum machine cannot extract any information.

The core of our construction is a measurement protocol, an interactive protocol between an efficient quantum

prover and a classical verifier which is used to force the prover to behave as the verifier’s trusted measurement de-

vice. To formalize the idea of a measurement protocol, we now describe its completeness and soundness conditions,

beginning with a small amount of necessary notation. In our measurement protocol, an honest prover constructs an

n qubit quantum state ρ of his choice, and the verifier would like each qubit to be measured in either the standard

basis or the Hadamard basis. Denote the choice of measurement basis by an n bit string h = (h1, . . . , hn). For a

prover P and a measurement basis choice h = (h1, . . . , hn), we define DP,h to be the resulting distribution over

∗Department of Computer Science, UC Berkeley, USA. Supported by Templeton Foundation Grant 52536, ARO Grant W911NF-12-1-

0541, NSF Grant CCF-1410022 and MURI Grant FA9550-18-1-0161. Email: mahadev@cs.berkeley.edu.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/345074329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1804.01082v2

the measurement result m ∈ {0, 1}n obtained by the verifier. For an n qubit state ρ, we define Dρ,h to be the

distribution obtained by measuring ρ in the basis corresponding to h.

Our measurement protocol is complete, in the following sense: for all efficiently computable n qubit states ρ,

there exists a prover P such that DP,h is approximately equal to Dρ,h for all h. Moreover, P is accepted by the

verifier with all but negligible probability. Our soundness notion for the measurement protocol is slightly more

complex, but a simplified form is as follows: if the prover P is accepted by the verifier with perfect probability,

there exists an efficiently computable n qubit quantum state ρ underlying the distribution over m. More precisely,

for all h ∈ {0, 1}n,Dρ,h is computationally indistinguishable from DP,h. The full soundness guarantee is achieved

by making this statement robust: we will show that if a prover P is accepted by the verifier on basis choice h
with probability 1− ph, there exists a prover P′ who is always accepted by the verifier and the statistical distance

between DP,h and DP′,h is approximately
√
ph for all h.

So far, we have described the goal of our measurement protocol, which is to force the prover to behave as the

verifier’s trusted standard/Hadamard basis measurement device. To link our measurement protocol to verification,

we simply need to show that a classical verifier who also has access to such a trusted measurement device can

verify the result of BQP computations.

To describe how such verification can be done, we briefly recall a method of verifying classical computations.

Assume that, for a language L ∈ BPP and an instance x, the verifier wishes to check whether x ∈ L. To do

so, the verifier can reduce x to a 3-SAT instance, ask the prover for a satisfying variable assignment, and verify

that the assignment satisfies the instance. There is an analogous setting for quantum computations, in which the

language L ∈ BQP, the instance x can be reduced to a local Hamiltonian instance Hx, an n bit variable assignment

corresponds to an n qubit quantum state |ψ〉, and the fraction of unsatisfied clauses corresponds to the energy of

the Hamiltonian Hx with respect to the state |ψ〉 ([KSV02]). If x ∈ L, there exists a state with low energy with

respect to Hx; if not, all states will have sufficiently high energy. We will rely on the fact that the energy of |ψ〉
with respect to Hx can be estimated by performing only standard/Hadamard basis measurements ([BL08]).

With this analogy, verification of a quantum computation can be performed by a classical verifier with access to

a trusted standard/Hadamard basis measurement device as follows ([MF16]): the verifier first reduces the instance

x to be verified to a local Hamiltonian instance Hx, then requests an n qubit state from the prover, and finally

checks (via standard/Hadamard basis measurements) if the received state has low energy with respect to Hx. If so,

the verifier is assured that x ∈ L.

Now that we have seen how to link our measurement protocol to verification, we proceed to describing how

our measurement protocol works; essentially, it is a weak quantum state commitment procedure. Ideally, this

commitment would operate as follows: at the start of the protocol, the verifier asks the prover for a classical

commitment to a quantum state. This commitment should guarantee that the prover is forced to perform either a

Hadamard or standard basis measurement as directed by the verifier on the committed state. Such a commitment

scheme is enough to satisfy the soundness condition of the measurement protocol described above. Note the

difference between this notion of commitment and the standard cryptographic notion: our commitment differs in

that it does not need to hide the quantum state, but is similar since it is binding the prover to measuring the state he

has committed to.

The actual commitment performed in our measurement protocol has a weaker guarantee than the ideal scheme

described above: the prover is asked to commit to a state ρ, but his hands are not entirely tied when it comes to the

measurement of the state. The prover must perform the standard basis measurement on the committed state ρ, but

he can perform a specific type of deviation operator prior to Hadamard measurement: this operator must commute

with standard basis measurement (for example, it could be a Pauli Z operator). The key point here is that this

weaker commitment protocol is still strong enough to guarantee the soundness of the measurement protocol. To

see why, observe that the deviation operator could have been applied prior to the commitment, creating a different

committed state ρ′. Due to the fact that the deviation operator commutes with standard basis measurement, the

measurement distribution obtained by the verifier (for both the Hadamard and standard bases) would have been

2

equivalent had the prover instead committed to the state ρ′, and honestly performed the measurement requested by

the verifier on ρ′.
The commitment structure described above is obtained from a classical cryptographic primitive called a trap-

door claw-free function, a function f which is two to one, easy to invert with access to a trapdoor, and for which it

is computationally difficult to find any pair of preimages with the same image. Such a pair of preimages is called a

claw, hence the name claw-free. These functions are particularly useful in the quantum setting, due to the fact that

a quantum machine can create a uniform superposition over a random claw (x0, x1):
1√
2
(|x0〉 + |x1〉). This su-

perposition can be used to obtain information which is hard to obtain classically: the quantum machine can obtain

either a string d 6= 0 such that d · (x0 ⊕ x1) = 0 or one of the two preimages x0, x1. In [BCM+18], this advantage

was introduced and used to show how to generate information theoretic randomness from a single quantum device.

Trapdoor claw-free function are used in our measurement protocol as follows. The prover is first asked to

commit to a state of his choice (assume the state is α0 |0〉 + α1 |1〉) by entangling it with a random claw (x0, x1),
creating the state:

α0 |0〉 |x0〉+ α1 |1〉 |x1〉
The corresponding classical commitment, which is sent to the verifier, is the image y = f(x0) = f(x1). In order to

force the prover to perform the desired measurement on the committed state, the claw-free property is strengthened

in two different ways and is then used to randomize any operator applied by the prover which is a deviation from

the requested measurement, rendering the deviation of the prover essentially useless. We provide the definition and

construction of an extended trapdoor claw-free family which satisfies the strengthened claw-free properties. This

family is an extension of the family given in [BCM+18]. Like the construction in [BCM+18], our construction

relies on the computational assumption that a BQP machine cannot solve the learning with errors problem with

superpolynomial noise ratio ([Reg05]).

The main result of our paper is stated informally as follows (stated formally as Theorem 8.6):

Theorem 1.1 (Informal) Assuming the existence of an extended trapdoor claw-free family, all decision problems

which can be efficiently computed in quantum polynomial time (the class BQP) can be verified by an efficient

classical machine through interaction (formally, BQP = QPIP0).

In Section 9, we provide a learning with errors based construction of an extended trapdoor family, providing a proof

of the following theorem (stated formally as Theorem 9.1 in Section 9):

Theorem 1.2 (Informal) Under the assumption that the learning with errors problem with superpolynomial noise

ratio is computationally intractable for an efficient quantum machine, there exists an extended trapdoor claw-free

family.

1.1 Related Work

The basic idea of using trapdoor claw-free functions to constrain the power of the prover in the context of ran-

domness generation was introduced in [BCM+18]. This idea was further used in a computational setting to hide

information from the prover (but not constrain the prover) in [Mah17]. What is new to our paper is that it con-

strains the prover in the context of carrying out a particular computation. This requires the verifier to exert a much

greater degree of control over the prover than in randomness generation. To accomplish this goal, we develop a

new protocol and proof techniques for strongly characterizing the state of an untrusted prover.

2 Overview

We now present an overview of this paper, which proceeds as follows. Our measurement protocol relies on two

cryptographic primitives which give a BPP verifier some leverage over a BQP prover. We begin by describing

3

these primitives in Section 2.1. Using these primitives, we can describe our measurement protocol in Section 2.2.

In Sections 2.3 - 2.4, we show how the two cryptographic primitives can be used to guarantee soundness of the

measurement protocol, in the sense that all provers must essentially be creating a state and measuring it in the basis

chosen by the verifier. In Section 2.5, we show how to extend our measurement protocol to a verification protocol

for all of BQP.

2.1 Cryptographic Primitives

2.1.1 Trapdoor Claw-Free Families

The first cryptographic primitive we will use is a function family F = {fk,b : X → Y} (for b ∈ {0, 1}) called

a trapdoor claw-free function family. For convenience, we will assume in this overview that X = {0, 1}w . A

trapdoor claw-free function family is a family of functions which are two to one (both fk,0(·) and fk,1(·) are

injective and their images are equal) and for which it is computationally difficult to find a claw, i.e. a pair of

points x0 and x1 which have the same image (fk,0(x0) = fk,1(x1)). Given y in the image of fk,0 or fk,1, the

trapdoor tk of the functions fk,0, fk,1 allows recovery of both preimages of y. The trapdoor claw-free family also

satisfies two hardcore bit properties, which are stronger versions of the claw-free property: roughly, they state that

it is computationally difficult to find a string d and the bit d · (x0 ⊕ x1), where (x0, x1) form a claw. These two

properties are specified as needed (in Claim 2.1 and Claim 2.2).

In this overview, we will assume the existence of the function family described above for simplicity. However,

since we do not know how to construct such a family, in the rest of the paper we will instead rely on an approximate

version of this family. We provide the definition of the function family we will use, which we call an extended

trapdoor claw-free family, in Section 4, Definition 4.4. The construction of this family (from learning with errors)

is given in Section 9. Both the definition and construction are extensions of those given in [BCM+18].

We now describe a BQP process we call state commitment, which requires a function key k corresponding to

functions fk,0, fk,1 ∈ F (we assume that computing the functions fk,0, fk,1 only requires access to the function key

k). The state commitment process is performed with respect to an arbitrary single qubit state |ψ〉:

|ψ〉 =
∑

b∈{0,1}
αb |b〉 (1)

The commitment process consists of two steps. First, the functions fk,0, fk,1 are applied in superposition, using |ψ〉
to determine whether to apply fk,0 or fk,1 and a uniform superposition over x ∈ X as the input to fk,0 or fk,1:

1√
|X |

∑

b∈{0,1}

∑

x∈X
αb |b〉 |x〉 |fk,b(x)〉 (2)

Second, the final register of the resulting state is measured, obtaining y ∈ Y . At this point, the state is:

∑

b∈{0,1}
αb |b〉 |xb,y〉 (3)

where x0,y and x1,y are the two preimages of y. We will call the qubit containing b the committed qubit, the register

containing xb,y the preimage register and the string y the commitment string. The crucial point here is that, due to

the claw-free nature of the functions fk,0, fk,1, it is computationally difficult for a BQP machine to compute both

inverses x0,y and x1,y given only y. However, with access to the trapdoor tk, both inverses can be computed from

y. If we think of the state commitment process in an interactive setting, in which the verifier selects the function

key and the trapdoor and the BQP prover performs the commitment process (sending the commitment y to the

verifier), the BQP prover cannot compute both inverses, but the verifier can. This gives the verifier some leverage

over the prover’s state.

4

A key property of the committed state in (3) is that it allows a logical Hadamard measurement up to an X Pauli

operator, which is performed as follows. First, a Hadamard transform is applied to both the committed qubit and

preimage register of the state in (3):

1√
|X |

∑

d∈X
Xd·(x0,y⊕x1,y)H |ψ〉 ⊗ Zx0,y |d〉 (4)

The next step in applying the logical Hadamard measurement is to measure the second (preimage) register, obtain-

ing d ∈ X . The state at this point is:

Xd·(x0,y⊕x1,y)H |ψ〉 (5)

To obtain the Hadamard measurement of |ψ〉, the operator Xd·(x0,y⊕x1,y) (which we call the decoding operator and

requires the trapdoor) is first applied, followed by a standard basis measurement of H |ψ〉. Note that these two

operations commute: it is equivalent to first perform a standard basis measurement of the state in (5) followed by

applying the X decoding operator. The X decoding operator applied after measurement is simply the classical

XOR operation.

We can again think of this logical Hadamard transform in the interactive setting, in which the BQP prover

applies the Hadamard transform to obtain the state in (4) and then measures the committed qubit and preimage

register, sending the measurement results b′ ∈ {0, 1} and d ∈ {0, 1}w to the verifier. The verifier decodes the

measurement b′ by XORing it with d · (x0,y ⊕ x1,y) (which can be computed using the trapdoor) to obtain the bit

m, which the verifier stores as the result of the Hadamard basis measurement.

2.1.2 Trapdoor Injective Function Families

The second primitive is a function family G = {gk,b : X → Y} (for b ∈ {0, 1}) called a trapdoor injective function

family. A trapdoor injective function family is a family of injective functions such that the images of gk,0(·) and

gk,1(·) are disjoint. Given y = gk,b(xb,y), the trapdoor tk of the functions gk,0, gk,1 allows recovery of b, xb,y. We

will also require that the trapdoor injective family is computationally indistinguishable from the trapdoor claw-free

family: given a function key k, it must be computationally difficult to determine whether k belongs to an injective

or claw-free family. As in the case of trapdoor claw-free families, we will assume the existence of the function

family described above for the purpose of this overview, but in the rest of the paper we will rely on an approximate

version of this function family. We define the approximate version in Section 4 (Definition 4.2) and construct it

from learning with errors in Section 9.2.

The state commitment process described in Section 2.1.1 can also be performed with a function key k corre-

sponding to functions gk,0, gk,1 ∈ G. At the stage of (2), the following state has been created:

1√
|X |

∑

b∈{0,1}

∑

x∈X
αb |b〉 |x〉 |gk,b(x)〉 (6)

However, in this case when the last register is measured to obtain y ∈ Y , the superposition over b collapses. This

is because the images of gk,0(·) and gk,1(·) are disjoint. It follows that with probability |αb|2, y ∈ gk,b(·). In this

case, the state after measurement of y is:

|b〉 |xb,y〉 (7)

where xb,y is the unique preimage of y.

If we think of this process in the interactive setting (in which the BQP prover performs the commitment and

sends the verifier y), the verifier can use the trapdoor tk to extract (b, xb,y) from y. Therefore, the verifier can obtain

b, which is the result of standard basis measurement of the prover’s state, simply by asking for the commitment y.

5

2.2 Measurement Protocol

Given the two primitives described in Section 2.1, we can now describe our measurement protocol (formally given

in Protocol 5.1). Before the protocol begins, the verifier will select the basis for which he would like a measurement

result (either Hadamard or standard) for each of n qubits. We will represent this basis choice by a string h ∈ {0, 1}n.

If hi = 0, it indicates that the standard basis was chosen for qubit i.
The protocol begins with the commitment round. For all i for which hi = 1, the verifier samples a key ki and a

trapdoor tki corresponding to a pair of trapdoor claw-free functions fki,0, fki,1 ∈ F . For all i for which hi = 0, the

verifier samples a key ki and a trapdoor tki corresponding to a pair of trapdoor injective functions gki,0, gki,1 ∈ G.

The verifier sends the prover the function keys k1, . . . , kn. The honest prover first constructs an n qubit state of his

choice and then commits to each qubit of the state using the corresponding function key, as described in Section

2.1. The verifier receives the measurement results y1, . . . , yn ∈ Y from the prover.

Once the verifier receives y1, . . . , yn, he chooses at random either to run a test round or a Hadamard round. In

the case of a test round, the verifier requests standard basis measurements of the committed qubit and preimage

register for all n qubits. He receives b′i ∈ {0, 1} and x′i ∈ X from the prover and checks if the measurement is a

preimage of yi.
In the case of a Hadamard round, the verifier requests a Hadamard basis measurement of the committed qubit

and preimage register for all i. The verifier receives b′i ∈ {0, 1}, di ∈ X for all i. For all i for which hi = 0, the

verifier ignores the measurement results b′i and di and uses the trapdoor of gki to invert yi. The verifier stores the

first bit of the inverted value as the standard basis measurement result mi. For all i for which hi = 1, the verifier

first decodes b′i by XORing it with di · (x0,yi ⊕ x1,yi) (this can equivalently be thought of as applying the decoding

operator Xd·(x0,yi
⊕x1,yi

)- see the end of Section 2.1.1). The verifier stores the result mi = b′i ⊕ di · (x0,yi ⊕ x1,yi)
as the Hadamard basis measurement result.

Completeness of our measurement protocol (as defined in the introduction) follows immediately from the de-

scription of the state commitment process given in Sections 2.1.1 and 2.1.2.

2.3 Measurement Protocol Soundness

We now give an overview of our soundness guarantee: we describe how to show that for n = 1 and a prover P who

passes the test round perfectly, there exists a quantum state underlying the distribution over measurement results

obtained by the verifier. The generalization to arbitrary n (given in Section 7) follows easily due to the fact that all

n function keys are drawn independently. The generalization to provers P who do not pass perfectly (also given in

Section 7) is straightforward as well; it is done by conditioning P on acceptance in a test round, thereby creating

an efficient prover who passes the test round perfectly as long as P is accepted with non negligible probability. In

this section, we begin by characterizing the behavior of a general prover. We then show that if this characterization

satisfies a certain requirement, we can prove the existence of an underlying quantum state. In Section 2.4 (which is

the crux of this paper), we show how to enforce this requirement on general provers.

2.3.1 Prover Behavior

The analysis of the measurement protocol is based on understanding and characterizing the prover’s Hilbert space

and operations. We will rely on the following principle behind interactive proofs between a BQP prover and a

BPP verifier. A round of the protocol begins with the verifier’s message and ends with the prover’s message. A

general prover is equivalent, from the verifier’s perspective, to a prover who begins each round by applying an

arbitrary unitary operator to his space and then behaves exactly the same as an honest prover, culminating in a

measurement (the result of which is sent to the verifier). This principle implies that an arbitrary prover measures

the same registers that an honest prover does in each round, which will be particularly useful in our protocol.

6

Let P0 be an honest prover in our measurement protocol and assume the unitary operator he applies in the com-

mitment round is UC,0, after which he measures the commitment string register in the standard basis. As described

in Section 2.1, P0 has three designated registers: the register containing the committed qubit, the preimage register,

and the commitment string register. Each message of P0 to the verifier is the result of the measurement of one of

these registers.

It follows from the principle above that a general prover P has the same designated registers as P0 and is

characterized by 3 unitary operators: the unitary UC applied in the commitment round, the unitary UT applied in

the test round, and the unitary UH applied in the Hadamard round. We assume that both UT and UH do not act on

the commitment string register, since it has already been measured; the measurement result could have been copied

into the auxiliary space, on which UT and UH can act.

We now use the structure of our protocol to simplify the general prover one step further. There are only

two possible messages of the verifier for the second round of our protocol: the message indicates either a test

or Hadamard round. Due to this property, we can assume that the test round attack UT is equal to the identity

operator. To see this, we only need to make one observation: the attack UT applied in the test round commutes

with the measurement of the commitment string. Therefore, it could have been applied prior to reporting the

commitment string y.

It follows that the general prover P described above is identical, from the perspective of the verifier, to a

prover who applies the unitary U0 = UTUC,0UC immediately prior to measuring the commitment string register

and applies U = UHU
†
T prior to performing Hadamard basis measurements of the committed qubit and preimage

register in the Hadamard round. We will say that such a prover is characterized by (U0, U). For a formal statement

and proof of the above argument, see Claim 5.4.

The characterization of all provers by two unitary attacks allows us to use the test round of the measurement

protocol to enforce that the prover’s state has a specific structure, which is derived from the cryptographic primitives

in Section 2.1. Let P be a prover who passes the test round perfectly. If h = 1, the state of P at the start of either

the test or the Hadamard round (i.e. immediately after reporting y) can be written as follows (the two preimages of

y are x0,y, x1,y): ∑

b∈{0,1}
|b〉 |xb,y〉

∣∣ψb,xb,y

〉
(8)

where
∣∣ψb,xb,y

〉
contains all additional qubits held by the prover. This is because the verifier checks, in a test round,

if he receives a valid pre-image from the prover. Since the prover simply measures the requested registers when

asked by the verifier in a test round (i.e. he does not apply an attack in the test round), these registers must be in a

superposition over the two preimages of the reported measurement result y.

If h = 0 and P reports y, there is only one inverse of y. If we assume this inverse is xb,y (i.e. gk,b(xb,y) = y),

the state of P at the start of the test or Hadamard round can be written as follows, due to the same reasoning used

in (8):

|b〉 |xb,y〉
∣∣ψb,xb,y

〉
(9)

This structure enforced by the test run is the key to proving the existence of an underlying quantum state, as we

will see shortly.

2.3.2 Construction of Underlying Quantum State

We begin by using the characterization of general provers in Section 2.3.1 to define a single qubit state ρ corre-

sponding a prover P who is characterized by (U0, U). Recall that P has a well defined committed qubit, which he

measures when the verifier asks for the measurement of a committed qubit. Let ρ′ be the state of the committed

qubit prior to the prover’s measurement in the Hadamard round in the case that h = 1. We can think of ρ′ as en-

coded by the operator Zd·(x0,y⊕x1,y), which is determined by the prover’s measurements d and y. This Z operator

7

is derived from the verifier’s X decoding operator applied in the measurement protocol; we have used a Z operator

here since the Hadamard measurement has not yet been performed. The single qubit state ρ will be the result of

applying the Z decoding operator to the committed qubit ρ′.
DefineX-trivial operators to be those which commute with standard basis measurement of the committed qubit.

We now show that if the prover’s Hadamard round attack U is an X-trivial operator, the distribution DP,h obtained

by the verifier in the measurement protocol is computationally indistinguishable from the distribution which is

obtained by measuring ρ in basis specified by h.

Recall that Dρ,h is the distribution obtained by measuring ρ in the basis corresponding to h. By construction,

Dρ,1 = DP,1. If h = 0, there are two differences between the distribution Dρ,h and the distribution DP,h. The

first differences lies in the function sampling: in our measurement protocol, an injective function is sampled if

h = 0, but in the state ρ, a claw-free function is sampled. The second difference comes from how the standard

basis measurement is obtained: in DP,h the standard basis measurement is obtained from the commitment string y,

but in Dρ,h the standard basis measurement is obtained by measuring ρ (the committed qubit) in the standard basis.

We can handle the first difference by making two key observations. First, the Z decoding operator has no effect

if h = 0; in this case, the committed qubit will be measured in the standard basis immediately after application of

Z in order to obtain Dρ,h. Second, if the Z decoding operator is not applied, the trapdoor tk is no longer needed

to construct the distribution Dρ,h. If Dρ,h is only dependent on the function key k (and not the trapdoor tk), the

function key k can be replaced with a function key which corresponds to a pair of trapdoor injective functions,

rather than a pair of trapdoor claw-free functions, to obtain a computationally indistinguishable distribution. This

is due to the computational indistinguishability between keys drawn from the trapdoor claw-free family F and the

trapdoor claw-free family G.

Let ρ0 be the committed qubit of the prover prior to measurement in the Hadamard round in the case that h = 0.

Due to the argument above, the distribution Dρ,0 is computationally indistinguishable from Dρ0,0. To address the

second difference, we now show that measuring ρ0 in the standard basis produces the same distribution obtained

from extracting the standard basis measurement from the commitment string y. First, note that measuring the

committed qubit prior to application of U (i.e. at the start of the Hadamard round) results in the same measurement

obtained from y; as seen in (9), the value of the committed qubit is equal to the value m extracted from y, since

the prover passes the test round perfectly. To complete our proof, recall that U is X-trivial with respect to the

committed qubit, and therefore commutes with standard basis measurement of the committed qubit.

To recap, the argument above shows that there exists a quantum state underlying the distribution DP,h as long

as the prover’s attack operator in the Hadamard round is an X-trivial operator. For a formal statement and complete

proof of this argument, see Claim 5.7.

2.4 Replacement of a General Attack with an X-Trivial Attack

We can now proceed to the crux of this paper: assuming that n = 1 and P passes the test round perfectly, we

show that there exists a prover P′ such that DP,h is computationally indistinguishable from DP′,h for both h and

P
′ attacks with an X-trivial operator in the Hadamard round. By the argument in Section 2.3.2 and the triangle

inequality, this implies that there exists a state ρ for which DP,h and Dρ,h are computationally indistinguishable,

thereby proving our soundness guarantee.

Assume P is characterized by (U0, U). Then P
′ is characterized by (U0, {Ux}x∈{0,1}), where {Ux}x∈{0,1} is

8

an X-trivial CPTP map1:

U =
∑

x,z∈{0,1}
XxZz ⊗ Uxz (10)

Ux =
∑

z∈{0,1}
Zz ⊗ Uxz (11)

Observe that if h = 0, DP,h = DP′,h; this is simply because the standard basis measurement is obtained from the

commitment y, which is measured prior to the Hadamard round attack U . This argument requires a bit more detail

for n > 1 and is given formally in Claim 7.4. We proceed to describing how to replace the attack U in (10) with

the CPTP map {Ux}x∈{0,1} in (11) in the case that the verifier chooses the Hadamard basis (h = 1). We will rely

heavily on the structure of the prover’s state, as written in (8).

The replacement of U with {Ux}x∈{0,1} will be done by using the Z Pauli twirl (Corollary 3.11). The Z Pauli

twirl is a technique which allows the replacement of U with the CPTP map {Ux}x∈{0,1} by conjugating U by a

random Z Pauli operator. More formally, Corollary 3.11 states that the following two CPTP maps are equivalent

when followed by Hadamard basis measurement:

{ 1√
2
(Zr ⊗ I)U(Zr ⊗ I)}r∈{0,1} (12)

{Ux}x∈{0,1} (13)

To apply the Z Pauli twirl in this setting, it suffices to show that replacing the prover’s attack U with the unitary

attack (Z ⊗ I)U(Z ⊗ I) results in a computationally indistinguishable distribution.

To prove this statement, we will rely on the fact that there is already computational randomness, due to the

trapdoor claw-free function, which is hiding both the Z operator applied prior to U and the Z operator applied

after. The computational randomness hiding the posterior Z operator comes from the verifier’s decoding operator

Xd·(x0,y⊕x1,y) applied at the end of the measurement protocol (see Section 2.2); if this decoding operator is shifted

prior to the Hadamard transform on the committed qubit, it acts as a Z operator immediately after the attack U .

The computational randomness hiding the anterior Z operator results from the format of the prover’s state. Recall

that, since the prover is perfect, we can assume the prover begins the Hadamard round with a state of the form in

(8):

|φy〉 =
∑

b∈{0,1}
|b〉 |xb,y〉

∣∣ψb,xb,y

〉
(14)

Intuitively, the prover’s inability to determine the claw (x0,y, x1,y) prevents him from being able to distinguish

whether or not a Z operator is applied to |φy〉. More formally, we show in Section 2.4.1.2 that distinguishing

between the states |φy〉 and (Z ⊗ I) |φy〉 boils down to the ability to determine the bit d · (x0,y ⊕ x1,y) for an

arbitrary string d.

In order to use these two sources of computational randomness to hide the difference between U and (Z ⊗
I)U(Z ⊗I), it must be the case that the bit d · (x0,y ⊕x1,y) is computationally indistinguishable from a uniformly

random bit. Formalizing this requirement is a bit tricky, since d is sampled from the state created by the prover.

In the next section, we show how to prove computational indistinguishability between the distributions resulting

from U and (Z ⊗ I)U(Z ⊗ I). As part of this process, we formalize the computational randomness requirement

regarding d · (x0,y ⊕ x1,y) as two different hardcore bit conditions for the function pair fk,0, fk,1.

1
U can be written in the form in (10) by decomposing its action on the first qubit in the Pauli basis; the matrix Uxz is not necessarily

unitary. For more detail, see Section 3.3.1.

9

2.4.1 Computational Indistinguishability of Phase Flip

Let P be the prover characterized by (U0, U) and let P̂ be the prover characterized by (U0, (Z ⊗ I)U(Z ⊗ I)). In

this section, we will show that the distributions resulting from the two provers (DP,h andD
P̂,h) are computationally

indistinguishable for all h. For convenience, we will instead refer to these two distributions as mixed states; let σ0
be the mixed state corresponding to DP,h and let σ1 be the mixed state corresponding to D

P̂,h, i.e.

σ0 =
∑

m∈{0,1}
DP,h(m) |m〉 〈m| (15)

σ1 =
∑

m∈{0,1}
D

P̂,h(m) |m〉 〈m| (16)

To prove the computational indistinguishability of σ0 and σ1, each state is split into two terms (for r ∈ {0, 1}):

σr = σDr + σCr (17)

By a straightforward application of the triangle inequality, we obtain that if σ0 is computationally distinguishable

from σ1, either σD0 and σD1 are computationally distinguishable or σC0 and σC1 are. Note that even if the terms are

not quantum states, the notion of computational indistinguishability (Definition 3.9) is still well defined: to show

that two terms, for example σC0 and σC1 , are computationally indistinguishable, we need to show (informally) that

there does not exist an efficiently computable CPTP map S such that the following expression is non negligible

|Tr((|0〉 〈0| ⊗ I)S(σC0 − σC1)| (18)

In more detail, the density matrices σ0 and σ1 are created by beginning with the state |φy〉 in (14) and applying

the operations of both the prover and verifier in the Hadamard round, followed by tracing out all but the first qubit.

Therefore, to split σ0 and σ1 into two parts, we can equivalently split the density matrix of |φy〉 into the following

two parts, corresponding to the diagonal and cross terms:

∑

b∈{0,1}
|b〉 〈b| ⊗ |xb,y〉 〈xb,y| ⊗

∣∣ψb,xb,y

〉 〈
ψb,xb,y

∣∣ (19)

∑

b∈{0,1}
|b〉 〈b⊕ 1| ⊗ |xb,y〉 〈xb⊕1,y| ⊗

∣∣ψb,xb,y

〉 〈
ψb,xb⊕1,y

∣∣ (20)

Let σD0 and σD1 be the result of applying the operations of both the prover and the verifier in the Hadamard round

to (19), followed by tracing out all but the first qubit. Recall the difference between σD0 and σD1 : in the latter,

the prover’s attack U is conjugated by (Z ⊗ I). Define σC0 and σC1 similarly, but replace (19) with (20). In the

following two sections, we show that both pairs of terms are computationally indistinguishable.

2.4.1.1 Diagonal Terms In this section, we will show that if there exists a BQP attackerA′ who can distinguish

between the terms σD0 and σD1 , then there exists a BQP attacker A who can violate the following informal hardcore

bit property of the function family F (the formal statement is part of Definition 4.1):

Claim 2.1 Assume fk,0 and fk,1 are sampled from a trapdoor claw-free family F . Then there does not exist a

BQP attacker who, on input k, can produce b ∈ {0, 1}, xb ∈ X , d ∈ {0, 1}w \ {0w} and c ∈ {0, 1} such that

c = d · (x0 ⊕ x1) where fk,0(x0) = fk,1(x1).

10

We first describe the state σD0 , which is created by beginning with the state in (19), in more detail. Note that the state

in (19) can be efficiently created by following the prover’s commitment process and then measuring the committed

qubit and preimage register. To create σD0 , the attack U is applied to the state in (19), followed by Hadamard

measurement of the committed qubit and preimage register and application of the verifier’s X decoding operator.

Finally, all qubits but the first are traced out. σD1 is almost the same as σD0 , except the attack U is replaced with the

attack (Z ⊗ I)U(Z ⊗ I). Note that the initial phase operator has no effect, since it acts on the diagonal state in

(19). The final phase flip, once it is shifted past the Hadamard transform, is equivalent to flipping the decoding bit

of the verifier; it follows that σD1 = XσD0 X.

We now construct the BQP attacker A who will use A′ to violate Claim 2.1. Let σD be the state σD0 except

for the verifier’s decoding. Observe from the description in the previous paragraph that this state can be efficiently

created, and as part of creating the state, the measurements b, xb,y and d are obtained. The attacker A creates the

state σD. For the string d obtained by A, the decoding bit d · (x0,y ⊕ x1,y) determines which of the two states σD0
and σD1 A has created; if d · (x0,y ⊕ x1,y) = r, A has created σDr . Now A can run A′ on the resulting mixed state

in order to learn d · (x0,y ⊕ x1,y). As a result, A holds the following information: b, xb,y, d, and d · (x0 ⊕ x1),
therefore violating Claim 2.1.

2.4.1.2 Cross Terms In this section, we will show that the cross terms σC0 and σC1 are computationally indis-

tinguishable. Since the cross terms are not quantum states, we first show below that if there exists a CPTP map S
which distinguishes between σC0 and σC1 , i.e. if the following expression is non negligible:

|Tr((|0〉 〈0| ⊗ I)S(σC0 − σC1)| (21)

then there exists an efficiently computable CPTP map S ′ such that the CPTP map SS ′ distinguishes between the

quantum states σ̂0 and σ̂1, defined as follows. The density matrix σ̂r corresponds to the following pure state (recall

|φy〉 from (14)):

(Zr ⊗ I) |φy〉 = (Zr ⊗ I)(
∑

b∈{0,1}
|b〉 |xb,y〉

∣∣ψb,xb,y

〉
) (22)

To do this, it suffices to show that σC0 − σC1 = S ′(σ̂0 − σ̂1). This equality is straightforward for two reasons. First,
1
2 (σ̂0 − σ̂1) is equal to the cross term in (20). Second, both σC0 and σC1 also begin with (20), but followed by a

CPTP map which is inefficient due to the verifier’s decoding. To prove the existence of S ′, we show that taking the

difference between σC0 and σC1 effectively removes the verifier’s decoding, creating an efficient CPTP map S ′.
Finally, we will show that an attacker who can distinguish between σ̂0 and σ̂1 can violate the following informal

hardcore bit property of the function family F (the formal statement is part of Definition 4.4):

Claim 2.2 Assume fk,0 and fk,1 are sampled from a trapdoor claw-free family F . Then there exists d ∈ {0, 1}w
which satisfies two conditions. First, there exists a bit ck such that d · (x0 ⊕ x1) = ck for all claws (x0, x1)
(fk,0(x0) = fk,1(x1)). Second, there does not exist a BQP attacker who, on input k, can determine the bit ck.

We begin by describing the cross term σC0 (which is not a quantum state) in more detail. σC0 is created by beginning

with the expression in (20), copied here for reference:

∑

b∈{0,1}
|b〉 〈b⊕ 1| ⊗ |xb,y〉 〈xb⊕1,y| ⊗

∣∣ψb,xb,y

〉 〈
ψb,xb⊕1,y

∣∣ (23)

then applying the attack U , followed by Hadamard measurement of the committed qubit and preimage register and

application of the verifier’s X decoding operator. Finally, all qubits but the first are traced out. σC1 is almost the

same, except the attack U is replaced with the attack (Z ⊗I)U(Z⊗I). As in Section 2.4.1.1, the phase flip acting

after U is equivalent to flipping the decoding operator of the verifier (i.e. applying an X operator to the matrix

11

σC0). The initial phase flip, which acts on the first qubit of (23), results in a phase of -1. Combining these two

observations yields the following equality:

σC1 = −XσC0 X (24)

Taking the difference between σC0 and σC1 results in a matrix which has a uniform X operator applied:

σC0 − σC1 =
∑

r∈{0,1}
XrσC0 X

r (25)

Observe that the CPTP map applied to (23) to create σC0 is efficiently computable except for the verifier’s X
decoding operator. In (25), there is a uniform X operator acting on σC0 , effectively replacing the verifier’s decoding

operator. Let S ′ be the resulting efficiently computable CPTP map. It follows immediately that σC0 − σC1 =
S ′(σ̂0 − σ̂1).

We now proceed to showing that an attacker A′ who can distinguish between σ̂0 and σ̂1 can be used to violate

Claim 2.2. Since the state σ̂r is the state |φy〉 from (14) with the operator Zr applied to the committed qubit,

an attacker who can distinguish between σ̂0 and σ̂1 can distinguish whether or not a Z operator is applied to the

committed qubit of |φy〉. The following equality (which holds up to a global phase) shows that a Z operator on the

preimage register is equivalent to a Z operator on the committed qubit:

(I ⊗ Zd ⊗ I)(
∑

b∈{0,1}
|b〉 |xb,y〉

∣∣ψb,xb,y

〉
) = (Zd·(x0,y⊕x1,y) ⊗ I)(

∑

b∈{0,1}
|b〉 |xb,y〉

∣∣ψb,xb,y

〉
) (26)

This equality, along with the attacker A′, can be used to construct a BQP attacker A who can determine d · (x0,y ⊕
x1,y) for an arbitrary fixed string d. A first constructs |φy〉 (this is simply the prover’s state after reporting the

commitment string y, so it can be constructed efficiently). Next,A applies Zd to the preimage register of |φy〉. Due

to the equality in (26), this is equivalent to instead applying Zd·(x0,y⊕x1,y) to the committed qubit. By running the

attacker A′, A can determine d · (x0,y ⊕ x1,y), therefore violating Claim 2.2.

2.5 Extension of Measurement Protocol to a Verification Protocol for BQP

Our goal is to verify that an instance x ∈ L for a language L ∈ BQP. Recall that each instance can be converted

into a local Hamiltonian H with the following property: if x ∈ L, H has ground state energy at most a and if

x /∈ L, H has ground state energy at least b, where the gap b− a is inverse polynomial. Therefore, to verify that an

instance x ∈ L, a verifier with a quantum computer can simply ask the prover for the ground state and estimate the

energy of the received state with respect to the Hamiltonian H . The soundness of such a protocol rests on the fact

that if an instance x /∈ L, all possible states sent by the prover will have energy ≥ b.
To use such a verification procedure in our setting, we need to rely on one more fact: the Hamiltonian H can

be written as a sum over terms which are each a product of X and Z operators [BL08]. Therefore, when the

verifier is estimating the energy of a state sent by the prover, he only needs to perform Hadamard or standard basis

measurements on each individual qubit. In [MF16], the authors formalize the resulting protocol and use it to build

a protocol in which a verifier with access to a single qubit register can verify the result of a BQP computation.

Their protocol achieves a completeness/ soundness gap which is negligibly close to 1 by performing polynomially

many repetitions of the energy estimation process described above.

In [MF16], the prover sends single qubits to the verifier, who performs either Hadamard or standard basis

measurements. To obtain a verification protocol for BQP, we simply replace this step of their protocol with our

measurement protocol. Completeness and soundness follow, since our measurement protocol allows the verifier

to collect standard and Hadamard basis measurements of a given state, and our soundness claim guarantees that

the distribution over measurement results obtained by the verifier comes from the measurement of an underlying

quantum state. The extension of our measurement protocol to a verification protocol is described in Section 8.

12

2.6 Paper Outline

As noted in Section 2.1.1, the trapdoor function families we use in the rest of the paper are not the ideal families

used so far in the overview. We instead use approximations of these function families, which are defined in Section

4. The protocol as described used several properties of the ideal families. We take care to define our approximate

families to make sure that they satisfy these required properties, at the expense of additional notation. At the start of

Section 4, there is a summary of the differences between the approximate functions and the ideal functions (taken

from [BCM+18]).

We begin with the definition of our extended trapdoor claw-free family in Section 4. Section 5 covers Sections

2.1 to 2.3 of the overview. In Section 6, we present the argument outlined in Section 2.4, in which we replace

a general attack with an attack which commutes with standard basis measurement. In Section 7, we prove the

soundness of the measurement protocol. Finally, the extension of the measurement protocol to a QPIP0 (described

in Section 2.5) is given in Section 8, providing the main result of this paper (the following informal statement is

taken from the introduction and is stated formally as Theorem 8.6 in Section 8):

Theorem 1.1 (Informal) Assuming the existence of an extended trapdoor claw-free family as defined in Definition

4.4, BQP = QPIP0.

In Section 9, we provide a learning with errors based construction of an extended trapdoor family, providing

a proof of the following theorem (the following informal statement is taken from the introduction and is stated

formally as Theorem 9.1 in Section 9):

Theorem 1.2 (Informal) Under the assumption that the learning with errors problem with superpolynomial noise

ratio is computationally intractable for an efficient quantum machine, there exists an extended trapdoor claw-free

family.

3 Preliminaries

Throughout this paper, we borrow notation and definitions from [ABOE08], [ABOEM17] and [BCM+18]. Parts

of the following sections are also taken from these sources.

3.1 Notation

For all q ∈ N we let Zq denote the ring of integers modulo q. We represent elements in Zq using numbers in the

range (− q
2 ,

q
2] ∩ Z. We denote by [x]q the unique integer y s.t. y = x (mod q) and y ∈ (− q

2 ,
q
2]. For x ∈ Zq we

define |x| = |[x]q|. For a vector u ∈ Zn
q , we write ‖u‖∞ ≤ β if each entry ui in u satisfies |ui| ≤ β. Similarly,

for a matrix U ∈ Zn×m
q , we write ‖U‖∞ ≤ β if each entry ui,j in U satisfies |ui,j| ≤ β. When considering an

s ∈ {0, 1}n we sometimes also think of s as an element of Zn
q , in which case we write it as s.

We use the terminology of polynomially bounded, super-polynomial, and negligible functions. A function

n : N → R+ is polynomially bounded if there exists a polynomial p such that n(λ) ≤ p(λ) for all λ ∈ N. A

function n : N→ R+ is negligible (resp. super-polynomial) if for every polynomial p, p(λ)n(λ) →λ→∞ 0 (resp.

n(λ)/p(λ)→λ→∞ ∞).

We generally use the letter D to denote a distribution over a finite domain X, and f for a density on X, i.e. a

function f : X → [0, 1] such that
∑

x∈X f(x) = 1. We often use the distribution and its density interchangeably.

We write U for the uniform distribution. We write x ← D to indicate that x is sampled from distribution D, and

x ←U X to indicate that x is sampled uniformly from the set X. We write DX for the set of all densities on X.

13

For any f ∈ DX , SUPP(f) denotes the support of f ,

SUPP(f) =
{
x ∈ X | f(x) > 0

}
.

For two densities f1 and f2 over the same finite domain X, the Hellinger distance between f1 and f2 is

H2(f1, f2) = 1−
∑

x∈X

√
f1(x)f2(x) . (27)

and the total variation distance between f1 and f2 is:

‖f1 − f2‖TV =
1

2

∑

x∈X
|f1(x)− f2(x)| . (28)

The following lemma will be useful:

Lemma 3.1 Let D0,D1 be distributions over a finite domain X. Let X ′ ⊆ X. Then:
∣∣∣ Pr
x←D0

[x ∈ X ′]− Pr
x←D1

[x ∈ X ′]
∣∣∣ ≤ ‖D0 −D1‖TV (29)

We require the following definition:

Definition 3.2 Computational Indistinguishability of Distributions Two families of distributions {D0,λ}λ∈N and

{D1,λ}λ∈N (indexed by the security parameter λ) are computationally indistinguishable if for all quantum polynomial-

time attackers A there exists a negligible function µ(·) such that for all λ ∈ N
∣∣∣ Pr
x←D0,λ

[A(x) = 0]− Pr
x←D1,λ

[A(x) = 0]
∣∣∣ ≤ µ(λ) . (30)

3.2 Learning with Errors and Discrete Gaussians

This background section on the learning with errors problem is taken directly from [BCM+18]. For a positive real

B and positive integers q, the truncated discrete Gaussian distribution over Zq with parameter B is supported on

{x ∈ Zq : ‖x‖ ≤ B} and has density

D
Zq,B(x) =

e
−π‖x‖2

B2

∑
x∈Zq, ‖x‖≤B

e
−π‖x‖2

B2

. (31)

We note that for any B > 0, the truncated and non-truncated distributions have statistical distance that is exponen-

tially small in B [Ban93, Lemma 1.5]. For a positive integer m, the truncated discrete Gaussian distribution over

Z

m
q with parameter B is supported on {x ∈ Zm

q : ‖x‖ ≤ B√m} and has density

∀x = (x1, . . . , xm) ∈ Zm
q , D

Z

m
q ,B(x) = D

Zq ,B(x1) · · ·DZq,B(xm) . (32)

Lemma 3.3 Let B be a positive real number and q,m be positive integers. Let e ∈ Zm
q . The Hellinger distance

between the distribution D = D
Z

m
q ,B and the shifted distribution D + e satisfies

H2(D,D + e) ≤ 1− e
−2π

√
m‖e‖

B , (33)

and the statistical distance between the two distributions satisfies

∥∥D − (D + e)
∥∥2
TV
≤ 2

(
1− e

−2π
√

m‖e‖
B

)
. (34)

14

Definition 3.4 For a security parameter λ, let n,m, q ∈ N be integer functions of λ. Letχ = χ(λ) be a distribution

over Z. The LWEn,m,q,χ problem is to distinguish between the distributions (A,As + e (mod q)) and (A,u),
where A is uniformly random in Zn×m

q , s is a uniformly random row vector in Zn
q , e is a row vector drawn at

random from the distribution χm, and u is a uniformly random vector in Zm
q . Often we consider the hardness

of solving LWE for any function m such that m is at most a polynomial in n log q. This problem is denoted

LWEn,q,χ. When we write that we make the LWEn,q,χ assumption, our assumption is that no quantum polynomial-

time procedure can solve the LWEn,q,χ problem with more than a negligible advantage in λ.

As shown in [Reg05, PRS17], for any α > 0 such that σ = αq ≥ 2
√
n the LWEn,q,D

Zq,σ
problem, where

D
Zq ,σ is the discrete Gaussian distribution, is at least as hard as approximating the shortest independent vector

problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. This is proven using a

quantum reduction. Classical reductions (to a slightly different problem) exist as well [Pei09, BLP+13] but with

somewhat worse parameters. The best known (classical or quantum) algorithm for these problems run in time

2Õ(n/ log γ). For our construction we assume hardness of the problem against a quantum polynomial-time adversary

in the case that γ is a super polynomial function in n. This is a commonly used assumption in cryptography (for

e.g. homomorphic encryption schemes such as [GSW13]).

We use two additional properties of the LWE problem. The first is that it is possible to generate LWE samples

(A,As + e) such that there is a trapdoor allowing recovery of s from the samples.

Theorem 3.5 (Theorem 5.1 in [MP11]) Let n,m ≥ 1 and q ≥ 2 be such that m = Ω(n log q). There is an

efficient randomized algorithm GENTRAP(1n, 1m, q) that returns a matrix A ∈ Zm×n
q and a trapdoor tA such that

the distribution of A is negligibly (in n) close to the uniform distribution. Moreover, there is an efficient algorithm

INVERT that, on input A, tA and As+ e where ‖e‖ ≤ q/(CT
√
n log q) and CT is a universal constant, returns s

and e with overwhelming probability over (A, tA)← GENTRAP.

The second property is the existence of a “lossy mode” for LWE. The following definition is Definition 3.1

in [AKPW13].

Definition 3.6 Let χ = χ(λ) be an efficiently sampleable distribution over Zq. Define a lossy sampler Ã ←
LOSSY(1n, 1m, 1ℓ, q, χ) by Ã = BC+ F, where B←U Z

m×ℓ
q , C←U Z

ℓ×n
q , F← χm×n.

Theorem 3.7 (Lemma 3.2 in [AKPW13]) Under the LWEℓ,q,χ assumption, the distribution of Ã← LOSSY(1n, 1m, 1ℓ, q, χ)
is computationally indistinguishable from A←U Z

m×n
q .

3.3 Quantum Computation Preliminaries

3.3.1 Quantum Operations

We will use the X,Y and Z Pauli operators: X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
and Y = iXZ . The l-qubits

Pauli group consists of all elements of the form P = P1 ⊗ P2⊗. . .⊗Pl where Pi ∈ {I,X, Y, Z}, together with

the multiplicative factors −1 and ±i. We will use a subset of this group, which we denote as Pl, which includes

all operators P = P1 ⊗ P2⊗. . .⊗Pl but not the multiplicative factors. We will use the fact that Pauli operators

anti commute; ZX = −XZ . The Pauli group Pl is a basis to the matrices acting on l qubits. We can write any

matrix U over a vector space A⊗ B (where A is the space of l qubits) as
∑

P∈Pl
P ⊗ UP where UP is some (not

necessarily unitary) matrix on B.

Let Cl denote the l-qubit Clifford group. Recall that it is a finite subgroup of unitaries acting on l qubits

generated by the Hadamard matrix H = 1√
2

(
1 1
1 −1

)
, by K =

(
1 0
0 i

)
, and by controlled-NOT (CNOT)

15

which maps |a, b〉 to |a, a⊕ b〉 (for bits a, b). The Clifford group is characterized by the property that it maps the

Pauli group Pl to itself, up to a phase α ∈ {±1,±i}. That is: ∀C ∈ Cl, P ∈ Pl : αCPC
† ∈ Pl

The Toffoli gate T maps |a, b, c〉 to |a, b, c⊕ ab〉 (for a, b, c ∈ {0, 1}). We will use the fact that the set consisting

of the Toffoli gate and the Hadamard gate is a universal gate set for quantum circuits ([Shi03]).

We will use completely positive trace preserving (CPTP) maps to represent general quantum operations. A

CPTP map S can be represented by its Kraus operators, {Bτ}τ . The result of applying S to a state ρ is:

S(ρ) =
∑

τ

BτρB
†
τ (35)

We say that two CPTP maps S and S ′ are equal if, for all density matrices ρ, S(ρ) = S ′(ρ).

3.3.2 Trace Distance

For density matrices ρ, σ, the trace distance ‖ρ− σ‖tr is equal to:

‖ρ− σ‖tr =
1

2
Tr(

√
(ρ− σ)2) (36)

We will use the following fact ([Wik18]):

‖ρ− σ‖tr = max
P

Tr(P (ρ− σ)) (37)

where the maximization is carried over all projectors P . We will also use the fact that the trace distance is con-

tractive under completely positive trace preserving maps ([Wik18]). The following lemma relates the Hellinger

distance as given in (27) and the trace distance of superpositions:

Lemma 3.8 Let X be a finite set and f1, f2 ∈ Dx. Let

|ψ1〉 =
∑

x∈X

√
f1(x) |x〉 and |ψ2〉 =

∑

x∈X

√
f2(x) |x〉 .

Then

‖|ψ1〉 〈ψ1| − |ψ2〉 〈ψ2|‖tr =
√

1− (1−H2(f1, f2))2 .

We require the following definition, which is analogous to Definition 3.2:

Definition 3.9 Computational Indistinguishability of Quantum States Two families of density matrices {ρ0,λ}λ∈N
and {ρ1,λ}λ∈N (indexed by the security parameter λ) are computationally indistinguishable if for all efficiently

computable CPTP maps S there exists a negligible function µ(·) such that for all λ ∈ N:
∣∣∣Tr((|0〉 〈0| ⊗ I)S(ρ0,λ − ρ1,λ)

∣∣∣ ≤ µ(λ) . (38)

3.3.3 Pauli Twirl

We call the conjugation of a unitary operator (or a CPTP map) by a random Pauli a Pauli twirl ([DCEL09]). The

twirled version of a unitary U is the CPTP map {(XxZz)†U(XxZz)}x,z . If the Pauli is a random X (or Z) Pauli

operator, we call the conjugation an X (or Z) Pauli twirl. A Z Pauli twirl has the following effect:

Lemma 3.10 Z Pauli Twirl For a CPTP map with Kraus operators {Bτ}τ , the following two CPTP maps are

equal: {
1√
2
(Zr ⊗ I)Bτ (Z

r ⊗ I)
}

r∈{0,1},τ
= {(Xx ⊗ I)B′x,τ}x∈{0,1},τ (39)

where Bτ =
∑

x,z∈{0,1}
XxZz ⊗Bxzτ and the CPTP map {B′x,τ}x∈{0,1},τ is equal to B′x,τ =

∑
z∈{0,1}

Zz ⊗Bxzτ .

16

Proof: To prove the lemma, we show that applying either of the two CPTP maps in equation (39) on an arbitrary

density matrix ρ results in the same state. We begin with the CPTP map on the left of (39):

1

2

∑

r∈{0,1},τ
(Zr ⊗ I)Bτ (Z

r ⊗ I)ρ(Zr ⊗ I)B†τ (Zr ⊗ I)† (40)

Using the fact that Bτ =
∑

x,z∈{0,1}
XxZz ⊗Bxzτ , we can rewrite the expression from (40) as:

1

2

∑

r∈{0,1},τ
x,z,x′,z′∈{0,1}

(ZrXxZzZr ⊗Bxzτ)ρ(Z
rXx′

Zz′Zr ⊗Bx′z′τ)
† (41)

Next, we use the anti commutation properties of Pauli operators (by commuting Zr with both Xx and Xx′
) to

obtain the following state:

1

2

∑

r∈{0,1},τ
x,z,x′,z′∈{0,1}

(−1)r·(x⊕x′)(XxZz ⊗Bxzτ)ρ(X
x′
Zz′ ⊗Bx′z′τ)

† (42)

At this point, we can sum over r to obtain x = x′, resulting in the following expression:
∑

τ
x,z,z′∈{0,1}

(XxZz ⊗Bxzτ)ρ(X
xZz′ ⊗Bx′zτ)

† (43)

=
∑

x∈{0,1},τ
(Xx ⊗ I)B′x,τρ((Xx ⊗ I)B′x,τ)† (44)

�

The following corollary follows from Lemma 3.10 and captures the effect of a Z Pauli twirl followed by

Hadamard basis measurement:

Corollary 3.11 Z Pauli Twirl with Measurement For a CPTP map with Kraus operators {Bτ}τ , the following

two CPTP maps are equal:
{

1√
2
(|b〉 〈b|HZr ⊗ I)Bτ (Z

r ⊗ I)
}

b,r∈{0,1},τ
= {(|b〉 〈b|H ⊗ I)B′x,τ}b,x∈{0,1},τ (45)

where Bτ =
∑

x,z∈{0,1}
XxZz ⊗Bxzτ and the CPTP map {B′x,τ}x∈{0,1},τ is equal to B′x,τ =

∑
z∈{0,1}

Zz ⊗Bxzτ .

Proof: We begin by applying Lemma 3.10 to obtain the following equality:
{

1√
2
(|b〉 〈b|HZr ⊗ I)Bτ (Z

r ⊗ I)
}

b,r∈{0,1},τ
= {(|b〉 〈b|HX ⊗ I)B′x,τ}b,x∈{0,1},τ (46)

To prove the corollary, we show that

{(|b〉 〈b|HX ⊗ I)B′x,τ}b,x∈{0,1},τ = {(|b〉 〈b|H ⊗ I)B′x,τ}x∈{0,1},τ (47)

This is straightforward and only requires one intermediate step:

{(|b〉 〈b|HX ⊗ I)B′x,τ}b,x∈{0,1},τ = {(|b〉 〈b|ZH ⊗ I)B′x,τ}x∈{0,1},τ (48)

The second CPTP map in (48) is equal to the second CPTP map in (47), since a Z operator applied prior to standard

basis measurement has no effect, and can be replaced with the identity operator. �

17

3.4 QPIP Definition

A QPIP is defined as follows (this definition is taken from [ABOE08]/ [ABOEM17]):

Definition 3.12 A language L is said to have a Quantum Prover Interactive Proof (QPIPτ) with completeness c
and soundness s (where c − s is at least a constant) if there exists a pair of algorithms (P,V), where P is the

prover and V is the verifier, with the following properties:

• The prover P is a BQP machine, which also has access to a quantum channel which can transmit τ qubits.

• The verifier V is a hybrid quantum-classical machine. Its classical part is a BPP machine. The quantum

part is a register of τ qubits, on which the verifier can perform arbitrary quantum operations and which has

access to a quantum channel which can transmit τ qubits. At any given time, the verifier is not allowed to

possess more than τ qubits. The interaction between the quantum and classical parts of the verifier is the

usual one: the classical part controls which operations are to be performed on the quantum register, and

outcomes of measurements of the quantum register can be used as input to the classical machine.

• There is also a classical communication channel between the prover and the verifier, which can transmit

polynomially many bits at any step.

• At any given step, either the verifier or the prover perform computations on their registers and send bits and

qubits through the relevant channels to the other party.

We require:

• Completeness: if x ∈ L, then after interacting with P, V accepts with probability ≥ c.

• Soundness: if x /∈ L, then the verifier rejects with probability ≥ 1− s regardless of the prover P′ (who has

the same description as P) with whom he is interacting.

Abusing notation, we denote the class of languages for which such a proof exists also by QPIPτ .

4 Function Definitions

4.1 Noisy Trapdoor Claw-Free Functions

This section is taken directly from [BCM+18]. Let λ be a security parameter, and X and Y be finite sets (depending

on λ). For our purposes an ideal family of functions F would have the following properties. For each public key

k, there are two functions {fk,b : X → Y}b∈{0,1} that are both injective and have the same range (equivalently,

(b, x) 7→ fk,b(x) is 2-to-1), and are invertible given a suitable trapdoor tk (i.e. tk can be used to compute x given b
and y = fk,b(x)). Furthermore, the pair of functions should be claw-free: it must be hard for an attacker to find two

pre-images x0, x1 ∈ X such that fk,0(x0) = fk,1(x1). Finally, the functions should satisfy an adaptive hardcore

bit property, which is a stronger form of the claw-free property: assuming for convenience that X = {0, 1}w ,

we would like that it is computationally infeasible to simultaneously generate an (b, xb) ∈ {0, 1} × X and a

d ∈ {0, 1}w \ {0w} such that with non-negligible advantage over 1
2 the equation d · (x0 ⊕ x1) = 0, where x1−b is

defined as the unique element such that fk,1−b(x1−b) = fk,b(xb), holds.

Unfortunately, we do not know how to construct a function family that exactly satisfies all these requirements

under standard cryptographic assumptions. Instead, we construct a family that satisfies slightly relaxed require-

ments, that we will show still suffices for our purposes, based on the hardness of the learning with errors (LWE)

problem. The requirements are relaxed as follows. First, the range of the functions is no longer a set Y; instead,

it is DY , the set of probability densities over Y . That is, each function returns a density, rather than a point. The

18

trapdoor injective pair property is then described in terms of the support of the output densities: these supports

should either be identical, for a colliding pair, or be disjoint, in all other cases.

The consideration of functions that return densities gives rise to an additional requirement of efficiency: there

should exist a quantum polynomial-time procedure that efficiently prepares a superposition over the range of the

function, i.e. for any key k and b ∈ {0, 1}, the procedure can prepare the state

1√
X

∑

x∈X ,y∈Y

√
fk,b(x)(y) |x〉 |y〉 . (49)

In our instantiation based on LWE, it is not possible to prepare (49) perfectly, but it is possible to create a super-

position with coefficients
√
f ′k,b(x) such that the resulting state is within negligible trace distance of (49). The

density f ′k,b(x) is required to satisfy two properties used in our protocol. First, it must be easy to check, without

the trapdoor, if an element y ∈ Y lies in the support of f ′k,b(x). Second, the inversion algorithm should operate

correctly on all y in the support of f ′k,b(x).
We slightly modify the adaptive hardcore bit requirement as well. Since the set X may not be a subset of

binary strings, we first assume the existence of an injective, efficiently invertible map J : X → {0, 1}w . Next,

we only require the adaptive hardcore bit property to hold for a subset of all nonzero strings, instead of the set

{0, 1}w \ {0w}. Finally, membership in the appropriate set should be efficiently checkable, given access to the

trapdoor.

A formal definition follows.

Definition 4.1 (NTCF Family) Let λ be a security parameter. Let X and Y be finite sets. Let KF be a finite set of

keys. A family of functions

F =
{
fk,b : X → DY

}
k∈KF ,b∈{0,1}

is called a noisy trapdoor claw-free (NTCF) family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm GENF which generates a

key k ∈ KF together with a trapdoor tk:

(k, tk)← GENF (1
λ) .

2. Trapdoor Injective Pair. For all keys k ∈ KF the following conditions hold.

(a) Trapdoor: For all b ∈ {0, 1} and x 6= x′ ∈ X , SUPP(fk,b(x)) ∩ SUPP(fk,b(x
′)) = ∅. Moreover,

there exists an efficient deterministic algorithm INVF such that for all b ∈ {0, 1}, x ∈ X and y ∈
SUPP(fk,b(x)), INVF (tk, b, y) = x.

(b) Injective pair: There exists a perfect matching Rk ⊆ X × X such that fk,0(x0) = fk,1(x1) if and only

if (x0, x1) ∈ Rk.

3. Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1} there exists a function f ′k,b : X 7→ DY
such that

(a) For all (x0, x1) ∈ Rk and y ∈ SUPP(f ′k,b(xb)), INVF (tk, b, y) = xb and INVF (tk, b⊕ 1, y) = xb⊕1.

(b) There exists an efficient deterministic procedure CHKF that, on input k, b ∈ {0, 1}, x ∈ X and y ∈ Y ,

returns 1 if y ∈ SUPP(f ′k,b(x)) and 0 otherwise. Note that CHKF is not provided the trapdoor tk.

19

(c) For every k and b ∈ {0, 1},

Ex←UX
[
H2(fk,b(x), f

′
k,b(x))

]
≤ µ(λ) ,

for some negligible function µ(·). Here H2 is the Hellinger distance; see (27). Moreover, there exists

an efficient procedure SAMPF that on input k and b ∈ {0, 1} prepares the state

1√
|X |

∑

x∈X ,y∈Y

√
(f ′k,b(x))(y) |x〉 |y〉 . (50)

4. Adaptive Hardcore Bit. For all keys k ∈ KF the following conditions hold, for some integer w that is a

polynomially bounded function of λ.

(a) For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w such that Prd←U{0,1}w [d /∈ Gk,b,x] is

negligible, and moreover there exists an efficient algorithm that checks for membership in Gk,b,x given

k, b, x and the trapdoor tk.

(b) There is an efficiently computable injection J : X → {0, 1}w , such that J can be inverted efficiently on

its range, and such that the following holds. If

Hk =
{
(b, xb, d, d · (J(x0)⊕ J(x1))) | b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0 ∩Gk,1,x1

}
, 2

Hk = {(b, xb, d, c) | (b, x, d, c ⊕ 1) ∈ Hk

}
,

then for any quantum polynomial-time procedure A there exists a negligible function µ(·) such that

∣∣∣ Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk]− Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk]
∣∣∣ ≤ µ(λ) . (51)

4.2 Extended Trapdoor Claw-Free Functions

In this section, we define the extended trapdoor claw-free family we will use in this paper, which is a NTCF family

(Definition 4.1) with two additional properties. In order to define an extended trapdoor claw-free family, we must

first define a trapdoor injective family. A trapdoor injective family differs from a NTCF family in two ways: the

function pairs have disjoint images (rather than perfectly overlapping images) and there is no adaptive hardcore bit

condition.

Definition 4.2 (Trapdoor Injective Function Family) Let λ be a security parameter. Let X and Y be finite sets.

Let KG be a finite set of keys. A family of functions

G =
{
gk,b : X → DY

}
b∈{0,1},k∈KG

is called a trapdoor injective family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm GENG which generates a

key k ∈ KG together with a trapdoor tk:

(k, tk)← GENG(1
λ) .

2Note that although both x0 and x1 are referred to to define the set Hk, only one of them, xb, is explicitly specified in any 4-tuple that

lies in Hk.

20

2. Disjoint Trapdoor Injective Pair. For all keys k ∈ KG , for all b, b′ ∈ {0, 1} and x, x′ ∈ X , if (b, x) 6= (b′, x′),
SUPP(gk,b(x))∩ SUPP(gk,b′(x

′)) = ∅. Moreover, there exists an efficient deterministic algorithm INVF such

that for all b ∈ {0, 1}, x ∈ X and y ∈ SUPP(gk,b(x)), INVG(tk, y) = (b, x).

3. Efficient Range Superposition. For all keys k ∈ KG and b ∈ {0, 1}

(a) There exists an efficient deterministic procedure CHKG that, on input k, b ∈ {0, 1}, x ∈ X and y ∈ Y ,

outputs 1 if y ∈ SUPP(gk,b(x)) and 0 otherwise. Note that CHKG is not provided the trapdoor tk.

(b) There exists an efficient procedure SAMPG that on input k and b ∈ {0, 1} returns the state

1√
|X |

∑

x∈X ,y∈Y

√
(gk,b(x))(y) |x〉 |y〉 . (52)

Definition 4.3 (Injective Invariance) A noisy trapdoor claw-free family F is injective invariant if there exists a

trapdoor injective family G such that:

1. The algorithms CHKF and SAMPF are the same as the algorithms CHKG and SAMPG .

2. For all quantum polynomial-time procedures A, there exists a negligible function µ(·) such that

∣∣∣ Pr
(k,tk)←GENF (1λ)

[A(k) = 0]− Pr
(k,tk)←GENG(1λ)

[A(k) = 0]
∣∣∣ ≤ µ(λ) (53)

Definition 4.4 (Extended Trapdoor Claw-Free Family) A noisy trapdoor claw-free familyF is an extended trap-

door claw-free family if:

1. It is injective invariant.

2. For all k ∈ KF and d ∈ {0, 1}w , let:

H ′k,d = {d · (J(x0)⊕ J(x1))|(x0, x1) ∈ Rk} (54)

For all quantum polynomial-time procedures A, there exists a negligible function µ(·) and a string d ∈
{0, 1}w such that ∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ H ′k,d]−

1

2

∣∣∣ ≤ µ(λ) (55)

5 Measurement Protocol

We begin by introducing the state commitment process (described in Section 2.1) followed by the measurement

protocol (given in Section 2.2). The presentation below is slightly more involved than the overview, since we are

not using the perfect trapdoor claw-free/ injective families used in the overview; we are instead using the families

given in Definitions 4.1, 4.2 and 4.4. After presenting the measurement protocol, we provide notation which will be

used throughout the rest of the paper. Next, we prove completeness of our measurement protocol and characterize

the behavior of general provers (as described in Section 2.3.1). This section ends with the construction of the

quantum state underlying the measurement distribution obtained by the verifier (given in Section 2.3.2).

21

5.1 How to Commit Using a Noisy Trapdoor Claw-Free Family

Here we describe the process of state commitment with a NTCF function (as defined in Definition 4.1). The state

commitment process requires a function key k ∈ KF (which corresponds to functions fk,0, fk,1 ∈ F) and is

performed with respect to the first qubit of an arbitrary state |ψ〉:

|ψ〉 =
∑

b∈{0,1}
αb |b〉 |ψb〉 (56)

The first step of the commitment process is to apply the SAMPF procedure in superposition, with k and the first

qubit containing b as input:

1√
|X |

∑

b∈{0,1}
x∈X ,y∈Y

αb

√
f ′k,b(x)(y) |b〉 |x〉 |ψb〉 |y〉 (57)

By condition 3(c) of Definition 4.1 and Lemma 3.8 (57) is within negligible trace distance of the following state:

1√
|X |

∑

b∈{0,1}
x∈X ,y∈Y

αb

√
fk,b(x)(y) |b〉 |x〉 |ψb〉 |y〉 (58)

The second step of the commitment process is to measure the last register, obtaining the commitment string y ∈ Y .

Let xb,y = INVF (tk, b, y) (tk is the trapdoor corresponding to the key k). The remaining state at this point is within

negligible trace distance of the following state

∑

b∈{0,1}
αb |b〉 |xb,y〉 |ψb〉 (59)

The fact that the superposition collapses in this manner is due to both the trapdoor and injective pair conditions in

Definition 4.1. The trapdoor condition implies that for each b, there can be at most one remaining element x ∈ X
in the superposition after measuring y. The injective pair condition states that for all xb,y ∈ X , there exists exactly

one xb⊕1,y ∈ X such that (x0,y, x1,y) ∈ Rk (i.e. fk,b(xb) = fk,b(xb⊕1)). Therefore, if y ∈ SUPP(fk,b(xb)),
it follows that y ∈ SUPP(fk,b⊕1(xb⊕1)). We will call the first qubit of (59) the committed qubit and the second

register (containing xb,y) the preimage register.

5.1.1 Hadamard Measurement of a Committed State

The first step in measuring a committed state in the Hadamard basis is to apply the unitary UJ , which uses the

injective map J defined in condition 4(b) of Definition 4.1:

UJ(
∑

b∈{0,1}
αb |b〉 |xb,y〉 |ψb〉 |0〉eJ) =

∑

b∈{0,1}
αb |b〉 |J(xb,y)〉 |ψb〉 |0〉e

′
J (60)

where the number of auxiliary qubits (eJ and e′J) is determined by the map J . The map UJ is unitary since J is

both efficiently computable and efficiently invertible. The second step is to apply the Hadamard transform H⊗w+1

to the first two registers of the state in (60). The resulting state is:

1√
2w

∑

d∈{0,1}w
b∈{0,1}

αbX
d·(J(x0,y)⊕J(x1,y))H |b〉 ⊗ (−1)d·J(x0,y) |d〉 ⊗ |ψb〉 ⊗ |0〉e

′
J (61)

22

The third step is measurement of the preimage register, obtaining a string d ∈ {0, 1}w and resulting in the following

state (recall the state |ψ〉 from (56)):

(Xd·(J(x0,y)⊕J(x1,y))H ⊗ I) |ψ〉 |0〉e′J (62)

The final step is measuring the committed qubit to obtain a bit b′. The Hadamard measurement result of the first

qubit of |ψ〉 is b′ ⊕ d · (J(x0,y) ⊕ J(x1,y)) ∈ {0, 1} (x0,y and x1,y can be recovered from y using the trapdoor tk
and the function INVF).

5.1.2 How to Commit Using a Trapdoor Injective Family

The commitment process described in Section 5.1 can also be performed using a key k ∈ KG corresponding to

trapdoor injective functions gk,0, gk,1 ∈ G (see Definition 4.2). Prior to measuring y (at the stage of (57)), the state

is:

1√
|X |

∑

b∈{0,1}
x∈X ,y∈Y

αb

√
gk,b(x)(y) |b〉 |x〉 |ψb〉 |y〉 (63)

Now the last register is measured to obtain y ∈ Y . Since the sets SUPP(gk,b(x)) and SUPP(gk,b′(x
′)) are disjoint for

all (b, x) 6= (b′, x′) (see the trapdoor condition of Definition 4.2), y ∈ ∪
x∈X

SUPP(gk,b(x)) with probability |αb|2.

Let (b, xb,y) = INVG(tk, y). The remaining state after measurement is:

|b〉 |xb,y〉 |ψb〉 (64)

Therefore, measuring y acts as a standard basis measurement of the first qubit of the state |ψ〉 in (56). The standard

basis measurement b can be obtained (with access to only the trapdoor tk of gk,0, gk,1 and y) by running the function

INVG .

5.2 Measurement Protocol

We now use the commitment process in Section 5.1 to construct our measurement protocol for n qubits, where n is

polynomial in the security parameter λ. We require an extended trapdoor claw-free familyF (Definition 4.4) as well

as its corresponding trapdoor injective family G (Definition 4.2). The measurement protocol depends on a string

h ∈ {0, 1}n , called the basis choice, which represents the basis for which the verifier would like measurement

results of the n qubits; hi = 0 indicates the standard basis and hi = 1 indicates the Hadamard basis. We now

provide the measurement protocol:

Protocol 5.1 Measurement Protocol (for h ∈ {0, 1}n)

1. The verifier performs the following operations for 1 ≤ i ≤ n:

(a) If the standard basis is chosen for qubit i (i.e. hi = 0), the verifier runs GENG(1λ) to produce a function

key ki ∈ KG and its corresponding trapdoor tki .

(b) If the Hadamard basis is chosen for qubit i (hi = 1), the verifier runs GENF(1λ) to produce a function

key ki ∈ KF and its corresponding trapdoor tki .

Let k′ = (k1, . . . , kn). The verifier sends the function choice k′ to the prover.

2. The verifier receives y′ = (y1, . . . , yn) ∈ Yn from the prover.

23

3. The verifier chooses at random to run a test round or a Hadamard round (each is chosen with probability 1
2).

4. For a test round:

(a) The verifier asks the prover for standard basis measurements of committed qubit i and preimage register

i, for 1 ≤ i ≤ n.

(b) For 1 ≤ i ≤ n, the verifier receives a bit b′i and a string x′i ∈ X . For all i such that hi = 0,

the verifier rejects if CHKG(ki, b′i, x
′
i, yi) = 0. For all i such that hi = 1, the verifier rejects if

CHKF(ki, b′i, x
′
i, yi) = 0.

5. For a Hadamard round:

(a) The verifier asks the prover for Hadamard measurements of committed qubit i and preimage register i
for 1 ≤ i ≤ n.

(b) For 1 ≤ i ≤ n, the verifier receives a bit b′i and a string di ∈ {0, 1}w .

(c) For qubits i for which hi = 0, the results (b′i, di) are ignored. The verifier computes

(mi, xmi,yi) = INVG(tki , yi) (65)

If the inverse does not exist, the verifier stores a random bit as the measurement result and rejects.

Otherwise the verifier stores mi as the standard basis measurement result.

(d) For qubits i for which hi = 1, the verifier computes

x0,yi = INVF (tki , 0, yi) (66)

x1,yi = INVF (tki , 1, yi) (67)

If either of the inverses does not exist, the verifier stores a random bit as the measurement result and

rejects. The verifier uses tki to check if di ∈ Gki,0,x0,yi
∩Gki,1,x1,yi

. If not, the verifier stores a random

bit as the measurement result and rejects. Otherwise, the verifier stores mi = b′i ⊕ di · (J(x0,yi) ⊕
J(x1,yi)) as the Hadamard basis measurement result.

5.2.1 Honest Prover

We now provide an honest prover’s behavior in Protocol 5.1, assuming the prover would like to report measurement

results of an n qubit state ρ:

Protocol 5.2 Honest Prover in Measurement Protocol (for an efficiently computable n qubit state ρ)

1. The prover creates the state ρ. Upon receipt of k′ from the verifier, the prover commits to qubit i of ρ using

ki as described in Section 5.1. The prover reports the measurement results y′ = (y1, . . . , yn) ∈ Yn obtained

from each commitment process to the verifier.

2. For a test round:

(a) The prover measures each of the n committed qubits and preimage registers in the standard basis,

sending the verifier the resulting bit b′i and string x′i ∈ X for 1 ≤ i ≤ n.

3. For a Hadamard round:

(a) The prover first applies the unitary UJ to all n preimage registers. The prover then measures each of

the n committed qubits and preimage registers in the Hadamard basis, sending the verifier the resulting

bit b′i and string di ∈ {0, 1}w for 1 ≤ i ≤ n.

24

5.3 Notation

We now introduce some notation (and provide reminders of previously used notation) which will be useful through-

out the rest of the paper.

1. The string h ∈ {0, 1}n is called the basis choice; hi = 0 indicates the standard basis and hi = 1 indicates

the Hadamard basis.

2. We will call k′ (produced in step 1 of Protocol 5.1) the function choice of the verifier. Let DV,h be the

distribution which it is sampled from (this is the distribution produced by GENF and GENG).

3. A perfect prover is a prover who is always accepted by the verifier on the test round.

4. For a density matrix ρ on n qubits and a string h ∈ {0, 1}n , let Dρ,h be the distribution over {0, 1}n which

results from measuring all qubits of ρ in the basis specified by h.

5. For every prover P and basis choice h ∈ {0, 1}n, let DP,h be the distribution over measurement results

m ∈ {0, 1}n obtained by the verifier when interacting with P on basis choice h in a Hadamard round. Let

DC
P,h be the same distribution, but conditioned on acceptance by the verifier (in a Hadamard round). Let

σP,h be the density matrix corresponding to the distribution DP,h:

σP,h
def
=

∑

m∈{0,1}n
DP,h(m) |m〉 〈m| (68)

We will frequently use the fact that for provers P and P
′, σP,h and σP′,h are computationally indistinguish-

able if and only if DP,h and DP′,h are computationally indistinguishable, by definition of computational

indistinguishability of distributions (Definition 3.2) and of density matrices (Definition 3.9). Also note that

by definition of trace distance in (36) and total variation distance in (28):

∥∥σP,h − σP′,h
∥∥
tr
=

∥∥DP,h −DP′,h
∥∥
TV

(69)

6. As introduced in Section 5.1, a committed qubit is the qubit which is used to determine whether to apply

fk,0 or fk,1 (or gk,0 or gk,1) and the preimage register is the register which contains the inverse after the

measurement; i.e. in the following state from (59):

∑

b

αb |b〉 |xb,y〉 |ψb〉 (70)

the first qubit is the committed qubit and the second register (containing xb,y) is the preimage register. The

commitment string is the string y ∈ Y .

5.4 Completeness of Measurement Protocol

Claim 5.3 Completeness of Measurement Protocol (Protocol 5.1) For all n qubit states ρ and for all basis choices

h ∈ {0, 1}n, the prover P described in Protocol 5.2 is a perfect prover (P is accepted by the verifier in a test round

for basis choice h with perfect probability). There exists a negligible function µ such that in the Hadamard round

for basis choice h, the verifier accepts P with probability ≥ 1− µ and

∥∥∥DC
P,h −Dρ,h

∥∥∥
TV
≤ µ.

Proof of Claim 5.3: First, assume that the prover could produce the ideal states in the commitment procedure,

as written in (58) for the Hadamard basis and (63) for the standard basis. Call such a prover P′. The distribution

25

over measurement results obtained by the verifier when interacting with P
′ (prior to conditioning on acceptance) is

equal to the distribution over measurement results obtained by measuring ρ in the basis specified by h, i.e.:

∥∥DP′,h −Dρ,h

∥∥
TV

= 0 (71)

We now return to analyzing the prover P given in Protocol 5.2. First note that P is a perfect prover: when mea-

sured, the superpositions created by P during the commitment process (in (57) and (63)) pass the CHK procedure

perfectly, by definition (see Definition 4.1 and Definition 4.2). Moving on to the Hadamard round, P is rejected by

the verifier only if there exists an i such that the measurement result di is not in the set Gki,0,x0,yi
∩Gki,1,x1,yi

(and

hi = 1). The adaptive hardcore bit clause of Definition 4.1 (item 4(a)) implies that since di is sampled uniformly

(it is the result of a Hadamard transform), there exists a negligible function µH such that the probability that the

verifier rejects P in the Hadamard round is at most µH :

∥∥DP,h −DC
P,h

∥∥
TV
≤ µH (72)

Next, observe that the prover P in Protocol 5.2 can produce the state in (63) (which is used by the prover P′), but

can only create a state within negligible trace distance of the state in (58). It follows that there exists a negligible

function µ′ such that: ∥∥DP,h −DP′,h
∥∥
TV
≤ µ′ (73)

Using the triangle inequality, we obtain:

∥∥DC
P,h −Dρ,h

∥∥
TV

≤
∥∥DC

P,h −DP,h

∥∥
TV

+
∥∥DP,h −DP′,h

∥∥
TV

+
∥∥DP′,h −Dρ,h

∥∥
TV

(74)

We complete the calculation by plugging in (71), (72) and (73):

∥∥DC
P,h −Dρ,h

∥∥
TV

≤ µH + µ′ (75)

To complete the proof of the claim, set µ = µH + µ′. �

5.5 Prover Behavior

We now give a claim which characterizes the behavior of a general prover in Protocol 5.1 (the overview of this

claim and its proof are given in Section 2.3.1). The only difference between the following claim and the version

given in the overview is the inclusion of the operator UJ (as defined in (60)):

Claim 5.4 Prover Behavior For all BQP provers P in Protocol 5.1, there exist two efficiently computable unitary

operators U0, U and a prover P
′ (described below) such that for all basis choices h ∈ {0, 1}n , P and P

′ are

accepted by the verifier with the same probability in a test round and the distribution over measurement results

DP,h produced by the prover and verifier as a result of Protocol 5.1 is equal to the distribution DP′,h corresponding

to the prover P′. We say that P is characterized by (U0, U).

1. P
′ designates his first n qubits as committed qubits, the next n registers as preimage registers and the final n

registers as commitment string registers. All other registers contain auxiliary space.

2. Upon receipt of the function choice k′ from the verifier, the prover P′ applies U0 to his initial state:

|0〉⊗e ⊗
∣∣k′

〉
(76)

where e is determined by U0, U and U0 uses the last register (containing k′) as a control register; i.e. there

exists a unitary U0,k′ such that

U0(|0〉⊗e ⊗
∣∣k′

〉
) = U0,k′(|0〉⊗e)⊗

∣∣k′
〉

(77)

26

3. P
′ measures the commitment string registers to obtain y′ = (y1, . . . , yn) ∈ Yn, which is sent to the verifier.

4. For a Hadamard round:

(a) P
′ appends eJ · n auxiliary 0 qubits to his state and applies the unitary UJ to all n preimage registers,

followed by application of the unitary U to his entire state.

(b) P
′ measures the n committed qubits and preimage registers in the Hadamard basis. P′ sends the verifier

the resulting bit b′i and string di ∈ {0, 1}w for 1 ≤ i ≤ n.

5. For a test round, P′ measures each of the n committed qubits and preimage registers in the standard basis,

sending the verifier the resulting bit b′i and string x′i ∈ X for 1 ≤ i ≤ n.

Notation 5.5 We will also frequently say that a prover P is characterized by two CPTP maps (S0,S). This means

that for all basis choices h ∈ {0, 1}n , P and P
′ are accepted with the same probability in a test round and

DP,h = DP′,h, and the prover P
′ follows steps 1 - 5 in Claim 5.4, but uses the CPTP maps S0,S rather than the

unitary operators U0, U .

Proof of Claim 5.4: We will follow the principle given in Section 2.3.1: a general prover is equivalent from the

verifier’s perspective to a prover P who begins each round by applying an arbitrary unitary attack and then behaves

honestly. The first implication of the principle is that P measures the same registers as an honest prover; therefore,

like the honest prover, P designates the first n qubits as committed qubits, the next n registers as preimage registers,

and the final n registers as commitment string registers. All other registers of P contain the auxiliary space.

The second implication is that there exist unitary operators U ′, UT and UC such that P acts as follows. P

begins with the initial state |0〉⊗e ⊗ |k′〉 and then applies a unitary operator U ′ to his state, followed by standard

basis measurement of the commitment string registers to obtain y′. If the verifier chooses a test round, the prover

applies another unitary UT followed by standard basis measurements of the committed qubit and preimage registers

to obtain the requested measurement results. If the verifier chooses a Hadamard round, the prover first appends

eJ ·n auxiliary 0 qubits to his state. Next, the prover applies a unitary UC to his state. He then applies the unitary UJ

(see Section 5.1.1) to all n preimage registers. Finally, the prover measures all n committed qubits and preimage

registers in the Hadamard basis to obtain the requested measurement results. We can assume both UT and UC do

not act on the register containing y′. This is because y′ could have been copied into the prover’s auxiliary space

prior to measurement, and UT and UC can instead act on this space. It follows that both UT and UC commute with

the measurement of y′.
To obtain the attacks U0 and U which characterize P, we make two changes. First, we use the fact that UT

commutes with measurement of y′ to shift it prior to the measurement. Due to this change, we also need to append

U †T to the start of the Hadamard round attack. Our second change is to shift the unitary UJ so that it is prior to the

Hadamard round attack; this can be done by conjugating the attack by UJ . It follows that if we let U0 = UTU
′,

U = U⊗nJ UCU
†
T (U

⊗n
J)† and consider the prover P′ described in the statement of Claim 5.4 (with respect to U0 and

U), P and P
′ are accepted with the same probability in a test round and DP,h = DP′,h for all basis choices h.

�

5.6 Construction of Underlying Quantum State

We require the following definition:

Definition 5.6 Trivial Prover A perfect prover P in Protocol 5.1 characterized by (U0,S) (where U0 is a unitary, S
is a CPTP map and both are efficiently computable) is called trivial if S commutes with standard basis measurement

on the first n qubits.

In this section, we prove the following claim (the overview of this claim is given in Section 2.3.2):

27

Claim 5.7 For all trivial provers P, there exists an n qubit state ρ (which can be created using a BQP circuit) such

that for all h ∈ {0, 1}n , the distribution over measurement results DP,h produced in Protocol 5.1 with respect to

P for basis choice h is computationally indistinguishable from the distribution Dρ,h which results from measuring

ρ in the basis determined by h.

Proof: For a unitary U0 and CPTP map S , let the prover P be characterized by (U0,S). The state ρ is constructed

as follows:

Protocol 5.8 Construction of ρ corresponding to P

1. For 1 ≤ i ≤ n: sample (ki, tki)← GENF (1λ).

2. Follow steps 1-4(a) in Claim 5.4 (with respect to U0,S).

3. Measure all preimage registers in the Hadamard basis to obtain d1, . . . , dn ∈ {0, 1}w .

4. For 1 ≤ i ≤ n, use the trapdoor tki to apply Zdi·(x0,yi
⊕x1,yi

) to the ith committed qubit.

5. Trace out all qubits except n committed qubits.

We now argue that, for all h ∈ {0, 1}n, Dρ,h is computationally indistinguishable from DP,h. We will proceed

through two families of hybrid states which are dependent on the basis choice h. In the first family {ρ(1)h }h∈{0,1}n ,

we simply remove the Z decoding operator (step 4 of Protocol 5.8) if hi = 0. This also eliminates the need for the

trapdoor tki if hi = 0:

Protocol 5.9 Construction of ρ
(1)
h corresponding to P

1. For 1 ≤ i ≤ n: sample (ki, tki)← GENF (1λ). If hi = 0, discard the trapdoor tki .

2. Apply steps 2-3 of Protocol 5.8.

3. For 1 ≤ i ≤ n, if hi = 1, use the trapdoor tki to apply Zdi·(x0,yi
⊕x1,yi

) to the ith committed qubit.

4. Trace out all qubits except the n committed qubits.

The distributions Dρ,h and D
ρ
(1)
h

,h
differ only on i for which hi = 0. To address this difference, note that if hi = 0,

the Z operator applied in step 4 of Protocol 5.8 has no effect on Dρ,h: to obtain Dρ,h the ith committed qubit is

measured in the standard basis immediately after application of the Z operator. Therefore, Dρ,h = D
ρ
(1)
h

,h
for all

h.

Our next hybrid is:

Protocol 5.10 Construction of ρ
(2)
h corresponding to P

1. For 1 ≤ i ≤ n: if hi = 1, sample (ki, tki) ← GENF (1λ). If hi = 0, sample (ki, tki) ← GENG(1λ) and

discard the trapdoor tki .

2. Apply steps 2-4 of Protocol 5.9.

The computational indistinguishability of D
ρ
(1)
h ,h

and D
ρ
(2)
h ,h

follows due to the injective invariance (Definition

4.3) of F with respect to G: as long as the trapdoor tki is unknown, a key ki sampled from KF is computationally

indistinguishable from a key ki sampled from KG . We can apply this argument for all i such that hi = 0 since the

trapdoor tki was discarded for all such i in Protocols 5.9 and 5.10.

28

We have so far shown that Dρ,h is computationally indistinguishable from D
ρ
(2)
h ,h

for all h ∈ {0, 1}n. To

complete our proof, we now show that D
ρ
(2)
h

,h
= DP,h. The two distributions differ as follows: if hi = 0, the

distribution of the ith bit of DP,h is obtained from the commitment string yi (see step 5(c) of Protocol 5.1), but

the distribution of the ith bit of D
ρ
(2)
h

,h
is obtained from measuring the ith committed qubit of ρ

(2)
h in the standard

basis.

To see that these two distributions are equal, we begin by observing that since the prover P is perfect, if hi = 0,

measuring the ith committed qubit prior to the attack S (i.e. at the start of the Hadamard round) results in the same

outcome as extracting the measurement outcome from yi. To complete our proof, recall that since the prover is

trivial, the attack S commutes with standard basis measurement. �

6 Replacement of a General Attack with an X-Trivial Attack for Hadamard Basis

In this section, we analyze Protocol 5.1 with a perfect prover (a prover who passes the test round of Protocol 5.1

with perfect probability). We will rely on notation introduced in Section 5.3. This section is dedicated to proving

the following claim:

Claim 6.1 General to X-Trivial Attack for Hadamard Basis Let 1 ≤ j ≤ n. Let S = {Bτ}τ and Sj =
{B′j,x,τ}x∈{0,1},τ be CPTP maps written in terms of their Kraus operators:

Bτ =
∑

x,z∈{0,1}
XxZz ⊗Bjxzτ (78)

B′j,x,τ =
∑

z∈{0,1}
Zz ⊗Bjxzτ (79)

where Bτ and B′j,x,τ have been rearranged so that XxZz and Zz act on the jth qubit. For a unitary operator U0,

let P be a perfect prover characterized by (U0,S) (see Claim 5.4 and notation 5.5). Let Pj be a perfect prover

characterized by (U0,Sj). If hj = 1, DP,h and DPj ,h are computationally indistinguishable.

The overview of the proof of Claim 6.1 is given in Section 2.4. Claim 6.1 is slightly more general than the statement

in the overview: n does not have to be equal to 1, and we are proving that we can replace the attack S with an

attack which acts trivially on any one of the committed qubits j for which hj = 1. We begin by writing out the state

σP,h which corresponds to the distribution DP,h (as defined in (68)). This requires some care, since we need to go

through the steps of Protocol 5.1 in order to construct σP,h. Once we write down the state σP,h, we can proceed to

proving computational indistinguishability between σP,h and σPj ,h. As written below (68), proving computational

indistinguishability between σP,h and σP1,h is equivalent to proving indistinguishability between DP,h and DP1,h.

Proof of Claim 6.1: We will assume for convenience that j = 1; the proof for all other values of j is equivalent.

To analyze the state σP,h, we will assume that P follows steps 1-4 in Claim 5.4. We can do this since P is

characterized by U0,S; therefore, the state σP,h can be obtained by following the steps in Claim 5.4.

We first provide some notation we will require. Let k = k1 ∈ KF be the first function key received by the

prover P in Protocol 5.1. Throughout this proof, we will only be focusing on the first committed qubit (since j = 1).

Therefore, for notational convenience, we will drop the subscript of 1 for values pertaining to the first committed

qubit (i.e. the basis choice, function key, commitment string, etc.). Let h>1 = (h2, . . . , hn), let k>1 = (k2, . . . , kn)
and define tk>1 similarly. We will also require the following mixed state, which contains the distribution over all

function keys and trapdoors except the first (as sampled by the verifier).

∑

k>1

DV,h>1 |k>1〉 〈k>1| ⊗ |tk>1〉 〈tk>1| (80)

29

This mixed state is required to create σP,h: the function keys are part of the prover’s input and the trapdoors are

used for the verifier’s decoding. For convenience, let |φk>1〉 be a purification of the above state; when analyzing

the state σP,h, we can consider a purification since we will eventually be tracing out all but the committed qubits.

For b ∈ {0, 1}, let Tk,b = ∪
x∈X

SUPP(fk,b(x)) (SUPP(fk,b(x)) is the support of the probability density function

fk,b(x) - see Definition 4.1 for a reminder). Let Tk = Tk,0 ∪ Tk,1.

We begin by writing the state of P after application of U0. Recall from Claim 5.4 that when the verifier requests

test round measurement results from P, P simply measures the requested registers in the standard basis and sends

the results to the verifier. Since P is a perfect prover, it follows that the state of P after applying U0 must yield

measurement results which pass the test round perfectly. The state of P after applying U0 can therefore be written

as:

U0 |0〉⊗e |k〉 |φk>1〉 =
∑

b∈{0,1}
y∈Tk,b

|b, xb,y〉 |ψb,y,k〉 |y〉 (81)

where xb,y is the output of INVF(tk, b, y). We have suppressed the dependence of xb,y on k for convenience. The

state in (81) can be written in this format since if the prover returns y ∈ Y in the commitment stage (step 2 of

Protocol 5.1), in the test round he must return b ∈ {0, 1} and x ∈ X such that CHKF (tk, b, x, y) = 1. Conditions

3(a) and 3(b) of Definition 4.1 imply that only xb,y = INVF (tk, b, y) satisfies this condition. The auxiliary space

represented by |ψb,y,k〉 includes the remaining n− 1 committed qubits, preimage registers and commitment strings

as well as the state |φk>1〉.
For convenience, we will instead write the state in (81) as follows:

U0 |0〉⊗e |k〉 =
∑

b∈{0,1}
y∈Tk

|b, xb,y〉 |ψb,y,k〉 |y〉 (82)

The only change we have made is we have replaced the summation over y ∈ Tk,b with the summation over

y ∈ Tk = Tk,0 ∪ Tk,1. Note that the existence of two inverses of y (x0,y and x1,y) is guaranteed since y ∈ Tk - see

Definition 4.1. For b, y for which y /∈ Tk,b, let |ψb,y,k〉 = 0.

After the prover measures y and sends it to the verifier, the state shared between the prover and verifier is:

∑

y∈Tk

(
∑

b∈{0,1}
|b, xb,y〉 |ψb,y,k〉)(

∑

b∈{0,1}
|b, xb,y〉 |ψb,y,k〉)† ⊗ |y〉 〈y| (83)

and the last register (containing y) is held by the verifier. Next, the prover applies the injective map UJ (see Section

5.1.1) to all n preimage registers along with auxiliary 0 qubits, which we assume have already been included in the

extra space |ψb,y,k〉. At this point, the state shared between the prover and verifier is:

ρk =
∑

y∈Tk

ρy,k (84)

where

ρy,k = (
∑

b∈{0,1}
|b, J(xb,y)〉

∣∣ψ′b,y,k
〉
)(

∑

b∈{0,1}
|b, J(xb,y)〉

∣∣ψ′b,y,k
〉
)† ⊗ |y〉 〈y| (85)

The auxiliary space |ψb,y,k〉 has changed to

∣∣∣ψ′b,y,k
〉

to account for the fact that the commitment strings correspond-

ing to indices i > 1 were measured and the unitary UJ was applied to the corresponding preimage registers in the

auxiliary space (we are considering a purification of the auxiliary space for convenience).

30

The prover then applies his CPTP map S = {Bτ}τ followed by Hadamard basis measurement of the first

committed qubit and preimage register of the state in (84). The state shared between the prover and verifier at this

point is:

∑

b′∈{0,1},τ
d∈{0,1}w

(
∣∣b′

〉 〈
b′
∣∣⊗ |d〉 〈d| ⊗ I)(H⊗l+1 ⊗ I)BτρkB

†
τ (H

⊗l+1 ⊗ I)†(
∣∣b′

〉 〈
b′
∣∣⊗ |d〉 〈d| ⊗ I)† (86)

Next, if the measurement result d ∈ Gk,0,x0,y∩Gk,1,x1,y , the verifier decodes the first qubit by applying the operator

Xd·(J(x0,y)⊕J(x1,y)) (see step 5(d) of Protocol 5.1). If not, the verifier stores a random bit as his measurement result;

we can equivalently assume the verifier decodes the first qubit by applying a random X operator. Note that the

verifier’s decoding (the application of the X operator) commutes with the prover’s measurement of the first qubit.

Therefore, the entire state, including the verifier’s decoding, can be written as:

σ0,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w ,y∈Rc,d,k

δd,y(
∣∣b′

〉 〈
b′
∣∣Xc⊗|d〉 〈d|⊗I)(H⊗l+1⊗I)Bτρy,kB

†
τ (H

⊗l+1⊗I)†(
∣∣b′

〉 〈
b′
∣∣Xc⊗|d〉 〈d|⊗I)†

(87)

where δd,y = 1
2 if d /∈ Gk,0,x0,y ∩Gk,1,x1,y and 1 if d ∈ Gk,0,x0,y ∩Gk,1,x1,y and

Rc,d,k = {y ∈ Tk|(d ∈ Gk,0,x0,y ∩Gk,1,x1,y ∧ d · (J(x0,y)⊕ J(x1,y)) = c) ∨ (d /∈ Gk,0,x0,y ∩Gk,1,x1,y)} (88)

For ease of notation, we will instead write the state in (87) as:

σ0,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w ,y∈Rc,d,k

δd,yOb′,c,d,τρy,kO
†
b′,c,d,τ (89)

where

Ob′,c,d,τ = (
∣∣b′

〉 〈
b′
∣∣Xc ⊗ |d〉 〈d| ⊗ I)(H⊗l+1 ⊗ I)Bτ (90)

Let S>1 be the CPTP map which contains all operations done on the remaining n − 1 committed qubits and

preimage registers after application of the attack S: S>1 consists of the Hadamard measurement of the remaining

n − 1 committed qubits and preimage registers as well as the verifier decoding of those committed qubits. S>1 is

independent of the function key k and trapdoor tk; it is only dependent on the remaining n − 1 function keys and

trapdoors, which are drawn independently and included in the auxiliary space of σ0,k. Given this, the state σP,h is

obtained by applying S>1, and then tracing out all but the first n qubits (the committed qubits):

σP,h = Tr>n(S>1(
∑

k∈KF

DV,h(k)σ0,k)) (91)

where DV,h is the distribution over the set of function keys KF (since h = 1) produced by GENF .

To prove the claim, we need to show that σP,h is computationally indistinguishable from σP1,h. Let

σP,h,E =
∑

k∈KF

DV,h(k)σ0,k (92)

We will instead prove the stronger statement that σP,h,E is computationally indistinguishable from σP1,h,E (to

see why this is stronger, observe from (91) that σP,h can be obtained from σP,h,E by applying the efficiently

computable superoperator S>1 and tracing out all but the first n qubits). Recall from the statement of the claim that

P1 is characterized by (U0,S1). Since S1 is followed by Hadamard basis measurement, Corollary 3.11 implies that

31

P1 is also characterized by (U0, { 1√
2
(Zr ⊗ I)S1(Zr ⊗ I)}r∈{0,1}). If we let P̂1 be the prover characterized by

(U0, (Z ⊗ I)S(Z ⊗ I)), it follows by linearity that

1

2
(σP,h,E + σ

P̂1,h,E
) = σP1,h,E (93)

Therefore, to complete the proof of Claim 6.1, we can instead show that σP,h,E is computationally indistinguish-

able from σ
P̂1,h,E

, which implies that σP,h,E is computationally indistinguishable from σP1,h,E.

Computational Indistinguishability For convenience, let σP,h,E = σ0 and σ
P̂1,h,E

= σ1. We now prove that

σ0 and σ1 are computationally indistinguishable; our proof follows the outline given in Section 2.4.1. As given in

(92):

σr =
∑

k∈KF

DV,h(k)σr,k (94)

and using (89):

σr,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w ,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ (Z
r ⊗ I)ρy,k(Zr ⊗ I)O†b′,c⊕r,d,τ (95)

Note that, in the case that r = 1, the operator (Z⊗I) acting afterBτ was absorbed intoOb′,c,d,τ to createOb′,c⊕r,d,τ .

Recall from (85) that:

ρy,k = (
∑

b∈{0,1}
|b, J(xb,y)〉

∣∣ψ′b,y,k
〉
)(

∑

b∈{0,1}
|b, J(xb,y)〉

∣∣ψ′b,y,k
〉
)† ⊗ |y〉 〈y| (96)

We can break down the state ρy,k into two components:

ρy,k = ρDy,k + ρCy,k (97)

The components are as follows:

ρDy,k =
∑

b∈{0,1}
|b〉 〈b| ⊗ |J(xb,y)〉 〈J(xb,y)| ⊗

∣∣ψ′b,y,k
〉 〈
ψ′b,y,k

∣∣⊗ |y〉 〈y| (98)

ρCy,k =
∑

b∈{0,1}
|b〉 〈b⊕ 1| ⊗ |J(xb,y)〉 〈J(xb⊕1,y)| ⊗

∣∣ψ′b,y,k
〉 〈
ψ′b⊕1,y

∣∣⊗ |y〉 〈y| (99)

Since Z operators acting on the first qubit have no effect on (98) and add a phase of -1 to (99), we can rewrite (95)

as:

σr,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w ,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ(Z
r ⊗ I)(ρDy,k + ρCy,k)(Z

r ⊗ I)O†b′,c⊕r,d,τ (100)

=
∑

b′,c∈{0,1},τ
d∈{0,1}w ,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ(ρ
D
y,k + (−1)rρCy,k)O†b′,c⊕r,d,τ (101)

To show that σ0 and σ1 are computationally indistinguishable, we reduce the problem to showing that the compo-

nents corresponding to the diagonal and cross terms of the committed state ρy,k are computationally indistinguish-

able:

Claim 6.2 If σ0 is computationally distinguishable from σ1, then one of the following must hold:

32

1. Let

σDr
def
=

∑

k∈KF

DV,h(k)σ
D
r,k (102)

σDr,k
def
=

∑

b′,c∈{0,1},τ
d∈{0,1}w ,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ (ρ
D
y,k)O

†
b′,c⊕r,d,τ (103)

The density matrices σD0 and σD1 are computationally distinguishable.

2. Let

σ̂r
def
=

∑

k∈KF

DV,h(k)σ̂r,k (104)

σ̂r,k
def
= (Zr ⊗ I)(

∑

y∈Tk

ρy,k)(Z
r ⊗ I) (105)

The density matrices σ̂0 and σ̂1 are computationally distinguishable.

The first pair of density matrices is equal to the terms of σ0 and σ1 resulting from the diagonal term of the committed

state and the second pair represents the cross terms. The proof of Claim 6.2 is a simple application of the triangle

inequality and is given in Section 6.3. We complete the proof of Claim 6.1 with the following two claims:

Claim 6.3 If σD0 is computationally distinguishable from σD1 , then there exists a BQP attacker A who can violate

the hardcore bit clause of Definition 4.1.

Claim 6.4 If σ̂0 is computationally distinguishable from σ̂1, then there exists a BQP attacker A who can violate

the hardcore bit clause of Definition 4.4.

We prove Claims 6.3 and 6.4 in the next two sections.

�

6.1 Indistinguishability of Diagonal Terms (Proof of Claim 6.3)

The overview of the following proof is given in Section 2.4.1.1.

Proof of Claim 6.3: Recall that we would like to show that the density matrices σD0 and σD1 are computationally

indistinguishable. We will proceed by contradiction. Assume σD0 and σD1 are distinguishable using an efficiently

computable CPTP map S . It follows by the definition of computational indistinguishability (Definition 3.9) and by

the expression for σDr in (102) that the following expression is non negligible:

|
∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}
(−1)rσDr,k))| (106)

We will use the CPTP map S to construct an attacker A who violates the hardcore bit clause of Definition 4.1.

Let

RD
c,d,k = {y ∈ Tk|d ∈ Gk,0,x0,y ∩Gk,1,x1,y ∧ d · (J(x0,y)⊕ J(x1,y)) = c} (107)

33

We will require the unnormalized state σ̃Dr,k, which is the state σDr,k from (103) conditioned on obtaining measure-

ments y, d such that d ∈ Gk,0,x0,y ∩Gk,1,x1,y :

σ̃Dr,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w ,y∈RD

c,d,k

Ob′,c⊕r,d,τ (ρ
D
y,k)O

†
b′,c⊕r,d,τ (108)

Observe that for all k ∈ KF
∑

r∈{0,1}
(−1)rσDr,k =

∑

r∈{0,1}
(−1)rσ̃Dr,k (109)

This is because σD0,k and σD1,k are identical when conditioned on d /∈ Gk,0,x0,y ∩ Gk,1,x1,y (both have a uniform X
decoding operator applied). It follows that the expression in (106) is equal to:

|
∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}
(−1)rσ̃Dr,k))| (110)

The attacker A (on input k ∈ KF) first constructs the following state from (84):

∑

y∈Tk

ρy,k (111)

He does this exactly as the BQP prover P would have: by applying the prover’s initial operator U0 to the input

state and measuring the last register to obtain y. ThenA measures both the committed qubit and preimage register,

obtaining (b, xb,y). The resulting state is a summation over the state in (98):

∑

y∈Tk

ρDy,k (112)

A now continues as P would have: he applies the CPTP map {Bτ}τ , followed by Hadamard measurement of the

committed qubit and preimage register, obtaining results b′ ∈ {0, 1} and d ∈ {0, 1}w . A then chooses a bit c′ at

random, stores the bit c′ in an auxiliary register, and applies Xc′ to the committed qubit (this operation commutes

with measurement of the committed qubit). The unnormalized state created by A (conditioned on d, y such that

d ∈ Gk,0,x0,y ∩Gk,1,x1,y) is equal to:

1

2

∑

b′,c′∈{0,1},τ,y∈Tk

d∈Gk,0,x0,y
∩Gk,1,x1,y

Ob′,c′,d,τ (ρ
D
y,k)O

†
b′,c′,d,τ ⊗

∣∣c′
〉 〈
c′
∣∣ (113)

We will partition the above state into components using the following projection (the set RD
c,d,k is defined in (107)):

PD
c,k = I ⊗

∑

d∈{0,1}w ,y∈RD
c,d,k

|d〉 〈d| ⊗ I ⊗ |y〉 〈y| (114)

The state of A in (113) can now be written in terms of the state σ̃Dr,k, as defined in (108):

=
1

2

∑

c,c′∈{0,1}
PD
c,kσ̃

D
c⊕c′,kP

D
c,k ⊗

∣∣c′
〉 〈
c′
∣∣ (115)

34

Finally, A applies the efficiently computable CPTP map S (which is used to distinguish between σD0 and σD1) to the

state in (115) and measures the first qubit. If the result of the measurement is r ∈ {0, 1}, A outputs b, xb,y, d, c
′⊕r.

In order to violate the hardcore bit clause of Definition 4.1, A must output (b, xb, d, d · (J(x0)⊕ J(x1))) with

non negligible advantage (over outputting (b, xb, d, d · (J(x0)⊕J(x1))⊕1)). More formally, we need to show that

the following advantage of A (taken from Definition 4.1) is non negligible:

∣∣∣ Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk]− Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk]
∣∣∣ ≤ µ (116)

where

Hk = {(b, xb, d, d · (J(x0)⊕ J(x1)))|b ∈ {0, 1}, (x0 , x1) ∈ Rk, d ∈ Gk,0,x0 ∩Gk,1,x1}
Hk = {(b, xb, d, c)|(b, xb, d, c ⊕ 1) ∈ Hk}

A outputs a string in Hk if, on components PD
c,kσ̃

D
0,kP

D
c,k and PD

c,kσ̃
D
1,kP

D
c,k, the final bit of A’s output is c. This

occurs as long as the distinguishing operator S outputs r on components PD
0,kσ̃

D
r,kP

D
0,k and PD

1,kσ̃
D
r,kP

D
1,k. It follows

that the probability that A outputs a string in Hk is equal to:

Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk] =
1

2

∑

k∈KF
r∈{0,1}

DV,h(k) · Tr((|r〉 〈r| ⊗ I)S(
∑

c∈{0,1}
PD
c,kσ̃

D
r,kP

D
c,k))

=
1

2

∑

k∈KF
r∈{0,1}

DV,h(k) · Tr((|r〉 〈r| ⊗ I)S(σ̃Dr,k)) (117)

By similar reasoning,

Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk] =
1

2

∑

k∈KF
r∈{0,1}

DV,h(k) · Tr((|r ⊕ 1〉 〈r ⊕ 1| ⊗ I)S(σ̃Dr,k)) (118)

By combining (117) and (118) and then using the equality in (109), we obtain that the advantage of A in (116) is

equal to:

∣∣∣
∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(σ̃D0,k − σ̃D1,k))
∣∣∣ =

∣∣∣
∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(σD0,k − σD1,k))
∣∣∣ (119)

The expression in (119) is non negligible, due to our initial assumption that the CPTP map S can distinguish

between σD0 and σD1 (see (106)).

�

6.2 Indistinguishability of Cross Terms (Proof of Claim 6.4)

The overview of the following proof is given in Section 2.4.1.2.

Proof of Claim 6.4: Recall that we would like to show that the density matrices σ̂0 and σ̂1 are computationally

indistinguishable. We will proceed by contradiction. Assume the two matrices σ̂0 and σ̂1 are computationally

distinguishable using the efficiently computable CPTP map S . It follows by the definition of computational indis-

tinguishability (Definition 3.9) and the expression for σ̂r in (104) that the following expression is non negligible:

|
∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}
(−1)rσ̂r,k))| (120)

35

We will use the CPTP map S to construct a BQP attacker A who will violate the hardcore bit clause of Definition

4.4.

Fix a string d ∈ {0, 1}w . The attacker A (on input k ∈ KF) first constructs the following state from (84):

∑

y∈Tk

ρy,k (121)

He does this exactly as the BQP prover P would have: by applying the prover’s initial operator U0 the to input

state and measuring the last register to obtain y. Then A applies Zd to the preimage register. The resulting state is:

(I ⊗ Zd ⊗ I)(
∑

y∈Tk

ρy,k)(I ⊗ Zd ⊗ I) =
∑

y∈Tk

(Zd·(J(x0,y)⊕J(x1,y)) ⊗ I)ρy,k(Zd·(J(x0,y)⊕J(x1,y)) ⊗ I) (122)

The equality is due to the format of the state ρy,k, as written in (85):

ρy,k = (
∑

b∈{0,1}
|b, J(xb,y)〉

∣∣ψ′b,y,k
〉
)(

∑

b∈{0,1}
|b, J(xb,y)〉

∣∣ψ′b,y,k
〉
)† ⊗ |y〉 〈y| (123)

If we let

RC
c,d,k = {y ∈ Tk|d · (J(x0,y)⊕ J(x1,y)) = c} (124)

the expression in (122) is equal to:

∑

c∈{0,1},y∈RC
c,d,k

(Zc ⊗ I)ρy,k(Zc ⊗ I) (125)

Finally, A chooses a random bit c′, applies Zc′ to the committed qubit and stores c′ in an auxiliary register. Con-

tinuing from (125), the state of A at this point is equal to:

1

2

∑

c,c′∈{0,1},y∈RC
c,d,k

(Zc⊕c′ ⊗ I)ρy,k(Zc⊕c′ ⊗ I)⊗
∣∣c′

〉 〈
c′
∣∣ (126)

We partition the state in (126) into components using the following projection:

PC
c,k = I ⊗

∑

y∈RC
c,d,k

|y〉 〈y| (127)

The state in (126) can now be written in terms of σ̂r,k, as defined in (105)

σ̂r,k = (Zr ⊗ I)(
∑

y∈Tk

ρy,k)(Z
r ⊗ I) (128)

as follows:

=
1

2

∑

c,c′∈{0,1}
PC
c,k(Z

c⊕c′ ⊗ I)(
∑

y∈Tk

ρy,k)(Z
c⊕c′ ⊗ I)PC

c,k ⊗
∣∣c′

〉 〈
c′
∣∣ (129)

=
1

2

∑

c,c′∈{0,1}
PC
c,k(σ̂c⊕c′,k)P

C
c,k ⊗

∣∣c′
〉 〈
c′
∣∣ (130)

Finally, A applies the CPTP map S (which is used to distinguish between σ̂0 and σ̂1) to the state in (130) and

measures the first qubit. If the result of the measurement is r ∈ {0, 1}, A outputs c′ ⊕ r.

36

In order to violate the hardcore bit clause of Definition 4.4, A must guess the value of d · (J(x0,y)⊕ J(x1,y))
with non negligible advantage. More formally, we need to show that the following advantage of A (taken from

Definition 4.4) is non negligible: ∣∣∣ Pr
(k,tk)←GENF (1λ)

[A(k) ∈ H ′k,d]−
1

2

∣∣∣ (131)

where

H ′k,d = {d · (J(x0)⊕ J(x1))|(x0, x1) ∈ Rk} (132)

The bit output by A is in H ′k,d if, on components PC
c,kσ̂0,kP

C
c,k and PC

c,kσ̂1,kP
C
c,k, A outputs c. This occurs as

long as the distinguishing operator S outputs r on components PC
0,kσ̂r,kP

C
0,k and PC

1,kσ̂r,kP
C
1,k. It follows that the

probability that A outputs a value in H ′k,d is equal to:

Pr
(k,tk)←GENF (1λ)

[A(k, d) ∈ H ′k,d] =
1

2

∑

k∈KF
r∈{0,1}

DV,h(k) · Tr((|r〉 〈r| ⊗ I)S(
∑

c∈{0,1}
PC
c,kσ̂r,kP

C
c,k))

=
1

2

∑

k∈KF
r∈{0,1}

DV,h(k) · Tr((|r〉 〈r| ⊗ I)S(σ̂r,k))

=
1

2

∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(σ̂0,k − σ̂1,k)) +
1

2

We can use the above expression to write the advantage of A from (131) as:

1

2

∣∣∣
∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(σ̂0,k − σ̂1,k))
∣∣∣ (133)

The expression in (133) is non negligible, due to our initial assumption that the CPTP map S can distinguish

between σ̂0 and σ̂1 (see (120)).

�

6.3 Reduction to Diagonal/Cross Terms (Proof of Claim 6.2)

Proof: If σ0 is computationally distinguishable from σ1, by Definition 3.9 and the expression for σr in (94) there

exists an efficiently computable CPTP map S for which the following expression is non negligible:
∣∣∣
∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}
(−1)rσr,k))

∣∣∣ (134)

We use the expression for σr,k from (101) and the matrix σDr,k from (103) to define the matrix σCr,k:

σr,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w ,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ(ρ
D
y,k + (−1)rρCy,k)O†b′,c⊕r,d,τ (135)

= σDr,k + σCr,k (136)

By combining the following equality

∑

r∈{0,1}
(−1)rσr,k =

∑

r∈{0,1}
(−1)rσDr,k +

∑

r∈{0,1}
(−1)rσCr,k (137)

37

with the triangle inequality, it follows that if the quantity in (134) is non negligible, one of the following two

quantities must be non negligible:
∣∣∣
∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}
(−1)rσDr,k))

∣∣∣ (138)

∣∣∣
∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}
(−1)rσCr,k))

∣∣∣ (139)

If the quantity in (138) is non negligible, σD0 is computationally distinguishable from σD1 . To complete the proof of

Claim 6.2, we will show that if the quantity in 139 is non negligible, σ̂0 is computationally distinguishable from σ̂1
(σ̂r is defined in (105) and copied below in (146)). To do this, we show below that for the efficiently computable

CPTP map S ′ = { 1√
2
Ob′,c,d,τ}b′,c,d (Ob′,c,d,τ is introduced in (90)):

∑

r∈{0,1}
(−1)rσCr,k = S ′(

∑

r∈{0,1}
(−1)rσ̂r,k) (140)

Therefore, if the quantity in (139) is non negligible, σ̂0 is computationally distinguishable from σ̂1 by using the

CPTP map SS ′.
We now prove (140), beginning with the expression for σCr,k in (136). First, we observe that

σC1,k = −(X ⊗ I)σC0,k(X ⊗ I) (141)

Therefore:

σC0,k − σC1,k =
∑

r∈{0,1}
(Xr ⊗ I)σC0,k(Xr ⊗ I) (142)

=
∑

b′,c,r∈{0,1},τ
d∈{0,1}w ,y∈Rc,d,k

δd,yOb′,r,d,τ (ρ
C
y,k)O

†
b′,r,d,τ (143)

=
∑

b′,c∈{0,1},τ
d∈{0,1}w ,y∈Tk

Ob′,c,d,τ (ρ
C
y,k)O

†
b′,c,d,τ (144)

The second inequality follows since δd,y = 1
2 if d /∈ Gk,0,x0,y ∩ Gk,1,x1,y and 1 if d ∈ Gk,0,x0,y ∩ Gk,1,x1,y and

(from (88))

Rc,d,k = {y ∈ Tk|(d ∈ Gk,0,x0,y ∩Gk,1,x1,y ∧ d · (J(x0,y)⊕ J(x1,y)) = c) ∨ (d /∈ Gk,0,x0,y ∩Gk,1,x1,y)} (145)

Recall the state σ̂r,k from (105):

σ̂r,k = (Zr ⊗ I)(
∑

y∈Tk

ρy,k)(Z
r ⊗ I) (146)

We use the equality ρy,k = ρDy,k + ρCy,k from (97):

σ̂0,k − σ̂1,k =
∑

y∈Tk

(ρDy,k + ρCy,k)− (Z ⊗ I)
∑

y∈Tk

(ρDy,k + ρCy,k)(Z ⊗ I) (147)

= 2
∑

y∈Tk

ρCy,k (148)

Plugging the equality in (148) into (144) yields (140).

�

38

7 Measurement Protocol Soundness

In this section, we prove soundness of the measurement protocol, as stated in the following claim:

Claim 7.1 Soundness of Protocol 5.1 For a prover P in Protocol 5.1, let 1 − ph,H be the probability that the

verifier accepts P on basis choice h in the Hadamard round and 1 − ph,T be the probability that the verifier

accepts P in the test round. There exists a state ρ, a prover P
′ and a negligible function µ such that for all h,∥∥DP,h −DP′,h

∥∥
TV
≤ ph,H +

√
ph,T + µ and DP′,h is computationally indistinguishable from the distribution

Dρ,h which results from measuring ρ in the basis determined by h.

Throughout this section, we will use notation introduced in Section 5.3. We first state the two claims required to

prove Claim 7.1, and then assume correctness of these claims to prove Claim 7.1. In the rest of this section, we

prove the required claims.

The first required claim (proven in Section 7.1) transitions from a general prover to a perfect prover, i.e. a

prover who is always accepted in the test run by the verifier:

Claim 7.2 For a prover P in Protocol 5.1, let 1 − ph,H be the probability that the verifier accepts P on basis

choice h in the Hadamard round and 1− ph,T be the probability that the verifier accepts P on basis choice h in the

test round. There exists a perfect prover P′ and a negligible function µ such that for all h,

∥∥∥DC
P,h −DP′,h

∥∥∥
TV
≤

ph,H +
√
ph,T + µ.

The second required claim (proven in Section 7.2) transitions from a perfect prover to a trivial prover (as defined

in Definition 5.6, a trivial prover’s Hadamard round attack commutes with standard basis measurement on the n
committed qubits):

Claim 7.3 For all perfect provers P, there exists a trivial prover P̂ such that for all h, DP,h is computationally

indistinguishable from D
P̂,h.

Assuming Claim 7.2 and Claim 7.3, the proof of Claim 7.1 is straightforward:

Proof of Claim 7.1: We begin with a prover P and apply Claim 7.2 to transition to a perfect prover P′ such that

for all h,

∥∥∥DC
P,h −DP′,h

∥∥∥
TV
≤ ph,H+

√
ph,T +µ for a negligible function µ. Combining Claim 7.3 and Claim 5.7

tells us that there exists a state ρ such that for all h, DP′,h is computationally indistinguishable from Dρ,h. In more

detail, Claim 7.3 shows that there exists a trivial prover P̂ such that for all h, DP′,h is computationally indistin-

guishable from D
P̂,h. Next, Claim 5.7 shows that there exists a state ρ such that for all h, D

P̂,h is computationally

indistinguishable from Dρ,h.

�

7.1 General to Perfect Prover (Proof of Claim 7.2)

Before proceeding to the proof of Claim 7.2, we provide some intuition. The prover P′ in the statement of the

claim is created by conditioning P on acceptance in the test round. This argument is straightforward, but does have

one delicate aspect: we need to ensure that the perfect prover is still efficient, even though we have conditioned

on acceptance in the test run. This is taken care of by recalling that in the test round, the verifier computes the

procedure CHKF or CHKG (see Protocol 5.1). By definition (Definitions 4.1 and 4.2), both of these procedures

require only the function key and not the trapdoor, which implies that the procedures can be computed efficiently

by the prover.

Proof: We begin by observing that by definition of total variation distance (see (28)):

∥∥DC
P,h −DP,h

∥∥
TV

= ph,H (149)

39

It follows by (69) that

∥∥∥σCP,h − σP,h

∥∥∥
tr

= ph,H . In the rest of this proof, we will show that there exists a perfect

prover P′ and a negligible function µ such that for all h for which 1 − ph,T is non negligible, the trace distance

between σP,h and σP′,h is ≤ √ph,T + µ. For all h for which 1 − ph,T is negligible, the trace distance bound

of
√
ph,T + µ is trivial and therefore satisfied. It follows by the triangle inequality that for all h, the trace dis-

tance between σC
P,h and σP′,h is ≤ ph,H +

√
ph,T + µ (to complete the proof of the claim, recall from (69) that∥∥∥σCP,h − σP′,h

∥∥∥
tr
=

∥∥∥DC
P,h −DP′,h

∥∥∥
TV

).

Distance from perfect prover (between σP,h and σP′,h) By Claim 5.4, there exist unitaries U0, U such that

the prover P is characterized by (U0, U) and the state σP,h can be created by following steps 1-4 in the statement

of the claim. The state after application of U0 (step 1 of Claim 5.4) is:

σP,h,0 =
∑

k′
DV,h(k

′) · U0(|0〉 〈0|⊗e ⊗
∣∣k′

〉 〈
k′
∣∣)U †0 (150)

The state above is a mixed state over the verifier’s choice of the function key k′, which is sampled according to

the distribution DV,h (see Section 5.3 for a notation reminder). To create σP,h (i.e. the state resulting from the

Hadamard round defined in (68)), the prover will measure the second to last register (obtaining y′ ∈ Yn), apply his

attack U , measure all committed qubits and preimage registers in the Hadamard basis, send the results to the verifier

and discard all other qubits. The verifier will decode the appropriate registers and discard all other measurement

results (as described in Protocol 5.1). Note that for all provers P,P′:

∥∥σP,h − σP′,h
∥∥
tr
≤

∥∥σP,h,0 − σP′,h,0
∥∥
tr

(151)

This is because the operators described above which are applied to σP,h,0 to create σP,h represent a CPTP map.

We now construct a perfect prover P
′ and provide an upper bound for

∥∥σP,h,0 − σP′,h,0
∥∥
tr

. We begin by

partitioning the state σP,h,0 from (150) according to acceptance or rejection by the verifier in the test round:

σP,h,0 =
∑

k′
DV,h(k

′) · (
∣∣ψACC,k′

〉
+

∣∣ψREJ,k′
〉
)(
〈
ψACC,k′

∣∣+
〈
ψREJ,k′

∣∣)⊗
∣∣k′

〉 〈
k′
∣∣ (152)

where

U0 |0〉⊗e
∣∣k′

〉
= U0,k′(|0〉⊗e)⊗

∣∣k′
〉
= (

∣∣ψACC,k′
〉
+

∣∣ψREJ,k′
〉
)⊗

∣∣k′
〉

(153)

The first equality in (153) is given in (77) in Claim 5.4,
∣∣ψACC,k′

〉
(resp.

∣∣ψREJ,k′
〉
) is the part of the state

U0,k′(|0〉⊗e) which will be accepted (resp. rejected) by the verifier in the test round for function choice k′, and〈
ψACC,k′ |ψREJ,k′

〉
= 0. Consider the following state:

σperfect =
1

1− ph,T
∑

k′
DV,h(k

′) · (
∣∣ψACC,k′

〉
)(
〈
ψACC,k′

∣∣)⊗
〈
k′
∣∣ 〈k′

∣∣ (154)

The trace distance between σperfect and σP,h,0 is at most
√
ph,T . We show below that there exists a CPTP map S0,

a perfect prover P′ characterized by (S0, U) and a negligible function µ such that for all h for which 1 − ph,T is

non negligible,
∥∥σP′,h,0 − σperfect

∥∥
tr
≤ µ. It follows by the triangle inequality that:

∥∥σP,h,0 − σP′,h,0
∥∥
tr
≤ ‖σP,h,0 − σperfect‖tr +

∥∥σperfect − σP′,h,0
∥∥
tr

(155)

≤ √
ph,T + µ (156)

It then follows by (151) that
∥∥σP,h − σP′,h

∥∥
tr
≤ √ph,T + µ, which completes the proof of Claim 7.2.

40

We now describe the CPTP map S0. To do so, we will require the unitary V , which consists of first applying

U0, then applying the verifier’s test round check (the algorithm CHKF) in superposition, and storing the result in

an extra register. The result of applying V is:

V (
∑

k′
DV,h(k

′) · |0〉 〈0|⊗e ⊗
∣∣k′

〉 〈
k′
∣∣)V † (157)

=
∑

k′
DV,h(k

′) · (|1〉
∣∣ψACC,k′

〉
+ |0〉

∣∣ψREJ,k′
〉
)(|1〉

∣∣ψACC,k′
〉
+ |0〉

∣∣ψREJ,k′
〉
)† ⊗

∣∣k′
〉 〈
k′
∣∣ (158)

where the first register contains the result of the algorithm CHKF . If the first register is measured to obtain a bit b,
the probability of obtaining b = 1 is 1− ph,T . Therefore, for all h for which 1− ph,T is non negligible, there exists

a polynomial n′h such that if V is applied n′h times to the input state in (157) the probability of never obtaining

b = 1 over n′h iterations is negligible.

Let n′ = maxh n
′
h, where the maximum is taken over all h such that 1−ph,T is non negligible. The CPTP map

S0 will apply the unitary V followed by measurement of the first qubit to the input |0〉⊗e |k′〉 at most n′ times or

until measuring b = 1. In the case that the measurement result b = 1 is never obtained, the CPTP map S0 applies

a unitary operator which would be applied by an honest prover (described in Protocol 5.2). Since the prover in

Protocol 5.2 is perfect (see Claim 5.3), it follows that the prover P′ characterized by (S0, U) is perfect.

Due to the choice of n′, it follows that there exists a negligible function µ such that for all h for which 1− ph,T
is non negligible

σP′,h,0 = S0(
∑

k′
DV,h(k

′) · (|0〉 〈0|⊗e ⊗
∣∣k′

〉 〈
k′
∣∣)) = (1− µ)σperfect + µσfail (159)

where σfail is the state created in the case that all n′ applications of V do not yield 1 as the measurement result.

It follows by the convexity of trace distance that for all h for which 1 − ph,T is non negligible the trace distance

between σP′,h,0 in (159) and σperfect is ≤ µ.

�

7.2 Perfect to Trivial Prover (Proof of Claim 7.3)

In this section, we prove Claim 7.3 as follows. First, in Claim 7.4, we prove a statement analogous to Claim 6.1

for the standard basis: we show that for an index j such that hj = 0, we can replace the prover’s Hadamard

round attack with an attack which acts X-trivially on the jth committed qubit to obtain the same distribution

over measurements. The proof of Claim 7.4 is quite straightforward, since the prover’s Hadamard round attack

has no effect on the standard basis measurement obtained by the verifier; this measurement is obtained from the

commitment yj . To prove Claim 7.3, we sequentially apply Claim 6.1 and Claim 7.4 to each of the n committed

qubits, ending with an attack which commutes with standard basis measurement on all of the committed qubits.

Claim 7.4 Let 1 ≤ j ≤ n. Let S = {Bτ}τ and Sj = {B′j,x,τ}x∈{0,1},τ be CPTP maps written in terms of their

Kraus operators:

Bτ =
∑

x,z∈{0,1}
XxZz ⊗Bjxzτ (160)

B′j,x,τ =
∑

z∈{0,1}
Zz ⊗Bjxzτ (161)

where Bτ and B′j,x,τ have been rearranged so that XxZz and Zz act on the jth qubit. For a unitary operator U0,

let P be a perfect prover characterized by (U0,S) (see Claim 5.4 and notation 5.5). Let Pj be a perfect prover

characterized by (U0,Sj). If hj = 0, DP,h = DPj ,h.

41

Proof of Claim 7.4: For convenience, we will assume that h1 = 0 and we will prove the claim for j = 1. The

proof is identical for all other values of j. The key observation is that we can change the CPTP map S to act in

an arbitrary way on the first qubit (which is also the first committed qubit), as long as its action on the remaining

qubits is unchanged. This is because the measurement of the first committed qubit will be ignored by the verifier;

the verifier will obtain the standard basis measurement for the first qubit from the commitment y1. In other words,

the first committed qubit is traced out after application of S and standard basis measurement (it is not part of the

distribution DP,h).

To prove the claim, we will show that the distribution over measurement results remains the same if S = {Bτ}τ
is replaced with S1 = {B′1,x,τ}x∈{0,1},τ . Our first step is to replace S with S(1) = { 1√

2
(Zr ⊗ I)Bτ}r∈{0,1},τ .

As described above, this change has no impact since the measurement of the first committed qubit is ignored.

Therefore, if we let P(1) be a perfect prover characterized by (U0,S(1)), DP,h = D
P(1),h. Next, we replace S(1)

with S(2) = { 1√
2
(Zr ⊗ I)Bτ (Z

r ⊗ I)}r∈{0,1},τ . Observe that the added Z operator (acting prior to Bτ) has

no effect on the state of a perfect prover: it acts on the first committed qubit, which must be in a standard basis

state since h1 = 0 (the function key k1 corresponds to a pair of injective functions gk,0, gk,1 for which there is

only one valid preimage for each commitment string y - see equation 9 for more details). It follows that if we let

P
(2) be the prover characterized by (U0,S(2)), DP(1),h = D

P(2),h. Finally, since S(2) is followed by Hadamard

basis measurement, we can apply Corollary 3.11 to replace S(2) with S1, showing that D
P(2),h = DP1,h (therefore

DP,h = DP1,h). �

Using Claim 6.1 and Claim 7.4, we now prove Claim 7.3, which is copied here for reference:

Claim 7.3 For all perfect provers P, there exists a trivial prover P̂ such that for all h, DP,h is computation-

ally indistinguishable from D
P̂,h.

Proof of Claim 7.3: Fix a basis choice h ∈ {0, 1}n. Assume for convenience that for indices 1 ≤ i ≤ t,
hi = 1 and for indices t + 1 ≤ i ≤ n, hi = 0. We apply Claim 6.1 t times, beginning with the prover P (who is

characterized by (U0, U)). Let P̂0 = P and let P̂j be the prover characterized by (U0, {Ux}x∈{0,1}j):

U =
∑

x,z∈{0,1}j
XxZz ⊗ U j

xz (162)

Ux =
∑

z∈{0,1}j
Zz ⊗ U j

xz (163)

where XxZz acts on qubits 1, . . . , j (which are also committed qubits 1, . . . , j). The ith application of Claim 6.1

shows that D
P̂i−1,h

is computationally indistinguishable from D
P̂i,h

. It follows by the triangle inequality that DP,h

is computationally indistinguishable from D
P̂t,h

. We complete the proof of Claim 7.3 by applying Claim 7.4 n− t
times, which tells us that D

P̂t,h
= D

P̂,h, where P̂ = P̂n is a trivial prover characterized by (U0, {Ux}x∈{0,1}n).
�

8 Extension of Measurement Protocol to a Verification Protocol for BQP

To extend Protocol 5.1 to a QPIP0, we will use the QPIP1 protocol in [MF16]. We begin by presenting this

protocol.

8.1 Morimae-Fitzsimons Protocol

Most of this description is taken directly from [MF16]. Let L be a language in BQP. Since BQP is contained in

QMA, for all x ∈ L, there exists a local Hamiltonian H such that

42

1. if x ∈ L, then the ground energy of H is ≤ a

2. if x /∈ L, then the ground energy of H is ≥ b

where b− a ≥ 1
poly(|x|) . It is known that H can be a 2-local Hamiltonian with only X and Z operators ([BL08]).

Let us write the 2-local Hamiltonian as H =
∑

S dSS, where dS is a real number and S is a tensor product of

Pauli operators, where only two operators are Z or X and others are I . We define the rescaled Hamiltonian:

H ′ =
∑

S

πSPS , (164)

where πS = |dS |∑
S |dS |

≥ 0 and PS = I+sign(dS)S
2 .

We now present the protocol:

Protocol 8.1 [MF16] This protocol is used to verify that an instance x ∈ L for a language L ∈ BQP. Let H be

the Hamiltonian which corresponds to x, and define H ′ as in 164.

1. The verifier randomly chooses S with probability πS .

2. The prover sends the verifier a state ρ, sending one qubit at a time.

3. The verifier measures S by performing single qubit measurements of only two qubits of ρ in the X or Z basis,

discarding all other qubits of ρ without measuring them.

4. The verifier computes the product of the measurement results. If the verifier obtains the result −sign(dS)
the verifier accepts.

An honest prover would simply send the ground state of H ′.

Theorem 8.2 [MF16] Protocol 8.1 is a QPIP1 for all languages in BQP with completeness c and soundness s,
where c− s is inverse polynomial in |x|.

Proof of Theorem 8.2: It was shown (in [MNS15]) that the acceptance probability of each round of Protocol

8.1 is

pacc = 1− 1∑
S 2|dS |

(Tr(Hρ) +
∑

S

|dS |) (165)

which is

pacc ≥
1

2
− a∑

S 2|dS |
(166)

when x ∈ L, and

pacc ≤
1

2
− b∑

S 2|dS |
(167)

when x /∈ L. Their difference is 1
poly(|x|) . �

We require the following version of Protocol 8.1 with an amplified completeness/ soundness gap:

Protocol 8.3 [MF16] This protocol is used to verify that an instance x ∈ L for a language L ∈ BQP. Let H be

the Hamiltonian which corresponds to x, and define H ′ as in 164. Let k′ be a polynomial in |x|.

1. The verifier randomly chooses S1, . . . , Sk′ independently, each with probability πSi
.

2. The prover sends the verifier a state ρ′, sending one qubit at a time.

43

3. The verifier measures each Si (for 1 ≤ i ≤ k′) by performing single qubit measurements of only two qubits

of ρ′ in the X or Z basis, discarding all other qubits of ρ′ without measuring them.

4. The verifier computes the product of the measurement results for each Si. If the verifier obtains the result

−sign(dSi
) more than half of the time the verifier accepts.

In Protocol 8.3, an honest prover would simply send k′ copies of the ground state of H ′.

Theorem 8.4 [MF16] Protocol 8.1 is a QPIP1 for all languages in BQP with completeness 1− µ and soundness

µ, where µ is negligible in the size of the instance.

Proof: This theorem follows from Theorem 8.2; since c − s is 1
poly(|x|) the verifier can distinguish the case

where x ∈ L from the case where x /∈ L with probability of error bounded to be exponentially small with only

polynomially many repetitions. �

8.2 Extending the Measurement Protocol

We now present the extension of the measurement protocol (Protocol 5.1) to a QPIP0. To do this, we use the

structure of Protocol 8.3, but we replace the prover sending qubits to the verifier to perform the measurement (i.e.

steps 2 and 3 of Protocol 8.3) with Protocol 5.1. Assume that in Protocol 8.3, n qubits are sent from the prover to

the verifier. The QPIP protocol is as follows:

Protocol 8.5 Measurement Protocol QPIP This protocol is used to verify that an instance x ∈ L for a language

L ∈ BQP.

1. The verifier performs step 1 of Protocol 8.3, which partially defines a basis choice h ∈ {0, 1}n. For all

undefined hi, the verifier sets hi = 0.

2. The prover and verifier run Protocol 5.1 on basis choice h. The verifier accepts or rejects as specified in

Protocol 5.1.

3. In the case of a Hadamard round of Protocol 5.1, the verifier performs step 4 of Protocol 8.3 using the

measurement results obtained from Protocol 5.1.

We now prove the following theorem, which is the main result of this paper (and was stated earlier as Theorem

1.1):

Theorem 8.6 Protocol 8.5 is a QPIP0 for all languages in BQP with completeness negligibly close to 1 and

soundness negligibly close to 3
4 .

We require the completeness and soundness guarantees of Protocol 5.1, copied below for reference. Both claims

use notation from Section 5.3.

Claim 5.3 Completeness of Protocol 5.1 For all n qubit states ρ and for all basis choices h ∈ {0, 1}n, the

prover P described in Protocol 5.2 is a perfect prover (P is accepted by the verifier in a test run for basis choice h
with perfect probability). There exists a negligible function µ such that in the Hadamard round for basis choice h,

the verifier accepts P with probability ≥ 1− µ and

∥∥∥DC
P,h −Dρ,h

∥∥∥
TV
≤ µ.

Claim 7.1 Soundness of Protocol 5.1 For a prover P in Protocol 5.1, let 1 − ph,H be the probability that the

verifier accepts P on basis choice h in the Hadamard round and 1 − ph,T be the probability that the verifier

accepts P in the test round. There exists a state ρ, a prover P
′ and a negligible function µ such that for all h,

44

∥∥∥DC
P,h −DP′,h

∥∥∥
TV
≤ ph,H +

√
ph,T + µ and DP′,h is computationally indistinguishable from the distribution

Dρ,h which results from measuring ρ in the basis determined by h.

Proof of Theorem 8.6: We will require some notation. For all provers P, let EH
P,h be the event that the ver-

ifier accepts in a Hadamard round of Protocol 5.1 with basis choice h while interacting with P, let ET
P,h be the

same event in a test round, and let EP,h be the event that the verifier accepts in step 3 of Protocol 8.5. Let vh be the

probability that the verifier chooses basis choice h in step 1 of Protocol 8.5. As a reminder, in step 3 of Protocol

8.5 (which is step 4 of Protocol 8.3), the verifier determines whether or not to accept by computing the product of

relevant measurement results; the verifier’s decision is a function of the basis choice h, the measurement result and

the BQP instance, but we leave off the dependence on the BQP instance for convenience. For a distribution D over

n bit strings and a basis choice h, let p̃h(D) be the probability that the verifier rejects an n bit string drawn from D
for basis choice h in step 3 of Protocol 8.5.

Completeness Recall that in Protocol 8.3, an honest prover sends polynomially many copies of the ground state

for the Hamiltonian corresponding to an instance x ∈ L (where L ∈ BQP). Let the entire state sent by the prover

be ρ, and assume it contains n qubits. To compute the completeness parameter of Protocol 8.5, we will consider

the prover P for the state ρ, as described in Protocol 5.2, and upper bound the probability that the verifier rejects

in Protocol 8.5. To do this, we need to upper bound the probability that the verifier rejects in step 2 of Protocol 8.5

(i.e. in Protocol 5.1) or the verifier rejects in step 3 of Protocol 8.5:

1− c =
1

2

∑

h∈{0,1}n
vh(Pr[Ē

T
P,h] + Pr[ĒH

P,h ∪ ĒP,h]) (168)

≤ 1

2

∑

h∈{0,1}n
vh(Pr[Ē

H
P,h] + Pr[ĒP,h]) (169)

≤ 1

2
µ+

1

2

∑

h∈{0,1}n
vh Pr[ĒP,h] (170)

The last two expressions follow due to Claim 5.3: we know that for all basis choices h ∈ {0, 1}n, the prover P

described in Protocol 5.2 is accepted by the verifier in a test round with perfect probability and is accepted in a

Hadamard round with probability ≥ 1 − µ for a negligible function µ. Pr[ĒP,h] is the probability that the verifier

rejects the distribution DC
P,h for basis choice h in step 3 of Protocol 8.5:

Pr[ĒP,h] = p̃h(D
C
P,h) (171)

Recall from Section 5.3 that for a density matrix on n qubits and basis choice h, we let Dρ,h be the distribution

obtained by measuring ρ in the basis corresponding to h. It follows by Lemma 3.1 and Claim 5.3 that

p̃h(D
C
P,h)− p̃h(Dρ,h) ≤

∥∥DC
P,h −Dρ,h

∥∥
TV
≤ µ (172)

Due to the completeness parameter of Protocol 8.3 (see Section 8.1), there exists a negligible function µC such

that: ∑

h

vhp̃h(Dρ,h) ≤ µC (173)

We now use (171), (172) and (173) to wrap up the calculation of the completeness parameter c (continuing from

45

(170)):

1− c ≤ 1

2
µ+

1

2

∑

h∈{0,1}n
vhp̃h(D

C
P,h) (174)

≤ µ+
1

2
µC (175)

Therefore, the completeness parameter c is negligibly close to 1.

Soundness To compute the soundness parameter, we will fix an arbitrary prover P and upper bound the prob-

ability that the verifier accepts in Protocol 8.5 for an instance x /∈ L. To do so, we need to upper bound the

probability that the verifier accepts in step 2 of Protocol 8.5 (i.e. in Protocol 5.1) and the verifier accepts in step 3

of Protocol 8.5. The intuition here is that as long as there exists a state ρ such that for all h, DC
P,h is close (compu-

tationally) to Dρ,h, the soundness parameter should be close to the soundness parameter of Protocol 8.3, which is

negligible. We will rely on Claim 7.1 (we also use the same notation used in Claim 7.1):

s =
∑

h∈{0,1}n
vh(

1

2
Pr[ET

P,h] +
1

2
Pr[EH

P,h ∩ EP,h]) (176)

=
∑

h∈{0,1}n
vh(

1

2
(1− ph,T) +

1

2
Pr[EH

P,h] Pr[EP,h|EH
P,h]) (177)

=
∑

h∈{0,1}n
vh(

1

2
(1− ph,T) +

1

2
(1− ph,H)(1− p̃h(DC

P,h))) (178)

where the last equality follows because Pr[EP,h|EH
P,h] is the probability that the verifier accepts a string drawn

from the distribution DC
P,h for basis choice h in step 3 of Protocol 8.5.

Claim 7.1 guarantees the existence of a state ρ, a prover P
′ and a negligible function µ such that for all h,∥∥∥DC

P,h −DP′,h

∥∥∥
TV
≤ ph,H +

√
ph,T + µ and DP′,h is computationally indistinguishable from Dρ,h. By Lemma

3.1 and Claim 7.1:

p̃h(DP′,h)− p̃h(DC
P,h) ≤

∥∥DC
P,h −DP′,h

∥∥
TV
≤ ph,H +

√
ph,T + µ (179)

We now return to the calculation of the soundness parameter of Protocol 8.5 in (178):

s ≤
∑

h∈{0,1}n
vh(

1

2
(1− ph,T) +

1

2
(1− ph,H)(1− p̃h(DP′,h) + ph,H +

√
ph,T + µ)) (180)

≤ 1

2
µ+

1

2

∑

h∈{0,1}n
vh(1− ph,T + (1− ph,H)(ph,H +

√
ph,T)) +

1

2

∑

h∈{0,1}n
vh(1− p̃h(DP′,h))

≤ 1

2
µ+

3

4
+

1

2

∑

h∈{0,1}n
vh(1− p̃h(DP′,h)) (181)

Next, Claim 7.1 guarantees that for all h, DP′,h and Dρ,h are computationally indistinguishable. It follows that for

all h:

p̃h(Dρ,h)− p̃h(DP′,h) ≤ µh (182)

To see this implication, assume there did exist an h ∈ {0, 1}n such that the difference in (182) was non negligible.

Then DP′,h and Dρ,h could be distinguished by computing whether or not the verifier would reject for basis choice

46

h in step 3 of Protocol 8.5, which is step 4 of Protocol 8.3. This is because the computational indistinguishability of

DP′,h and Dρ,h holds even if h is known; the indistinguishability is due to the hardcore bit and injective invariance

properties of the extended trapdoor claw-free family (Definition 4.4).

Due to the soundness parameter of Protocol 8.3, we also know that there exists a negligible function µS such

that: ∑

h∈{0,1}n
vh(1− p̃h(Dρ,h)) ≤ µS (183)

We return to calculating the soundness parameter of the QPIP (continuing from (181)):

s ≤ 1

2
µ+

3

4
+

1

2

∑

h∈{0,1}n
vh(µh + 1− p̃h(Dρ,h)) (184)

≤ 1

2
µ+

3

4
+

1

2
max

h∈{0,1}n
µh +

1

2
µS (185)

Therefore, the soundness parameter of Protocol 8.5 is negligibly close to 3
4 . �

9 Extended Trapdoor Claw-Free Family from LWE

9.1 Parameters

We will use the same parameters used in [BCM+18]. Let λ be the security parameter. All other parameters are

functions of λ. Let q ≥ 2 be a prime integer. Let ℓ, n,m,w ≥ 1 be polynomially bounded functions of λ and

BL, BV , BP be positive integers such that the following conditions hold:

1. n = Ω(ℓ log q) and m = Ω(n log q),

2. w = n⌈log q⌉,

3. BP = q
2CT

√
mn log q

, for CT the universal constant in Theorem 3.5,

4. 2
√
n ≤ BL < BV < BP ,

5. The ratios BP

BV
and BV

BL
are both super-polynomial in λ.

(186)

Given a choice of parameters satisfying all conditions above, we describe the function family FLWE (taken from

[BCM+18]). Let X = Zn
q and Y = Zm

q . The key space is KFLWE
= Zm×n

q × Zm
q . For b ∈ {0, 1}, x ∈ X and key

k = (A,As+ e), the density fk,b(x) is defined as

∀y ∈ Y, (fk,b(x))(y) = D
Z

m
q ,BP

(y −Ax− b ·As) , (187)

where the definition of D
Z

m
q ,BP

is given in (31). Note that fk,b is well-defined given k, as for our choice of param-

eters k uniquely specifies s. The following theorem was proven in [BCM+18]:

Theorem 22 [BCM+18] For any choice of parameters satisfying the conditions (186), the function family

FLWE is a noisy trapdoor claw-free family under the hardness assumption LWEℓ,q,D
Zq,BL

.

We will prove the following theorem:

Theorem 9.1 For any choice of parameters satisfying the conditions (186), the function family FLWE is an ex-

tended trapdoor claw-free family under the hardness assumption LWEℓ,q,D
Zq,BL

.

47

We begin by providing a trapdoor injective family and then use this family to show that FLWE is an extended

trapdoor claw-free function family.

9.2 Trapdoor Injective Family from LWE

We now describe the trapdoor injective family GLWE. Let X = Z

n
q and Y = Z

m
q . The key space is KGLWE

=
Z

m×n
q × Zm

q . For b ∈ {0, 1}, x ∈ X and key k = (A,u), the density gk,b(x) is defined as

∀y ∈ Y, (gk,b(x))(y) = D
Z

m
q ,BP

(y −Ax− b · u) , (188)

where the definition of D
Z

m
q ,BP

is given in (31). The three properties required for a trapdoor injective family, as

specified in Definition 4.2, are verified in the following subsections, providing a proof of the following theorem.

Theorem 9.2 For any choice of parameters satisfying the conditions (186), the function family GLWE is a trapdoor

injective family under the hardness assumption LWEℓ,q,D
Zq,BL

.

9.2.1 Efficient Function Generation

GENGLWE
is defined as follows. First, the procedure samples a random A ∈ Zm×n

q , together with trapdoor in-

formation tA. This is done using the procedure GENTRAP(1n, 1m, q) from Theorem 3.5. The trapdoor allows

the evaluation of an inversion algorithm INVERT that, on input A, tA and b = As + e returns s and e as long

as ‖e‖ ≤ q
CT

√
n log q

. Moreover, the distribution on matrices A returned by GENTRAP is negligibly close to the

uniform distribution on Zm×n
q .

Next, the sampling procedure selects u ∈ Zm
q uniformly at random. By using the trapdoor tA, the sampling

procedures checks if there exist s, e such that ‖e‖ ≤ q
CT

√
n log q

and As+e = u. If so, the sampling algorithm dis-

cards u and samples u again. Since u is discarded with negligible probability, the distribution over u is negligibly

close to the uniform distribution. GENGLWE
returns k = (A,u) and tk = tA.

9.2.2 Trapdoor Injective Functions

It follows from (188) and the definition of the distribution D
Z

m
q ,BP

in (31) that for any key k = (A,u) ∈ KGLWE

and for all x ∈ X ,

SUPP(gk,0(x)) =
{
y = Ax+ e0 | ‖e0‖ ≤ BP

√
m
}
, (189)

SUPP(gk,1(x)) =
{
y = Ax+ e0 + u | ‖e0‖ ≤ BP

√
m
}
. (190)

Since there do not exist s, e such that ‖e‖ ≤ q
CT

√
n log q

and u = As + e, the intersection SUPP(gk,0(x)) ∩
SUPP(gk,1(x)) is empty as long as

BP ≤
q

2CT
√
mn log q

. (191)

The procedure INVGLWE
takes as input the trapdoor tA and y ∈ Y . It first runs the algorithm INVERT on input y.

If INVERT outputs s0, e0 such that y = As0 + e0 and ‖e0‖ ≤ BP
√
m, the procedure INVFLWE

outputs (0, s0).
Otherwise, it runs the algorithm INVERT on input y − u to obtain s0, e0 and outputs (1, s0) if y − u = As0 + e0.

Using Theorem 3.5, this procedure returns the unique correct outcome provided y − b · u = As0 + e0 for some e0

such that ‖e0‖ ≤ q
CT

√
n log q

. Due to (191), this condition is satisfied for all y ∈ SUPP(fk,b(x)).

9.2.3 Efficient Range Superposition

The procedures CHKGLWE
and SAMPGLWE

are the same as the procedures CHKFLWE
and SAMPFLWE

.

48

9.3 Injective Invariance

We now show that FLWE as given in (187) is injective invariant with respect to GLWE (see Definition 4.3). To show

this, we need to show that for all BQP attackers A, the distributions produced by GENFLWE
and GENGLWE

are

computationally indistinguishable. This is equivalent to proving the hardness of LWE (as defined in Definition 3.4)

with a binary secret, as seen in the following lemma:

Lemma 9.3 Assume a choice of parameters satisfying the conditions (186). Assume the hardness assumption

LWEℓ,q,D
Zq,BL

holds. Then the distributions

D0 = ((A,As + e)← GENFLWE
(1λ)) (192)

and

D1 = ((A,u)← GENGLWE
(1λ)) (193)

are computationally indistinguishable.

The hardness of LWE with a binary secret is well studied, and the above lemma is implied by several results,

starting with [GKPV10] and improved in [BLP+13]. To be precise, it is also immediately implied by Theorem B.5

of [AKPW13].

9.4 Extended Trapdoor Claw-Free Family

We have already shown that FLWE is injective invariant. To show that FLWE is an extended trapdoor claw-free fam-

ily, we now prove the second condition (the hardcore bit condition) of Definition 4.4. First recall (from [BCM+18])

that X = Zn
q , w = n⌈log q⌉ and J : X → {0, 1}w is the map such that J(x) returns the binary representation of

x ∈ X . The key point, which we prove in Lemma 9.5, is that the inner product appearing in the definition of H ′k,d
(in condition 2 of Definition 4.4) is equal to the inner product d̂ · s (for d̂ ∈ {0, 1}n) if d = J(d̂). We first show

in Lemma 9.4 that producing an inner product d̂ · s is computationally difficult given A,As+ e. Next, in Lemma

9.5, we use Lemma 9.4 to prove condition 2 of Definition 4.4.

Lemma 9.4 Assume a choice of parameters satisfying the conditions (186). Assume the hardness assumption

LWEℓ,q,D
Zq,BL

holds. For all d̂ ∈ {0, 1}n \ {0n}, the distributions

D0 =
(
(A,As+ e)← GENFLWE

(1λ), d̂ · s mod 2
)

(194)

and

D1 =
(
(A,As+ e)← GENFLWE

(1λ), r
)
, (195)

where r ←U {0, 1}, are computationally indistinguishable.

Proof: This proof is a simpler version of the proof of Lemma 27 in [BCM+18]. We first transition from D0 to the

following computationally indistinguishable distribution:

D(1) = (BC+ F,BCs+ e, d̂ · s mod 2) (196)

where Ã = BC + F ← LOSSY(1n, 1m, 1ℓ, q,D
Zq ,BL

) is sampled from a lossy sampler. The transition from D0

to D(1) is the same as the transition from (47) to (50) in the proof of Lemma 27 in [BCM+18]: the first step is to

replace A with a lossy matrix Ã to obtain a computationally indistinguishable distribution and the second step is to

49

remove the term Fs from the lossy LWE sample Ãs+e. Next, we apply Lemma 23 ([BCM+18]) toD(1) to replace

d̂ · s mod 2 with a uniformly random bit r, resulting in the following statistically indistinguishable distribution:

D(2) = (BC +F,BCs+ e, r) (197)

Computational indistinguishability between D(2) and D1 follows similarly to between D(1) and D0. �

We now show that the second condition of Definition 4.4 holds:

Lemma 9.5 Assume a choice of parameters satisfying the conditions (186). Assume the hardness assumption

LWEℓ,q,D
Zq,BL

holds. Let s ∈ {0, 1}n and for d ∈ {0, 1}w let 3

H ′s,d =
{
d · (J(x)⊕ J(x− (−1)bs) | x ∈ X

}
, . (198)

Then for all d̂ ∈ {0, 1}n and for any quantum polynomial-time procedure

A : Zm×n
q × Zm

q → {0, 1}

there exists a negligible function µ(·) such that

∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As+ e) ∈ H ′

s,J(d̂)

]
− 1

2

∣∣∣ ≤ µ(λ) . (199)

Proof: This proof is very similar to the proof of Lemma 28 in [BCM+18]. The proof is by contradiction. Assume

that there exists d̂ ∈ {0, 1}n and a quantum polynomial-time procedure A such that the left-hand side of (199) is

at least some non-negligible function η(λ). We derive a contradiction by showing that for d̂, the two distributions

D0 and D1 in Lemma 9.4 are computationally distinguishable, giving a contradiction.

Let (A,As + e) ← GENFLWE
(1λ). To link A to the distributions in Lemma 9.4 we relate the inner product

condition in (198) to the inner product d̂ · s appearing in (194). This is based on the following claim.

Claim 9.6 For all b ∈ {0, 1}, x ∈ X , d̂ ∈ {0, 1}n and s ∈ {0, 1}n the following equality holds:

J(d̂) · (J(x) ⊕ J(x− (−1)bs)) = d̂ · s . (200)

Proof: We do the proof in case n = 1 and w = ⌈log q⌉, as the case of general n follows by linearity. In this case s
is a single bit. If s = 0 then both sides of (200) evaluate to zero, so the equality holds trivially. If s = 1, then the

least significant bit of J(x) ⊕ J(x − (−1)bs) is s and the least significant bit of J(d̂) = d̂. Since the remaining

w − 1 bits of J(d̂) are 0, the claim follows. �

To conclude we construct a distinguisher A′ between the distributions D0 and D1 in Lemma 9.4. Consider two

possible distinguishers, A′u for u ∈ {0, 1}. Given a sample ((A,As+ e), t), A′u computes c = A(A,As+ e) and

returns 0 if c = t⊕ u, and 1 otherwise. The sum of the advantages of A′0 and A′1 is:

∑

u∈{0,1}

∣∣∣ Pr
((A,As+e),d̂·s)←D0

[
A′u((A,As+ e), d̂ · s) = 0

]
− Pr

((A,As+e),r)←D1

[
A′u((A,As + e), r) = 0

]∣∣∣

3We write the set as H ′
s,d instead of H ′

k,d to emphasize the dependence on s.

50

=
∑

u∈{0,1}

∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As+ e) = d̂ · s⊕ u

]
− Pr

((A,As+e),r)←D1

[
A(A,As+ e) = r ⊕ u

]∣∣∣

=
∑

u∈{0,1}

∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As+ e) = d̂ · s⊕ u

]
− 1

2

∣∣∣ (201)

≥
∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As+ e) = d̂ · s

]
− Pr

(A,As+e)←GENFLWE
(1λ)

[
A(A,As+ e) = d̂ · s⊕ 1

]∣∣∣

≥ 2
∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As+ e) = d̂ · s

]
− 1

2

∣∣∣ (202)

By Claim 9.6, we can replace d̂ · s with J(d̂) · (J(x) ⊕ J(x− (−1)bs)) to obtain:

= 2
∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As+ e) ∈ H ′

s,J(d̂)

]
− 1

2

∣∣∣ (203)

≥ 2η(λ) (204)

Therefore, at least one of A′0 or A′1 must successfully distinguish between D0 and D1 with advantage at least η, a

contradiction with the statement of Lemma 9.4. �

10 Acknowledgments

Thanks to Dorit Aharonov, Zvika Brakerski, Zeph Landau, Umesh Vazirani and Thomas Vidick for many useful

discussions.

References

[ABOE08] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive Proofs For Quantum Computations.

Arxiv preprint arXiv:0810.5375, 2008.

[ABOEM17] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive Proofs for Quantum

Computations. Arxiv preprint 1704.04487, 2017.

[AKPW13] Joel Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding, re-

visited: New reduction, properties and applications. Cryptology ePrint Archive, Report 2013/098,

2013. https://eprint.iacr.org/2013/098.

[Ban93] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers.

Mathematische Annalen, 296(1):625–635, 1993.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas Vidick. Certifiable

randomness from a single quantum device. Arxiv preprint 1804.00640, 2018.

[BFK08] Anne Broadbent, Joseph F. Fitzsimons, and Elham Kashefi. Universal blind quantum computation.

Arxiv preprint arXiv:0807.4154, 2008.

[BL08] Jacob D. Biamonte and Peter J. Love. Realizable hamiltonians for universal adiabatic quantum

computers. Phys. Rev. A, 78:012352, 07 2008.

51

https://eprint.iacr.org/2013/098

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehl. Classical hardness

of learning with errors. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,

CA, USA, June 1-4, 2013, pages 575–584, 2013.

[DCEL09] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact and approximate uni-

tary 2-designs and their application to fidelity estimation. Phys. Rev. A, 80:012304, 07 2009.

[FK17] Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind quantum computation.

Phys. Rev. A, 96:012303, 07 2017.

[GKPV10] Shafi Goldwasser, Yael Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the learning

with errors assumption. ICS, pages 230–240, 2010.

[Got04] Daniel Gottesman, 2004. As referenced in [http://www.scottaaronson.com/blog/?p=284;

accessed 13-Apr-2017].

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:

Conceptually-simpler, asymptotically-faster, attribute-based. Cryptology ePrint Archive, Report

2013/340, 2013. http://eprint.iacr.org/2013/340.

[KSV02] A.Y. Kitaev, A. Shen, and M.N. Vyalyi. Classical and Quantum Computation. American Mathe-

matical Society, 2002.

[Mah17] Urmila Mahadev. Classical Homomorphic Encryption for Quantum Circuits. Arxiv preprint

arXiv:1708.02130, 2017.

[MF16] Tomoyuki Morimae and Joseph F. Fitzsimons. Post hoc verification with a single prover. Arxiv

preprint arXiv:1603.06046, 2016.

[MNS15] Tomoyuki Morimae, Daniel Nagaj, and Norbert Schuch. Quantum proofs can be verified using only

single qubit measurements, 2015.

[MP11] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. Cryp-

tology ePrint Archive, Report 2011/501, 2011. http://eprint.iacr.org/2011/501.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended

abstract. In STOC, pages 333–342, 2009.

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-lwe for any

ring and modulus. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of

the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,

Canada, June 19-23, 2017, pages 461–473. ACM, 2017.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Pro-

ceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC ’05, pages

84–93, New York, NY, USA, 2005. ACM.

[RUV12] B. Reichardt, F. Unger, and U. Vazirani. A classical leash for a quantum system. Arxiv preprint

arXiv:1209.0448, 2012.

[Shi03] Yaoyun Shi. Both toffoli and controlled-not need little help to do universal quantum computing.

Quantum Info. Comput., 3(1):84–92, January 2003.

52

http://www.scottaaronson.com/blog/?p=284
http://eprint.iacr.org/2013/340
http://eprint.iacr.org/2011/501

[Wik18] Wikipedia. Trace distance — Wikipedia, the free encyclopedia, 2018.

[https://en.wikipedia.org/wiki/Trace_distance; accessed 7-Jan-2018].

53

https://en.wikipedia.org/wiki/Trace_distance

	1 Introduction
	1.1 Related Work

	2 Overview
	2.1 Cryptographic Primitives
	2.1.1 Trapdoor Claw-Free Families
	2.1.2 Trapdoor Injective Function Families

	2.2 Measurement Protocol
	2.3 Measurement Protocol Soundness
	2.3.1 Prover Behavior
	2.3.2 Construction of Underlying Quantum State

	2.4 Replacement of a General Attack with an X-Trivial Attack
	2.4.1 Computational Indistinguishability of Phase Flip

	2.5 Extension of Measurement Protocol to a Verification Protocol for BQP
	2.6 Paper Outline

	3 Preliminaries
	3.1 Notation
	3.2 Learning with Errors and Discrete Gaussians
	3.3 Quantum Computation Preliminaries
	3.3.1 Quantum Operations
	3.3.2 Trace Distance
	3.3.3 Pauli Twirl

	3.4 QPIP Definition

	4 Function Definitions
	4.1 Noisy Trapdoor Claw-Free Functions
	4.2 Extended Trapdoor Claw-Free Functions

	5 Measurement Protocol
	5.1 How to Commit Using a Noisy Trapdoor Claw-Free Family
	5.1.1 Hadamard Measurement of a Committed State
	5.1.2 How to Commit Using a Trapdoor Injective Family

	5.2 Measurement Protocol
	5.2.1 Honest Prover

	5.3 Notation
	5.4 Completeness of Measurement Protocol
	5.5 Prover Behavior
	5.6 Construction of Underlying Quantum State

	6 Replacement of a General Attack with an X-Trivial Attack for Hadamard Basis
	6.1 Indistinguishability of Diagonal Terms (Proof of Claim 6.3)
	6.2 Indistinguishability of Cross Terms (Proof of Claim 6.4)
	6.3 Reduction to Diagonal/Cross Terms (Proof of Claim 6.2)

	7 Measurement Protocol Soundness
	7.1 General to Perfect Prover (Proof of Claim 7.2)
	7.2 Perfect to Trivial Prover (Proof of Claim 7.3)

	8 Extension of Measurement Protocol to a Verification Protocol for BQP
	8.1 Morimae-Fitzsimons Protocol
	8.2 Extending the Measurement Protocol

	9 Extended Trapdoor Claw-Free Family from LWE
	9.1 Parameters
	9.2 Trapdoor Injective Family from LWE
	9.2.1 Efficient Function Generation
	9.2.2 Trapdoor Injective Functions
	9.2.3 Efficient Range Superposition

	9.3 Injective Invariance
	9.4 Extended Trapdoor Claw-Free Family

	10 Acknowledgments

