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ABSTRACT 27 

Cerebrospinal fluid (CSF) provides vital support for the brain. Abnormal CSF 28 

accumulation is deleterious for perinatal neurodevelopment, but how CSF leaves the brain during 29 

this critical period is unknown. We found in mice a postnatal neurodevelopmental transition 30 

phase featuring precipitous CSF K+ clearance, accompanied by water, through the choroid plexus 31 

(ChP). The period corresponds to a human fetal stage when canonical CSF clearance pathways 32 

have yet to form and congenital hydrocephalus begins to manifest. Unbiased ChP metabolic and 33 

ribosomal profiling highlighted this transition phase with increased ATP yield and activated 34 

energy-dependent K+ transporters, in particular the Na+-K+-Cl- and water cotransporter NKCC1. 35 

ChP-targeted NKCC1 overexpression enhanced K+-driven CSF clearance and enabled more 36 

permissive cerebral hydrodynamics. Moreover, ventriculomegaly in an obstructive 37 

hydrocephalus model was improved by ChP-targeted NKCC1 overexpression. Collectively, we 38 

identified K+-driven CSF clearance through ChP during a transient but critical 39 

neurodevelopmental phase, with translational value for pathologic conditions. 40 
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INTRODUCTION 45 

A balance between cerebrospinal fluid (CSF) production and clearance (influx/efflux) is 46 

essential for normal brain function and development (Fame and Lehtinen, 2020). Disrupted CSF 47 

volume homeostasis with excessive CSF accumulation is implicated in many pediatric brain 48 

disorders, in particular congenital hydrocephalus (Kahle et al., 2016), where patients suffer from 49 

a potentially life-threatening accumulation of CSF and frequently develop neurological deficits 50 

that last through childhood and into adult life (Vinchon et al., 2012). Schizophrenia patients can 51 

have enlarged lateral ventricles by their first episode of psychosis (Steen et al., 2006), and in 52 

some cases as early as infancy (Gilmore et al., 2010), suggesting a role for CSF clearance 53 

abnormalities in this and possibly other neurodevelopmental disorders. As another example, 54 

autism spectrum disorders are associated with altered CSF distribution patterns and enlarged 55 

CSF space surrounding the brain (Shen et al., 2017). A better understanding of developing CSF 56 

dynamics may help explain why early phases of brain development (e.g. from third trimester to 6 57 

months after birth in human) represent a period of high vulnerability to certain congenial 58 

disorders (Volpe, 2008, Gilmore et al., 2010, Shen et al., 2017).  59 

Critically, how CSF is cleared during this perinatal period remains a mystery. Progress in 60 

CSF dynamics research has identified several CSF clearance routes including arachnoid 61 

granulations, perineural and paravascular pathways, and meningeal lymphatics (Antila et al., 62 

2017, Munk et al., 2019, Fame and Lehtinen, 2020). However, these systems only fully appear at 63 

later stages of life (up to 2 years in human and several weeks postnatal in mice) (Antila et al., 64 

2017, Munk et al., 2019), and therefore are not available to contribute to CSF dynamics during 65 

these critical early phases. Identifying and manipulating the early endogenous CSF clearance 66 

mechanisms could provide one powerful approach for tackling neurodevelopmental disorders 67 
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involving CSF dysregulation, and may also be applied to fluid disorders affecting adults. 68 

To identify how early CSF is cleared, we investigated tissues with the ability to modulate 69 

CSF at this stage. The choroid plexus (ChP) is an intraventricular epithelial structure that forms 70 

the majority of the blood-CSF barrier and develops prenatally. It contains diverse ion and fluid 71 

transporters along its vast surface area capable of bidirectional transport (Damkier et al., 2013). 72 

Although the prevailing model posits that the ChP provides net unidirectional, luminal secretion 73 

of ions and water to form CSF, insufficient corroborating data have been collected under 74 

physiological experimental conditions. Furthermore, historical clinical observations suggest 75 

some absorptive functions of the ChP (Milhorat et al., 1970) which is supported by animal 76 

studies (Oreskovic et al., 2017). Finally, broad transcriptional changes of the machinery 77 

regulating fluid/ion transport support the concept of temporally dynamic and possibly context-78 

dependent ChP functions in determining net directionality of CSF transport (Liddelow et al., 79 

2013, Delpire and Gagnon, 2019).  80 

To further explore potentially absorptive properties of the ChP, we studied the expression 81 

of transporters, the energetic systems and ionic gradients that govern their activity, and their 82 

physiological effects across the timespan of early postnatal development in mice. Taken together 83 

our data support a novel role and mechanism for CSF clearance by the Na+-K+-Cl- and water co–84 

transporter, NKCC1, in the apical membrane of the ChP during a specific developmental period. 85 

These results have implications for the pathophysiology of congenital disorders accompanied by 86 

dysregulated CSF and could inform strategies for treatment of neonatal hydrocephalus and 87 

perhaps other disorders.  88 

 89 
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RESULTS 90 

CSF K+ declines precipitously during a specific perinatal period 91 

We discovered a unique and transient phase of neurodevelopment when CSF [K+] 92 

decreased rapidly. We used inductively coupled plasma optical emission spectrometry (ICP-OES) 93 

and ion chromatography (IC) to measure levels of key ions likely to govern CSF flux including 94 

Na+, K+, and Cl- at several developmental timepoints. CSF [K+] was remarkably high at birth 95 

(9.6 ± 3.5 mM), decreased rapidly to 4.4 ± 0.9 mM by P7 (Fig. 1A), and later achieved adult 96 

levels of 3.1 ± 0.6 mM (Fig. 1A) while [Na+] and [Cl-] were minimally changed (Fig. 1B). The 97 

reduction in CSF K+ was consistent with previous reports in other species (Saunders et al., 2018) 98 

and correlated with parallel changes in serum [K+] such that the ratio between blood and CSF 99 

[K+] remained stable (Fig. 1C).  100 

Notably, K+ transport has been associated with water co-transport by several K+ 101 

transporters in various tissues and cell types (Zeuthen, 1994, Hamann et al., 2010, Zeuthen and 102 

Macaulay, 2012), suggesting that CSF [K+] changes could drive water movement in the brain as 103 

well. Therefore, we sought to identify mechanisms underlying this fast clearance of CSF K+
,
 104 

which may shed light on CSF outflow during this time.  105 

 106 

ChP metabolism increases during the early postnatal transition phase 107 

We found that the transitional period of rapid CSF K+ clearance coincided with high ChP 108 

metabolism. We reasoned that K+ clearance during this period could be ChP-mediated because 109 

the ChP expresses high levels of K+ co-transporters on its large CSF-contacting surface area 110 

(Keep and Jones, 1990, Damkier et al., 2013). Similar to water and ion transport by other 111 

epithelial structures such as kidney proximal and distal tubes (Bhargava and Schnellmann, 2017), 112 
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K+ clearance from CSF by the ChP would be energy-dependent and therefore be accompanied by 113 

upregulation of ATP production and mitochondrial activity. Therefore, we evaluated the 114 

metabolic status and ATP production capacity of the ChP epithelium before, during, and after the 115 

time period of CSF [K+] reduction. We found that both mitochondria number and size increased 116 

from E16.5 to 2mo (Fig. 1D-G), while cellular glycogen load gradually decreased 117 

(Supplementary Fig. 1). Both observations are consistent with reports from ChP in other 118 

mammalian species (Netsky and Shuangshoti, 1975, Keep and Jones, 1990) and suggest 119 

functional changes in ChP oxidative metabolism. To assess this we monitored oxygen 120 

consumption to calculate basal metabolism and ATP production at embryonic day 16.5 (E16.5), 121 

postnatal day 0 (P0), P7, and adult (2 months old (2mo)) ChP explants using Agilent Seahorse 122 

XFe technology (Fig. 1H, Supplementary Fig. 2). We found that E16.5 ChP had the lowest 123 

basal respiration of all tested ages (Fig. 1I, Supplementary Fig. 2). Adult had a higher capacity 124 

for overall ATP production than E16.5 ChP, but surprisingly, P0-P7 ChP were the most 125 

metabolically active as per ATP production (Fig. 1I, J). In addition, mitochondrial subcellular 126 

distribution in ChP epithelium was biased toward the apical surface as postnatal development 127 

proceeded, with E16.5 mitochondria heavily distributed along the basal side of epithelial cells, 128 

P0 mitochondria intermediately localized, and P7 and 2mo mitochondria having more apical 129 

distribution (Fig. 1K-M, Supplementary Fig. 3). Mitochondrial subcellular localization 130 

responds to regional energy demand in other cellular processes such as migration of mouse 131 

embryonic fibroblasts and during axonal outgrowth (Schuler et al., 2017, Smith and Gallo, 2018). 132 

Together with the increase in ATP production postnatally, the shift in ChP epithelial 133 

mitochondria distribution over postnatal development suggests increasing ATP supply to meet 134 

high demand at the apical ChP surface during the early postnatal phase, concurrent with the rapid 135 
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clearance of CSF K+. This concurrence prompted us to investigate energy-dependent 136 

mechanisms whereby ChP epithelial cells might contribute to K+ clearance.  137 

The ChP increases production of CSF-facing ion and water transporters postnatally 138 

Consistent with rapid CSF K+ clearance and high ChP metabolism, we found that 139 

expression of the energy-dependent cation transport pathway components were upregulated in 140 

ChP postnatally. To unbiasedly identify candidates controlling postnatal CSF clearance through 141 

the ChP, we conducted ribosomal profiling to investigate transcripts that are prioritized for 142 

translation in embryonic (E16.5) and adult (2 mo) ChP, using Translating Ribosomal Affinity 143 

Purification (TRAP; Heiman et al., 2008). ChP epithelial cells were targeted by crossing 144 

FoxJ1:cre mice (Zhang et al., 2007) with TRAP (EGFP:L10a) mice (Heiman et al., 2008) (Fig. 145 

2A, Supplementary Fig. 4A, B), and mRNA associated with the L10a ribosomal subunit were 146 

purified for sequencing.  147 

TRAP analyses revealed 1967 differentially translated transcripts (adjusted p < 0.05) 148 

between E16.5 and 2mo adult ChP: 1119 enriched at E16.5 and 847 enriched at 2mo (Fig. 2B). 149 

Gene set and pathway analyses revealed developmentally regulated ChP programs. Adult (2mo) 150 

ChP had enriched functional gene sets associated with active transmembrane membrane 151 

transport and mitochondria, which is consistent with our abovementioned findings on 152 

metabolism changes (Fig. 2C). Specifically, cation transport was enriched, supporting the 153 

hypothesis of ChP mediating CSF K+ transport postnatally (Fig. 2C, D). Enriched pathways in 154 

the 2mo adult included secretion associated pathways named for other, better studied secretory 155 

processes, including salivary and pancreatic secretion, all of which have a special emphasis on 156 

water and ion transmembrane transport (Supplementary Fig. 4C (red), D). Consistent with a 157 

rise in fluid and ion modulating machinery, there was a striking enrichment of more 158 
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transmembrane and signal peptide-containing transcripts in adult ChP (Supplementary Fig. 4E, 159 

F). These results indicate that the ChP specifically gained fluid and ion modulatory functions 160 

postnatally.  161 

 162 

NKCC1 is poised to mediate perinatal ChP CSF K+ and water clearance  163 

 Among all fluid and ion modulating candidates with increasing postnatal expression 164 

(Supplementary Fig. 4G, H), we identified NKCC1 (Slc12a2) as the candidate most likely to 165 

mediate CSF clearance. NKCC1 is functionally related to Na+/K+-ATPase (Atp1a1 and Atp1b1), 166 

as the latter actively maintains the Na+/K+ gradient that powers NKCC1. Both Na+/K+-ATPase 167 

and NKCC1 are capable of CSF K+ clearance, but NKCC1 was of particular interest because (1) 168 

it is a co-transporter of K+ and water (Zeuthen and Macaulay, 2012, Steffensen et al., 2018); and 169 

(2) the activity of NKCC1 can be further modified by phosphorylation (Darman and Forbush, 170 

2002), lending additional control to its fluid/ion modulatory capacity. In addition, NKCC1 is 171 

particularly enriched in the ChP and does not impact broad functionality like the Na+/K+-ATPase 172 

does, both of which are ideal features for a functional therapeutic intervention target. We refined 173 

our temporal expression analyses of NKCC1, ATP1a1, ATP1b1, and Klotho (Kl), which 174 

contributes to the membrane localization of the Na+/K+-ATPase (Razzaque, 2008, Sopjani et al., 175 

2011) (Fig. 2E), by sampling weekly from P0 to P28 and then at 2mo and confirmed increased 176 

expression of transcript and protein for each component across developmental time (Fig. 2F, G, 177 

Supplementary Fig. 5). The observed changes in NKCC1 total protein were corroborated by an 178 

independent approach where the rate of ChP epithelial cell swelling under high [K+] challenge 179 

(Steffensen et al., 2018) reflected the abundance of NKCC1 protein (Fig. 2H-J, Supplementary 180 

Fig. 6).  181 
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In addition, we found particularly high levels of phosphorylated, therefore activated 182 

(Darman and Forbush, 2002), NKCC1 (pNKCC1) in the ChP of P0-P7 pups, with P7 having 183 

peak pNKCC1 levels among all postnatal ages, indicative of increased NKCC1 activity during 184 

the first postnatal week (Fig. 2G). Similar to the timeline of ChP ATP production (Fig. 1J), the 185 

timeframe of high ChP pNKCC1 was concurrent with the fast CSF [K+] decrease during the first 186 

postnatal week (Fig. 1A), suggesting a functional correlation and further confirming the 187 

significance of the early postnatal transitional period. Taken together, we identified ChP NKCC1 188 

as the top candidate for mediating postnatal CSF K+ and water clearance. 189 

 190 

NKCC1 temporal regulation requires epigenetic control that is implicated in congenital 191 

hydrocephalus 192 

We found that the temporal profile of NKCC1 expression was tightly regulated at the 193 

epigenetic level by modulators implicated in some forms of congenital hydrocephalus. The 194 

NuRD complex governs differentiation and maturation of diverse cells and tissues (Goodman 195 

and Bonni, 2019). Our previously published RNA sequencing studies (Lun et al., 2015) 196 

identified NuRD components, including the ATPase CHD family members (Chd4 being the most 197 

highly expressed), the histone deacetylases HDAC1/2, and methyl CpG-binding domain protein 198 

MBD3 in the ChP (Fig. 3A). De novo loss-of-function CHD4 mutations are implicated in some 199 

groups of children with congenital hydrocephalus and ventriculomegaly (Weiss et al., 2020). We 200 

found that CHD4 localized to nuclei in mouse ChP epithelial cells beginning at P0 (Fig. 3B). 201 

Immunoprecipitation of CHD4 identified HDAC1, HDAC2, and MBD3 by immunoblotting in 202 

mouse ChP (Fig. 3C, technical control for Co-IP protocol is shown in Supplementary Fig. 7), 203 

confirming the existence of the CHD4/NuRD complex in developing ChP. We then disrupted the 204 
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complex by generating ChP-Chd4 deficient mice. Cre was expressed in Chd4 floxed mice (Chd4 205 

fl/fl) (Williams et al., 2004) using an adeno-associated viral vector (AAV) with tropism for the 206 

ChP (AAV2/5) (Haddad et al., 2013), delivered by in utero intracerebroventricular (ICV) 207 

injection at E14.5. Chd4 transcript levels dropped to <50% by P7 (Fig. 3D). While CHD4 208 

protein levels only substantially decreased by P14 (Fig. 3E, G), we found that the developmental 209 

increase of ChP NKCC1 expression was disrupted as soon as the CHD4 protein decreased and 210 

lasted at least until P28 (Fig. 3F, G). Similar results were also observed in 4VChP (Fig. 3H, I). 211 

The expression of other developmentally regulated, functionally relevant candidates (atp1a1, 212 

atp1b1, and klotho) was not affected (data not shown). These data confirm that the NuRD/ChD4 213 

complex is one of the required components tightly regulating ChP NKCC1 developmental 214 

expression. 215 

 216 

ChP NKCC1 actively mediates CSF clearance during the early postnatal transition phase 217 

To test whether NKCC1 is indeed capable of transporting from CSF into the ChP during 218 

the period of rapid CSF [K+] decline, we induced NKCC1 overexpression (OE) in developing 219 

ChP epithelial cells using AAV2/5. NKCC1 transport directionality follows combined Na+, K+, 220 

Cl- gradients, which are close to being neutral in adult brains and likely to bias towards the CSF-221 

to-ChP direction during the early postnatal phase. NKCC1 protein level would be rate-limiting 222 

during the early postnatal time when it is already highly phosphorylated, unlike in older mice 223 

where pNKCC1 only represented a small portion of total NKCC1. The goal of this OE approach 224 

was to accelerate endogenous ChP NKCC1 transport, thereby revealing its directionality based 225 

on whether CSF [K+] clearance was enhanced or delayed.  AAV2/5-NKCC1, which expresses 226 

NKCC1 fused to an HA tag (Somasekharan et al., 2013), or control GFP virus was delivered by 227 
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in utero ICV at E14.5. Successful NKCC1 OE and increased pNKCC1 was confirmed in ChP at 228 

P0 (Fig. 4A-D). Appropriate localization to apical membranes of epithelial cells, transduction 229 

efficiency, and tissue specificity were also validated (Fig. 4E-I, Supplementary Fig. 8 A, B). 230 

Transcript levels of other K+ transporters or channels did not change following AAV2/5-NKCC1 231 

transduction (Supplementary Fig. 8C). Because CSF [K+] sharply decreased from P0 to P7 (Fig. 232 

1A), we sampled CSF from ChP NKCC1 OE and control mice at P1. We found that ChP 233 

NKCC1 OE reduced CSF [K+] more than controls, with their P1 CSF [K+] values closely 234 

approximating those normally observed at P7 (Fig. 4J), indicating accelerated K+ clearance from 235 

CSF after enhanced ChP NKCC1 activity. CSF total protein levels were not affected (AAV2/5-236 

GFP = 2.50 ± 0.20 mg/ml vs. AAV2/5-NKCC1 = 2.71 ± 0.46 mg/ml; N = 6 from two litters each; 237 

p = 0.34, unpaired t-test). Overall, these findings support a model in which, under physiological 238 

conditions with high early postnatal CSF [K+], ChP NKCC1 transports K+ out of CSF. 239 

Next, we found that the circulating CSF volume in ChP NKCC1 OE mice was reduced, 240 

as reflected by smaller lateral ventricles. To avoid any tissue processing artifacts, we conducted 241 

live T2-weighted magnetic resonance imaging (MRI) (Fig. 5A) to quantify lateral ventricle 242 

volume. AAV-GFP mice were indistinguishable from naive wild-type mice at P14. In contrast, 243 

NKCC1 OE mice had reduced lateral ventricle volumes (Fig. 5A, B), without decrease in overall 244 

brain size (Fig. 5C), reflecting less circulating CSF. The difference in ventricle sizes from these 245 

same mice was sustained up to our final measurement at P50 (AAV-GFP: 3.12 ± 0.59 mm3 vs. 246 

AAV-NKCC1: 1.28 ± 0.28 mm3, * p = 0.0182). While the exact transport direction of NKCC1 in 247 

adult ChP is still under debate (Delpire and Gagnon, 2019), the consistency in ventricular 248 

volume from P14 into later life supports our working model that because a relatively small 249 

proportion of ChP NKCC1 was phosphorylated in mice P14 and older (Fig. 2G), NKCC1 levels 250 
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are not rate-limiting and thus OE would not as substantially impact ChP functions in older 251 

animals. Collectively, our findings demonstrate that ChP NKCC1 mediated CSF clearance 252 

during the first postnatal week. Augmenting this process impacted CSF volume homeostasis in 253 

the long term. 254 

We then tested and found that enhancing CSF clearance through ChP NKCC1 OE 255 

changed how the brain and cranial space adapted to CSF volume changes. Intracranial 256 

compliance (Ci) and CSF resistance (RCSF) describe the ability of the entire intracranial space 257 

(including brain, meninges, and outflow routes) to accommodate an increasing CSF volume that 258 

would otherwise increase intracranial pressure (ICP). In humans, these parameters are measured 259 

by a CSF constant rate infusion test (Aquilina et al., 2012, Eide, 2018, Lalou et al., 2018) and 260 

can aid in diagnosis and evaluation of conditions like hydrocephalus, which has decreased Ci 261 

(Kahle et al., 2016). We developed a miniaturized version of this test to determine the Ci and 262 

RCSF in mice. The constant rate infusion test artificially increases CSF volume by ICV infusion 263 

of artificial CSF (aCSF), causing ICP to rise and plateau at a new level (Fig. 5D, E). The Ci and 264 

RCSF are estimated from the ICP vs. time curve using Marmarou’s model of CSF dynamics 265 

(Czosnyka et al., 2012) (Supplementary Fig. 9A). Simply put, the Ci is proportional to the rate 266 

of ICP increase, and the RCSF is related to the level of the post-infusion ICP plateau (Fig. 5E). As 267 

a quality control for the correct placement of infusion and measurement catheter, arterial and 268 

respiratory pulsations were clearly visible in the ICP waveform and their amplitude increased 269 

with volume load as expected (Supplementary Fig. 9B, C). Using this approach, we found that 270 

ChP NKCC1 OE significantly increased Ci at an age of 5-7 weeks (Fig. 5F, G), consistent with 271 

the brain having greater capacity for CSF in ventricles “deflated” due to excessive CSF clearance. 272 

Resting ICP and RCSF were unchanged (Fig. 5H, I). 273 
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 274 

Enhanced ChP NKCC1 function mitigates ventriculomegaly in a model of obstructive 275 

hydrocephalus 276 

Our findings of enhanced CSF clearance after ChP NKCC1 OE indicate that ChP 277 

NKCC1 can remove excess CSF. Therefore, we hypothesized that ChP NKCC1 OE expression 278 

could mitigate ventriculomegaly in a model of postnatal obstructive hydrocephalus. We first 279 

overexpressed ChP NKCC1 at E14.5 by in utero AAV2/5 ICV, then introduced obstructive 280 

hydrocephalus by a single unilateral injecting of kaolin into the lateral ventricle at P4 (Shaolin et 281 

al., 2015), and finally evaluated the lateral ventricle volumes by live T2 MRI at P14 (Fig. 6A). 282 

While both NKCC1 OE and control mice had enlarged ventricles at P14, NKCC1 OE mice had 283 

reduced ventriculomegaly compared to controls, with the average ventricle volume being less 284 

than 1/3 of the controls (Fig. 6B-D; ventricles marked by blue arrows; kaolin deposits marked by 285 

red arrows). Taken together, our findings demonstrate that early, ChP targeted NKCC1 OE has a 286 

sustained and broad impact on specific volumetric and biophysical parameters of the intracranial 287 

space with potential therapeutic applications to hydrocephalus.  288 

  289 
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DISCUSSION 290 

In this study we sought to understand how CSF is cleared from the brain before the 291 

development of canonical CSF outflow routes (e.g. arachnoid granulations and meningeal 292 

lymphatics) (Antila et al., 2017, Munk et al., 2019). The intervening time period is a critical, 293 

transient phase in brain development when failure of CSF clearance has debilitating 294 

consequences (Volpe, 2008). Our results suggest that this period is defined by rapid decrease in 295 

CSF K+. The ChP mediates the CSF K+ clearance during this transition period, and thus forms a 296 

CSF outflow route through ion and water co-transport by NKCC1 (Fig. 7). This CSF clearance 297 

by the ChP contrasts the prevailing models that ChP constantly, unidirectionally secretes CSF. 298 

Taken together, we discovered an unconventional, precisely timed, function of the developing 299 

ChP that clears CSF prior to the formation of other canonical routes, and provides targets for 300 

fluid management intervention during a critical transition phase of brain development. 301 

NKCC1 is a bidirectional transporter, recently discovered to be an important co-302 

transporter of water in the adult ChP (Steffensen et al., 2018). Although clearly established as a 303 

key molecular mechanism of CSF regulation, ChP NKCC1 transport direction and its 304 

determinants in vivo have been actively debated due to the technical challenges of 1) specifically 305 

manipulating ChP NKCC1 without affecting NKCC1 in other CSF-contacting cells, instead of 306 

ICV application of chemicals such as NKCC1 inhibitor bumetanide; and 2) accurately 307 

determining intracellular ion levels of ChP epithelial cells, and therefore ion gradients, under 308 

physiological conditions, as summarized in Supplementary Table 1 and reviewed by Delpire 309 

and Gagnon (Delpire and Gagnon, 2019). Our in vivo “gain-of-function” approach effectively 310 

bypasses the abovementioned technical limitations. By overexpressing NKCC1 specifically in 311 

the ChP through AAV transduction to amplify its physiological functional impact, we could 312 
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subsequently observe the resulting CSF K+ and fluid volume changes to reveal the transporter’s 313 

native directionality. Using this approach, we found that, in contrast to the common notion that 314 

the ChP constantly produces CSF, NKCC1 in the ChP mediated CSF clearance when CSF [K+] 315 

is above adult values, especially during the first postnatal week in mice. This phase corresponds 316 

to the third trimester to 6 months after birth in human, which represents a window of high 317 

vulnerability to congenial fluid disorders (Volpe, 2008).  318 

We next demonstrated that the ChP clearance of CSF can be targeted to temper abnormal 319 

CSF accumulation. The ChP has been targeted for therapeutic manipulation in rodent models of 320 

neurologic diseases ranging from Huntington’s disease and lysosomal storage disorders, to 321 

Alzheimer’s disease, where transduction of exogenous gene products into ependymal or ChP 322 

epithelial cells has improved cardinal symptoms of disease (Kaler, 1994, Hudry et al., 2013). 323 

Encouragingly, we showed that enhancing ChP epithelial cell NKCC1 transport capacity 324 

lessened the severity of ventriculomegaly in a model of obstructive hydrocephalus. Our data 325 

demonstrate the possibility of tempering congenital hydrocephalus by augmenting endogenous 326 

ChP NKCC1 activity to increase CSF absorption rates during early development when CSF [K+] 327 

is high. In addition, because ChP CSF absorption via NKCC1 is driven by increased CSF [K+], 328 

this mechanism may come into play in other pathogenic conditions where CSF [K+] is transiently 329 

increased, such as after tissue injury or ventricular bleeding. Therefore, our findings emphasize 330 

the ChP as a targetable, K+-sensitive and on-demand CSF drainage route in neurological 331 

disorders where CSF homeostasis is disrupted. 332 

Further, in light of recent findings reporting hydrocephalus and ventriculomegaly in 333 

children with de novo loss-of-function CHD4 mutations (Weiss et al., 2020), we found that the 334 

CHD4/NuRD complex is required for the developmental regulation of NKCC1 expression. This 335 
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connection suggests a possible pathophysiological mechanism whereby lack of CHD4 activity 336 

might reduce NKCC1 levels during early development (equivalent to P0-P7 in mice), and lead to 337 

insufficient CSF clearance resulting in hydrocephalus. In our loxP-cre approach, most CHD4 338 

protein knockdown and resulting stagnation of NKCC1 expression occurred by P14, which is 339 

beyond the critical window of NKCC1 activity at P0-P7. As such, we did not model 340 

developmental ventriculomegaly with this approach. Improved genetic tools for early CHD4 341 

knockout and new animal models harboring the de novo patient mutations would be required to 342 

fully unravel the regulatory connection between CHD4/NuRD complex and NKCC1. 343 

A key question that emerges from this work is: If the ChP is acting as an outflow 344 

pathway rather than a source of CSF during this transitional developmental phase – where does 345 

the early CSF water content come from? One mechanism that could be acting at this stage is CSF 346 

secretion by the developing brain tissue (e.g. progenitor cells that have a cell body at the 347 

ventricular zone but extend their basal processes to the developing pia) which secretes CSF 348 

immediately after neural tube closure (Gato et al., 2014). Future studies should elucidate whether 349 

this mechanism extends into this transitional phase. Consistent with progenitor involvement in 350 

CSF dynamics, recent identification of genes driving pediatric hydrocephalus shows affected 351 

genes to be expressed predominantly by cortical progenitor cells lining the brain’s ventricles 352 

(Furey et al., 2018), and not the ChP, suggesting a non-choroidal source of CSF as an alternative 353 

contributor to abnormal CSF production. 354 

 In addition to fluid regulation, the newly identified ChP clearance route provides a key 355 

mechanism to regulate extracellular K+ during the first postnatal week. The subunits of the major 356 

system for moving K+ against its individual concentration gradient, the Na+/K+-ATPase (i.e. 357 

Atp1a1 and Atp1b1), were not yet at their full expression levels during this period. The ChP 358 
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NKCC1-mediated K+ clearance mechanism might assist in establishing the K+ gradient in a 359 

timely manner, which is crucial for cellular physiology (Rasmussen et al., 2020). Notably, the 360 

period of rapidly decreasing CSF [K+] overlaps with the developmental phase when the 361 

excitatory-to-inhibitory “GABA switch” occurs. In early cortical progenitor cells that reside in 362 

the ventricular zone and are bathed by CSF, the classic inhibitory neurotransmitter GABA leads 363 

to excitatory potentials and suppression of DNA synthesis (LoTurco et al., 1995). As newborn 364 

cortical neurons differentiate and migrate away from the ventricular zone, GABA switches to 365 

adopt the more classic role as an inhibitory neurotransmitter by lowering intracellular Cl- (Owens 366 

et al., 1999) which is achieved through coordinated activities of neuronal K+/Cl- co-transporters 367 

KCC2 and NKCC1 (Pisella et al., 2019, Watanabe et al., 2019). Because ions, including K+, can 368 

traffic from CSF into interstitial fluid (Cserr, 1965, Fencl et al., 1966), any interference with the 369 

developmental timeline of ChP NKCC1 that resulted in delayed CSF K+ clearance could 370 

potentially increase extracellular/interstitial fluid [K+] and affect neural physiology (Rasmussen 371 

et al., 2020). Specifically, such a change in extracellular/interstitial fluid [K+] could 372 

fundamentally impact neuronal NKCC1 and KCC2 transport equilibrium, potentially 373 

contributing to a delayed GABA switch, a phenomenon reported in many models of 374 

neurodevelopmental and psychiatric disorders including subtypes of autism spectrum disorder 375 

(Amin et al., 2017), Rett syndrome (Banerjee et al., 2016), Fragile X syndrome (He et al., 2014), 376 

schizophrenia (Hyde et al., 2011), and Down syndrome (Deidda et al., 2015). Furthermore, 377 

extracellular [K+] and certain K+ channels also regulate activities of microglia (Madry et al., 378 

2018), which are critical in synaptic pruning during postnatal neurodevelopment in mice 379 

(Schafer et al., 2012). Thus, the ChP is poised to play important roles in proper CNS formation 380 

by creating and maintaining desirable extracellular ionic homeostasis at different developmental 381 
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stages, with subsequent effects on neuronal maturation, circuit formation, and 382 

neuroinflammatory homeostasis. 383 

Beyond key findings and implications during this critical transitional developmental stage, 384 

our study introduced a murine ICP measurement device combined with constant CSF infusion. 385 

This approach provides a much-needed advance in fluid research technology that can be broadly 386 

applied to study essentially all CSF dynamic systems across the mouse lifespan. We adapted our 387 

tool from clinical practice to provide a range of options for measuring global cerebral fluid states 388 

that reflect the interaction between CSF and cranial tissues. In later life, CSF homeostasis is 389 

maintained by collaborative efforts from multiple players in the brain, including the ChP, the 390 

dural lymphatics (Antila et al., 2017), glymphatics (Munk et al., 2019), leptomeningeal 391 

vasculature (Li et al., 2020), and the ependyma (Spassky et al., 2005). While this approach 392 

measures overall cranial fluid dynamics as one single unit, future applications could apply 393 

mathematical models that have been proposed to isolate the contribution of distinct CSF outflow 394 

routes using data acquired from human patients (Vinje et al., 2020). Such adaptability secures the 395 

broadening relevance of our tool and inspires optimism for further improved resolution in 396 

studying brain fluid dynamics. Availability of this new tool also allows future researchers to 397 

obtain measurements in support of the growing comprehensive “systems” view of regulatory 398 

mechanisms of CSF-brain interactions.  399 

In summary, our study presents a critical transient phase when the ChP acts as a non-400 

canonical route for CSF clearance prior to the maturation of other canonical clearance pathways. 401 

ChP NKCC1 mediates CSF clearance in a K+-dependent manner. Targeting this absorption route 402 

holds promise in improving fluid management for congenital hydrocephalus and other CSF 403 

disorders.   404 
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METHODS 428 

Mice 429 

The Boston Children’s Hospital IACUC approved all experiments involving mice in this 430 

study. Timed pregnant CD1 dams were obtained from Charles River Laboratories. Mice with 431 

germline loxP-CHD4-loxP were imported from MGH and bred in-house. Both male and female 432 

mice were equally included in the study and were analyzed at postnatal day 0, 7, 14, 21, 28, 5-433 

7weeks, and 2+ months. Animals were housed in a temperature-controlled room on a 12-hr 434 

light/12-hr dark cycle and had free access to food and water. For studies involving mice younger 435 

than postnatal day 10, all mice were allocated into groups based solely on the gestational age 436 

without respect to sex (both males and females were included). For studies involving mice older 437 

than 10 days, both male and female are included intentionally. 438 

CSF Collection and Metal Detection 439 

CSF was collected by from cisterna magna using a glass capillary, and collected CSF was 440 

centrifuged at 10,000xg for 10min at 4℃ to remove any tissue debris. Metal quantifications were 441 

performed by Galbraith Laboratories, Inc. (Knoxville, TN, USA). Inductively coupled plasma - 442 

optical emission spectrometry (ICP-OES) was used for K and Na quantification, and ion 443 

chromatography (IC) was used for the Cl- quantification. All tests were performed using 5-7µL 444 

of CSF. 445 

TRAP 446 

Mice aged 8 weeks or E16.5 from the Foxj1:Cre x EGFP-L10a Bacterial Artificial 447 

Chromosome (BAC) transgenic lines (N=3, each N included LVChP pooled from 3 mice) were 448 

used and brain tissue was immediately dissected and used for TRAP RNA purifications as 449 
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previously described (Heiman et al., 2008). RNA quality was assessed using Bioanalyzer Pico 450 

Chips (Agilent, 5067-1513) and quantified using Quant-iT RiboGreen RNA assay kit (Thermo 451 

Fisher Scientific R11490). Libraries were prepared using Clonetech SMARTer Pico with 452 

ribodepletion and Illumina HiSeq to 50NT single end reads. Sequencing was performed at the 453 

MIT BioMicroCenter. 454 

Sequencing Data Analysis 455 

The raw fastq data of 50-bp single-end sequencing reads were aligned to the mouse 456 

mm10 reference genome using STAR 2.4.0 RNA-Seq aligner (Dobin et al., 2013). The mapped 457 

reads were processed by htseq-count of HTSeq software (Anders et al., 2015) with mm10 gene 458 

annotation to count the number of reads mapped to each gene. The Cuffquant module of the 459 

Cufflinks software (Trapnell et al., 2010) was used to calculate gene FPKM (Fragments Per 460 

Kilobase of transcript per Million mapped reads) values. Gene differential expression test 461 

between different animal groups was performed using DESeq2 package (Love et al., 2014) 462 

with the assumption of negative binomial distribution for RNA-Seq data. Genes with adjusted p-463 

value< 0.05 are chosen as differentially expressed genes. All analyses were performed using 464 

genes with FPKM> 1, which we considered as the threshold of expression (Figure 2- source 465 

data).  466 

Sequencing Pathway and Motif Analysis 467 

Functional annotation clustering was performed using DAVID v6.7 (Huang da et al., 468 

2009). Gene ontology (GO) analysis was performed using AdvaitaBio iPathway guide V.v1702. 469 

Enrichment vs. perturbation analysis was performed by AdvaitaBio iPathway guide V.v1702 and 470 

allows comparison of pathway output perturbation and cumulative gene set expression changes. 471 

In brief, the enrichment analysis is a straightforward gene-set enrichment over representation 472 
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analysis (ORA) considering the number of differentially expressed genes (DEGs) that are 473 

assigned to a given pathway. The enrichment value is expressed as a proportion of enriched 474 

members to total genes in a defined pathway and a p-value (Fisher) is calculated for this score, 475 

however false positives have been reported at up to 10% with this method (Draghici et al., 2007). 476 

Perturbation, on the other hand, uses pathway data that applies relationships between gene 477 

products rather than only using a list. Perturbation assigns an impact score based on a 478 

mathematical model that captures the entire topology of the pathway and uses it to calculate how 479 

changes in the expression of each gene in the pathway would perturb the absolute output of the 480 

pathway (Draghici et al., 2007). Then, these gene perturbations are combined into a total 481 

perturbation for the entire pathway and a p-value is calculated by comparing the observed value 482 

with what is expected by chance. Motif analyses were performed using SignalP (v5.0; Almagro 483 

Armenteros et al., 2019) and TMHMM (v2.0; Sonnhammer et al., 1998). 484 

Transmission Electron Microscopy  485 

All tissue processing, sectioning, and imaging was carried out at the Conventional 486 

Electron Microscopy Facility at Harvard Medical School. Forebrain tissues were fixed in 2.5% 487 

Glutaraldehyde/2% Paraformaldehyde in 0.1 M sodium cacodylate buffer (pH 7.4). They were 488 

then washed in 0.1M cacodylate buffer and postfixed with 1% Osmiumtetroxide (OsO4)/1.5% 489 

Potassiumferrocyanide (KFeCN6) for one hour, washed in water three times and incubated in 1% 490 

aqueous uranyl acetate for one hour. This was followed by two washes in water and subsequent 491 

dehydration in grades of alcohol (10 minutes each; 50%, 70%, 90%, 2x10min 100%). Samples 492 

were then incubated in propyleneoxide for one hour and infiltrated overnight in a 1:1 mixture of 493 

propyleneoxide and TAAB Epon (Marivac Canada Inc. St. Laurent, Canada). The following day, 494 

the samples were embedded in TAAB Epon and polymerized at 60 degrees C for 48 hours. 495 
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Ultrathin sections (about 80nm) were cut on a Reichert Ultracut-S microtome, and picked up 496 

onto copper grids stained with lead citrate. Sections were examined in a JEOL 1200EX 497 

Transmission electron microscope or a TecnaiG² Spirit BioTWIN. Images were recorded with an 498 

AMT 2k CCD camera.  499 

Glycogen and Mitochondrial Quantification  500 

Glycogen and mitochondrial quantification was performed by hand using the ImageJ 501 

plugin FIJI (Schindelin et al., 2012, Schneider et al., 2012). Percentages were calculated by 502 

dividing the area of interest by the total area of ChP epithelial cell within the field of view. No 503 

other cell types were included in the analysis. For each condition, analyses were performed 504 

across multiple individual animals (N=3 for each age). From each animal, 10-20 fields of view 505 

were imaged at 3,000x for glycogen analysis and 5-10 fields of view were imaged at 3,000x for 506 

mitochondrial analysis. Each different field of view represented a unique cell or cells, and fields 507 

of view were chosen such that both the apical and basal surfaces of the cell were visible. For 508 

mitochondrial distribution, a custom MatLab (v.2018) code was written to extract the centroid 509 

from mitochondria data traced in ImageJ ROIs (Supplementary file). Then a distance 510 

transformation was performed from each mitochondrion centroid to the hand-traced apical or 511 

basal surfaces. The shortest distance was extracted to calculate the apical: basal proximity ratio, 512 

such that 1= on the apical surface and 0= on the basal surface. The analyses included a total of 513 

1747 adult mitochondria, 2241 P7 mitochondria, 2257 P0 mitochondria, and 1123 embryonic 514 

mitochondria. 515 

Seahorse Metabolic Analysis 516 

ChP explants were dissected in HBSS (Fisher, SH30031FS) and maintained on wet ice 517 
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until plated. Only the posterior leaflet of the P0, P7, and adult ChP was retained for analysis due 518 

to empirically determined limitations of the oxygen availability in the XFe96 Agilent Seahorse 519 

system. Tissue explants were plated on Seahorse XFe96 spheroid microplates (Agilent, 102905-520 

100) coated with Cell TAK (Corning), in Seahorse XF Base Medium (Agilent, 102353-100) 521 

supplemented with 0.18% glucose, 1mM L-glutamine, and 1mM pyruvate at pH7.4 and 522 

incubated for 1 hour at 37 °C in a non-CO2 incubator. Extracellular acidification rates (ECAR) 523 

and oxygen consumption rates (OCR) were measured via the Cell Mito Stress Test (Agilent, 524 

103015-100) with a Seahorse XFe96Analyzer (Agilent) following the manufacturer’s protocols. 525 

Data were processed using Wave software (Agilent). ATP production was calculated as the 526 

difference in OCR measurements before and after oligomycin injection, as described by the 527 

manufacturer's protocol (Agilent, 103015-100). The Cell Mito Stress test was performed 2-5 528 

independent times. The individual analyses were performed by averaging the readings from both 529 

the right and left hemisphere lateral ventricle ChP for each individual. Data were normalized by 530 

Calcein-AM (2µM in PBS, Life Technologies L-3224) fluorescence measured at the end of the 531 

assay. Data are presented normalized to the adult levels for each assay to account for any 532 

experimental variability.  533 

High K+ challenge study 534 

 Fresh LV ChPs were collected from P4 pups and adult mice in room temperature HBSS 535 

and glued down onto imaging dishes with coverslip bottom. The tissues were incubated at 37 °C 536 

with Calcein-AM (Invitrogen L3224; 1:200) for 10min and then rinsed with 37 °C  artificial CSF 537 

(aCSF: 119 mM NaCl, 2.5 mM KCl, 26 mM NaHCO3, 1 mM NaH2PO4, 11 mM glucose, with 538 

fresh 2.0 mM magnesium chloride and 2.8 mM calcium chloride). The tissues were soaked in 539 

1.8ml aCSF at the beginning of each imaging session and allowed to stabilize for 10min. One Z-540 
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stack was acquired to reflect the baseline cell volume. Then a 10x KCl solution in aCSF was 541 

spiked into the bath to make the final bath K+ concentration 50mM immediately before imaging 542 

subsequent continued. A total of five 3D Z-stacks were acquired throughout a 10-min imaging 543 

session to capture changes in cellular volume over time. Each stack took less than 30s to 544 

minimize changes in cell volume from the beginning to the end of each stack. All imaging 545 

studies were carried out at 37°C. Image stacks were imported into Imaris (Bitplane) software. 546 

Individual epithelial cells were identified by shape. Cells with discrete borders that were present 547 

at all timepoints and had dark pixels both above and below them in Z for the whole timecourse 548 

were selected a priori and then traced by hand using the “Surpass” functionality to create a 3D 549 

surface volume through all Z stacks based on Calcein-AM uptake signal. Due to known z-step 550 

distance and interpolation between the planes, Imaris calculated the number of voxels for each 551 

cell. This analysis was then repeated for the same cell throughout the timecourse. We verified 552 

manually that the cell was the same individual based on the topology of the surrounding cells, 553 

allowing for adjustment for any x-y drifting that occurred. The relative volume was calculated as 554 

dV/V0 for each timepoint (t) where V0 is the initial volume of the cell, t is each subsequent 555 

timepoint after addition of challenge, and dV= Vt-V0. 556 

Tissue processing 557 

Samples were fixed in 4% paraformaldehyde (PFA). For cryosectioning, samples were 558 

incubated in the following series of solutions: 10% sucrose, 20% sucrose, 30% sucrose, 1:1 559 

mixture of 30% sucrose and OCT (overnight), and OCT (1 hour). Samples were frozen in OCT.  560 

Immunostaining 561 

Cryosections were blocked and permeabilized (0.3% Triton-X-100 in PBS; 5% serum), 562 

incubated in primary antibodies overnight and secondary antibodies for 2 hours. Sections were 563 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 4, 2020. . https://doi.org/10.1101/2020.08.03.234260doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.234260
http://creativecommons.org/licenses/by-nc-nd/4.0/


Xu and Fame, et al. 26 

counterstained with Hoechst 33342 (Invitrogen H3570, 1:10000) and mounted using 564 

Fluoromount-G (SouthernBiotech). The following primary antibodies were used: chicken anti-565 

GFP (Abcam ab13970; 1:1000), mouse anti-Aqp1 (Santa Cruz sc-32737; 1:100), rabbit anti-566 

CHD4 (Abcam ab72418, 1:200), rabbit anti-NKCC1 (Abcam ab59791; 1:500), rat anti-HA 567 

(Roche 11867423001; 1:1000). Secondary antibodies were selected from the Alexa series 568 

(Invitrogen, 1:500). Images were acquired using Zeiss LSM880 confocal microscope with 20x 569 

objective. 570 

Co-IP 571 

Tissues were homogenized in NET buffer (150mM NaCl, 10mM Tris 8.0, 5mM EDTA, 572 

10% glycerol and 2% Triton-100) supplemented with protease inhibitors. Protein concentration 573 

was determined by BCA assay (Thermo Scientific 23227). Lysates with same amount of total 574 

protein (250-1000µg based on experiments) were pre-cleared at 4° C for 2hr with Protein G 575 

agarose and then incubated with desired antibody or control antibody at 4° C overnight (no beads 576 

present during antibody incubation). Protein G agarose beads were added to lysate-antibody 577 

mixture after overnight incubation for 2hr. Beads were washed thoroughly and then eluted by 578 

boiling in 2% SDS. ChP tissues were pooled across 7 litters of P0 pups and 30 adults to achieve 579 

sufficient protein for Co-IP. 580 

Immunoblotting  581 

Tissues were homogenized in RIPA buffer supplemented with protease and phosphatase 582 

inhibitors. Protein concentration was determined by BCA assay (Thermo Scientific 23227). 583 

Samples were denatured in 2% SDS with 2-mercaptoethanol by heating at 37°C (for NKCC1) or 584 

95°C (for CHD4 and other NuRD complex proteins) for 5 minutes. Equal amounts of proteins 585 

were loaded and separated by electrophoresis in a 4-15% gradient polyacrylamide gel (BioRad 586 
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#1653320) or NuPAGE 4-12% Bis-Tris gel (Invitrogen #NP0322), transferred to a nitrocellulose 587 

membrane (250mA, 1.5 hours, on ice), blocked in filtered 5% BSA or milk in TBST, incubated 588 

with primary antibodies overnight at 4°C followed by HRP conjugated secondary antibodies 589 

(1:5000) for 1 hour, and visualized with ECL substrate. For phosphorylated protein analysis, the 590 

phospho-proteins were probed first, and then blots were stripped (Thermo Scientific 21059) and 591 

reprobed for total proteins. For co-IP protein analysis, TrueBlot secondary antibody (eBioscience 592 

18-8816-33) was used to detect only non-denatured IgG and avoid background signal from IP 593 

antibody. The following primary antibodies were used: rabbit anti-NKCC1 (Abcam ab59791; 594 

1:1000), rabbit anti-pNKCC1 (EMD Millipore ABS1004; 1:1000), rabbit anti-ATP1a1 (Upstate 595 

C464.6/05-369; 1:250, goat-anti-klotho (R&D AF1819-sp; 1:200), rabbit anti-GAPDH (Sigma 596 

G9545; 1:10000), mouse anti-HA (Abcam ab130275; 1:1000), rabbit anti-CHD4 (Abcam 597 

ab72418; 1:2000), rabbit anti-MBD3 (Abcam ab157464; 1:1000), rabbit anti-HDAC1 (Abcam 598 

ab7028; 1:2000), mouse anti-HDAC2 (Abcam 51832; 1:2000). 599 

Quantitative RT-PCR 600 

For mRNA expression analyses, the ChP were collected and pooled from 2 pups. RNA 601 

was isolated using the MirVana miRNA isolation kit (Invitrogen AM1561) following 602 

manufacturer’s specifications without miRNA enrichment step. Extracted RNA was quantified 603 

spectrophotometrically and 100ng was reverse-transcribed into cDNA using the High Capacity 604 

cDNA Reverse Transcription kit (Applied Biosystems #4368814) following manufacturer’s 605 

specifications. RT-qPCRs were performed in duplicate using Taqman Gene Expression Assays 606 

and Taqman Gene Expression Master Mix (Applied Biosystems) with GAPDH as an internal 607 

control. Cycling was executed using the StepOnePlus Real-Time PCR System (Invitrogen) and 608 

analysis of relative gene expression was performed using the 2-ΔΔCT method. Technical replicates 609 
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were averaged for their cycling thresholds and further calculations were performed with those 610 

means. 611 

In utero intracerebroventricular injection (ICV) 612 

Timed pregnant mice (E14.5) were deeply anesthetized by isoflurane and placed on warm 613 

pads. Laparotomy was performed and AAV solution was delivered into the lateral ventricle of 614 

each embryo using glass capillary pipettes. The abdominal incision was then sutured. Meloxicam 615 

analgesia was longitudinally delivered according to IACUC protocol. 616 

Intraventricular kaolin injection in postnatal pups 617 

 Postnatal day 4 pups (P4) were deeply anesthetized by hypothermia. 1µl of sterile kaolin 618 

solution (25% in PBS) was delivered into the left lateral ventricle using glass capillary pipettes. 619 

The lateral ventricle location was determined as in between bregma and lambda, and 1mm from 620 

mid-line. The pups were then warmed and returned to the dam. 621 

AAV production 622 

The original AAV-NKCC1 plasmid was purchased from Addgene (pcDNA3.1 HA CFP 623 

hNKCC1 WT (NT15-H) was a gift from Biff Forbush: Addgene plasmid # 49077; 624 

http://n2t.net/addgene:49077; RRID:Addgene_49077). The plasmid carries an 3xHA tag at the 625 

N-terminal of NKCC1 to allow detection and separation from endogenous NKCC1. The CFP tag 626 

was removed by BsaI digestion to reduce insert size for AAV production. Virus production and 627 

purification were performed by the Penn Vector Core. Due to the very large size of the plasmid 628 

we experienced variable infection efficiency. All mice receiving AAV-NKCC1 were analyzed 629 

for HA expression after every experiment to confirm infection efficiency. AAV-GFP and AAV-630 

Cre were purchased from BCH viral core at Boston Children’s Hospital. 631 
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Magnetic resonance imaging (MRI) 632 

Mice were imaged using Bruker BioSpec small animal MRI (7T) at 2wk and P50 while 633 

under anesthesia by isoflurane. A warm pad was used to maintain body temperature. Breathing 634 

rate and heart rate were monitored to reflect the depth of anesthesia. All axial T2 images were 635 

acquired using the following criteria: TE/TR=60/4000; Ave=8; RARE=4; slice thickness=0.6mm. 636 

Ventricle volumes were calculated by manual segmentation using FIJI/ImageJ. In studies with 637 

unilateral kaolin injection, 3D reconstruction of the ventricles was performed by manual 638 

segmentation in ITK-SNAP (Madan, 2015) and exported through ParaView. 639 

Constant rate CSF infusion test (ICP and compliance measurement) 640 

An apparatus was developed to perform a constant infusion test in mice through a single 641 

catheter for both infusion of CSF and monitoring of ICP. A 20cc syringe was filled with aCSF 642 

and placed in an automated infusion pump (GenieTouch, Kent Scientific Co., Denver) and set to 643 

deliver a constant rate infusion of 1-4 uL/minute. The syringe was connected via pressure tubing 644 

to hemostasis valve Y connector (Qosina, NY). A fiberoptic ICP sensor (Fiso Technologies Inc, 645 

Québec, Canada) was inserted through the other port of the rotating hemostat and then into 0.55 646 

mm diameter catheter until the sensor was flush with the catheter’s distal tip. The entire 647 

apparatus and tubing was carefully screened to ensure the absence of air bubbles. Adult mice 648 

were then deeply anesthetized, placed on a warm pad, and head-fixed with ear bars. The distal 649 

end of the infusion device (catheter with fiberoptic sensor) was placed inside lateral ventricle (-650 

0.4mm (anterior-posterior) and 1.2mm (medial-lateral) with respect to Bregma, and a depth of 2 651 

mm from the outer edge of the skull); the catheter was then sealed with Vetbond (3M, 652 

Minnesota). Intraventricular access and water-tight seal was confirmed by observation of arterial 653 

and respiratory waveforms in the ICP signal and a transient rise in ICP upon gentle compression 654 
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of the abdomen and thorax. Two minutes of baseline ICP were recorded before initiating the 655 

infusion of aCSF. As the infusion proceeded, careful observation was made of the mouse’s 656 

respiratory rate. After the ICP level reached a new plateau, the infusion was discontinued. The 657 

procedure was terminal. Parameters of the Marmarou model of CSF dynamics for constant rate 658 

infusions were estimated by a non-linear least squares fit of the model to the ICP data (Czosnyka 659 

et al., 2012) 660 

𝐼𝐶𝑃 𝑡 =  
𝑖!"#$%!&" +

𝐼𝐶𝑃!"#$%&'$ − 𝑝!
𝑅!"#

∙ 𝐼𝐶𝑃!"#$%&'$ − 𝑝!

𝐼𝐶𝑃!"#$%&'$ − 𝑝!
𝑅!"#

+ 𝑖!"#$%!&" ∙ 𝑒
!
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!!"#

∙
!!

!

 

where iinfusion is the rate of infusion, ICPbaseline is the ICP level before infusion, p0 is a pressure in 661 

the storage arm of the model, RCSF is the resistance to CSF outflow, and Ci is the compliance 662 

coefficient. 663 

QUANTIFICATION AND STATISTICAL ANALYSIS 664 

Biological replicates (N) were defined as samples from distinct individual animals, 665 

analyzed either in the same experiment or within multiple experiments, with the exception when 666 

individual animal could not provide sufficient sample (i.e. CSF), in which case multiple animals 667 

were pooled into one biological replicate and the details are stated in the corresponding figure 668 

legends. Statistical analyses were performed using Prism 7 or R. Outliers were excluded using 669 

ROUT method (Q = 1%). Appropriate statistical tests were selected based on the distribution of 670 

data, homogeneity of variances, and sample size. The majority of the analyses were done using 671 

One-way ANOVA with multiple comparison correction (Sidak) or Welch’s unpaired t-test, 672 

except for Fig. 1E-G, and Fig. 1I-J where the analysis was done by Welch’s ANOVA with 673 

Dunnett’s T3 multiple comparison test, and Fig. 1L where the analysis was done using 674 
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Kolmogorov-Smirnov test. F tests or Bartlett’s tests were used to assess homogeneity of 675 

variances between data sets. Parametric tests (t-test, ANOVA) were used only if data were 676 

normally distributed and variances were approximately equal. Otherwise, nonparametric 677 

alternatives were chosen. Data are presented as means ± standard deviation (SD). If multiple 678 

measurements were taken from a single individual, data are presented as means ± standard errors 679 

of the mean (SEMs). Please refer to figure legends for sample size. p values < 0.05 were 680 

considered significant (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). Exact p values 681 

can be found in the figure legends. P values are also marked in the figures where space allows. 682 

  683 
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Fig. 1. Postnatal CSF [K+] decrease coincides with increased ChP metabolism. (A) ICP-OES 907 

quantification of CSF [K+]. N = 6, **** p < 0.0001 by one-way ANOVA. Sidak’s test was used 908 

for P0 vs. P7 and P0 vs. adult comparison. *** p = 0.0009, **** p < 0.0001. (B) ICP-OES and 909 

IC measurements of E14.5 and adult mouse CSF [Na+] and [Cl-]. N=3; Welch’s t-test. (C) ICP-910 

OES measurements of embryo vs. adult mouse serum [K+]. N=3. (D) Transmission micrographs 911 

of mitochondria in LVChP. (E-G) Quantification of mitochondrial number (E), area (F), and % 912 

area occupancy (G) in ChP epithelial cells. N =3 animals, 5-10 FOV per animal, *p < 0.05, **p 913 

< 0.01, ***p < 0.005, ****p < 0.001; Welch’s t-test. (H) Schematic of explant-based Agilent 914 

Seahorse XFe96 test. (I-J) Oxidative respiration metrics over development. *p < 0.05, **p < 915 

0.01, ****p < 0.0001; Welch’s ANOVA with Dunnett’s T3 multiple comparison test. (K-L) 916 

Mitochondrial distribution between the apical and basal surfaces (Apical: Basal proximity ratio). 917 

1 = apical surface. 0 = basal surface. Solid line indicates median and dashed line indicates 918 

upper/lower quartiles. **** p < 0.0001; Kolmogorov–Smirnov test. (M) Cumulative distribution 919 

of mitochondrial localization. Solid lines are the mean, shaded area represents the range. Scale 920 

bar (d) = 250nm, (k) = 2µm. Unless otherwise noted, all quantitative data are presented as Mean 921 

± SEM.  922 
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Fig. 2. Choroid plexus epithelial cells display age-dependent translation of ion and water 925 

transporters, in particular NKCC1. (A) Rpl10a-conjugated EGFP expression in ChP epithelial 926 

cells after Foxj1-Cre recombination in TRAP-BAC mice. (B) Heatmap and hierarchical 927 

clustering of differentially expressed genes (adjusted p < 0.05). (C) Top 4 gene functional 928 

clusters shown by DAVID to be enriched in Adult ChP epithelial cells over E16.5 ChP epithelial 929 

cells. (D) Top 10 significantly enriched gene ontology (GO) terms for “Biological processes”. 930 

Plotted with boxes for quartiles and whiskers for 5th and 95th percentiles. The log10 fold change 931 

(LogFC) is plotted for each expressed gene for the network. Positive values (red) indicate Adult 932 

enrichment and negative values (blue) indicate E16.5 enrichment. p values are corrected for 933 

multiple measures using Bonferroni correction. **p ≤0.01, ***p ≤0.001, ****p ≤0.0001. (E) 934 

Schematics demonstrating the interaction of NKCC1, Na+/K+-ATPase, and Klotho on the apical 935 

membrane of a ChP epithelial cell (CPEC). (F-G) RT-qPCR and immunoblotting of LVChP 936 

during postnatal development. (H) Fluorescence images of Calcein-AM labeled epithelial cells 937 

from LVChP explants under high extracellular K+ challenge. Scale bar = 50µm. (I-J) 938 

Quantification of ChP epithelia cellular volume by IMARIS 3D analysis. Percent volume 939 

increase = dV/V0 for each timepoint (t). V0 = initial volume of the cell; t = subsequent timepoint 940 

after addition of challenge; dV= Vt -V0 x 100%. At least 10 cells were analyzed for each explant 941 

from one animal; N = 4. 942 
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Fig. 3. NKCC1 temporal expression requires CHD4/NuRD complex. (A) RNAseq data 944 

showing expression of CHD and other NuRD units by the ChP. (B) Immunofluorescence images 945 

of CHD4 in the ChP epithelia at E16.5, P0, and adult; Scale bar = 30µm. (C) Immunoblots of 946 

Co-IP by CHD4 antibody. (D) RT-qPCR of CHD4 transcripts in ChP with AAV2/5-Cre 947 

infection.**** p< 0.0001, N = 7, Welch’s t-test. (E) Immunoblot of CHD4 in AAV-cre mice 948 

ChP lysate with. (F) RT-qPCR of NKCC1 expression in AAV-cre vs. AAV-GFP mice ChP. All 949 

values were normalized to P7 AAV-GFP control mice. **p = 0.0015, ***p < 0.001, N = 7, 950 

Welch’s t-test. (G) Immunoblot of NKCC1 in LVChP lysates from AAV-cre vs. AAV-GFP mice. 951 

(H-I) CHD4 and NKCC1 RT-qPCR in 4VChP. ** p = 0.0083, *** p < 0.001, **** p < 0.0001, 952 

N = 7, Welch’s t-test. 953 
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Fig. 4. ChP NKCC1 actively mediates CSF K+ clearance in the first postnatal week. (A) RT-956 

qPCR of NKCC1 mRNA levels in P0 mice. ** p = 0.009, N=3; Welch’s t-test. (B) Immunoblots 957 

from AAV-NKCC1 vs. AAV-GFP P0 mice ChP lysates. (C-D) Quantification of all 958 

immunoblots of NKCC1 (C) *** p = 0.0009, N=7; Welch’s t-test; and pNKCC1 (D) * p = 959 

0.0355, N=5; Welch’s t-test. (E) Immunofluorescence images showing co-localization of 3xHA 960 

tag and NKCC1 in P0 ChP. Scale bar = 50µm. (F-I) Immunofluorescence images of HA in 961 

AAV2/5-NKCC1 transduced brain at P1: the LVChP (F), 3rd ventricle ChP (3VChP; G), 4VChP 962 

(H), and the spinal cord (I; sc = spinal cord). Traces of HA is shown in the meninges near the 963 

injection site (grey arrow). Scale bar = 500µm. (J) ICP-OES measurements of CSF [K+] from 964 

AAV-NKCC1 vs. AAV-GFP P1 mice (N = 8 in AAV-GFP cohort; N = 7 in AAV-NKCC1 965 

cohort). **p = 0.0033; Welch’ t-test. 966 
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Fig. 5. ChP NKCC1 overexpression reduces brain ventricular volume and increases 971 

intracranial compliance. (A) T2-weighted live MRI images. Only slices with visible LV are 972 

shown (marked red in the schematics). (B) LV volumes. Uninjected N = 4; AAV-GFP and AAV-973 

NKCC1 N = 6; ****p < 0.0001; Welch’s t-test. (C) Brain sizes, which are presented as the 974 

average coronal section area from all images with visible ventricles (NKCC1 OE data were 975 

calculated using the matching images to the controls, regardless of ventricles visibility). 976 

Uninjected N = 4; AAV-GFP and AAV-NKCC1 N = 6; Welch’s t-test.  (D) Schematic of in vivo 977 

constant rate CSF infusion test. (E) Example of ICP curve during the infusion test (infusion 978 

begins at 0 min) in an AAV-GFP mouse, fitted to Marmarou’s model. Values extracted include: 979 

baseline ICP (ICPb), a pressure-independent compliance coefficient (Ci) and the resistance to 980 

CSF outflow (RCSF). (F) Example ICP recordings from AAV-NKCC1 mice and controls. For 981 

clarity, data have been low pass filtered to remove the waveform components. (G) Compliance 982 

coefficients. Uninjected N = 4; AAV-GFP N = 8; AAV-NKCC1 N = 9; *p = 0.0384; Welch’s t-983 

test. (H-I) Plots of baseline ICP and resistance to CSF outflow (RCSF) at 5-7 weeks. Uninjected 984 

N=4, AAV-GFP N=8, AAV-NKCC1 N=9; Welch’s t-test. 985 
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Fig. 6. ChP NKCC1 overexpression mitigates ventriculomegaly in an obstructive 988 

hydrocephalus model. (A) Schematics showing the workflow: E14.5 in utero ICV of AAV2/5-989 

NKCC1 or AAV2/5-GFP, followed by ICV of kaolin at P4, and MRI at P14. (B) Representative 990 

sequential brain images (rostral to caudal) by T2-weighted live MRI images. Blue arrows: LV. 991 

Red arrows: kaolin. (C) 3D reconstruction of the LV and kaolin deposition. LV: blue. Kaolin: 992 

red. (D) LV volumes. N = 3;  *p = 0.0.0235; Welch’s t-test. 993 
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Fig. 7. Working model of ChP NKCC1 mediating K+-driven CSF outflow. The schematics 995 

describes ChP NKCC1 mediated K+ and water clearance from CSF in neonatal mice, in 996 

comparison to the adult scenario. For simplicity and clarity, only K+ is depicted among all ions 997 

and only NKCC1 and Na+/K+-ATPase are included. Neonatal (P0-7, left) ChP has high pNKCC1 998 

than adult, albeit lower total NKCC1. Neonate CSF [K+] is 2-3 fold higher than adult. With 999 

similar [Na+] and [Cl-], this [K+] difference is sufficient to alter the total Nernst potential of 1000 

epithelial cells and bias NKCC1 transport of K+, together with water, out of CSF into the ChP in 1001 

neonates. 1002 
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