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In the coming years, advanced gravitational wave detectors will observe signals from a large
number of compact binary coalescences. The majority of these signals will be relatively weak, making
the precision measurement of subtle effects, such as deviations from general relativity, challenging in
the individual events. However, many weak observations can be combined into precise inferences, if
information from the individual signals is combined in an appropriate way. In this study we revisit
common methods for combining multiple gravitational wave observations to test general relativity,
namely (i) multiplying the individual likelihoods of beyond-general-relativity parameters and (ii)
multiplying the Bayes Factor in favor of general relativity from each event. We discuss both methods
and show that they make stringent assumptions about the modified theory of gravity they test. In
particular, the former assumes that all events share the same beyond-general-relativity parameter,
while the latter assumes that the theory of gravity has a new unrelated parameter for each detection.
We show that each method can fail to detect deviations from general relativity when the modified
theory being tested violates these assumptions. We argue that these two methods are the extreme
limits of a more generic framework of hierarchical inference on hyperparameters that characterize
the underlying distribution of single-event parameters. We illustrate our conclusions first using a
simple model of Gaussian likelihoods, and also by applying parameter estimation techniques to a
simulated dataset of gravitational waveforms in a model where the graviton is massive. We argue
that combining information from multiple sources requires explicit assumptions that make the results
inherently model-dependent.

I. INTRODUCTION

Two years after the first direct detection of grav-
itational waves (GWs) from the coalescence of two
black holes (BHs), GW astronomy has transitioned into
a booming field with eleven confirmed detections to
date [1]. The rate of detections is only expected to in-
crease in the coming years as the GW detector network
becomes more sensitive and grows in number [2]. This
has lead to increasing interest in the problem of combin-
ing information from multiple GW sources to strengthen
inferences that might be inconclusive from single events.
Examples include tests of general relativity (GR) [3], the
measurement of the Hubble constant [4, 5], as well as
inference about population properties [1, 6].

Within the framework of Bayesian Inference, combin-
ing information from multiple sources is usually formu-
lated in two complementary ways. The first involves
computing the posterior probability distribution of pa-
rameters that characterize the entire population, such
as the coupling constant of a beyond-GR theory or the
shape of the mass distribution of stellar BHs. The second
amounts to computing the Bayes Factor (BF), the ratio
of the evidences of two competing models that describe
the population.

In the context of testing GR with GWs, two ap-
proaches are commonly used. The first involves com-
puting the BF in favor of GR compared to beyond-GR
theories for each individual signal and then multiplying

the individual BFs [7–10]. The second approach involves
computing the posterior probability distribution of some
parameter that quantifies the deviation from GR and
then multiplying the individual likelihoods together in or-
der to draw stronger inferences on this parameter [3, 10–
14]. This parameter might be a fundamental constant of
the theory that is common between all binary systems,
such as the Compton wavelength of the graviton, or a pa-
rameter that is expected to depend on the specific prop-
erties of each binary system, such as the modifications
to the post-Newtonian expansion introduced within the
parametrized post-Einsteinian (ppE) framework [15, 16].

In this study, we revisit both approaches in order to
discuss the underlying assumptions about the proper-
ties of the beyond-GR theory they test. Unsurprisingly,
we find that multiplying the individual likelihoods of a
beyond-GR parameter is appropriate only for theories
where this parameter is identical for every member of
the population. Meanwhile, multiplying the BFs is ap-
propriate only when each the beyond-GR parameter is
different for every new system observed. Through a sim-
ple model of Gaussian likelihoods we show that both ap-
proaches lead to faulty conclusions if applied to a theory
of gravity that does not follow their respective assump-
tions. In particular, we may fail to detect deviations from
GR when using incorrect assumptions about the under-
lying modification to GR.

The two assumptions above, namely that parameters
are equal or completely uncorrelated are arguably ex-
treme assumptions that generic theories of gravity are not
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required to obey. Instead it is more reasonable to expect
the middle ground of parameters that are related to each
other through an underlying population distribution of
the beyond-GR parameters. This scenario is akin to, for
example, the expectation that the masses of stellar-mass
BHs in binaries are drawn from an underlying population
mass distribution. We show that hierarchical analyses
where one parametrizes and infers the underlying distri-
bution can be interpreted as an intermediate case that
encompasses the two extremes of multiplying likelihoods
or BFs.

Our results raise the issue of the model-dependency of
combining information from multiple signals, something
particularly critical for tests of GR with GWs. We argue
that even though model-independent tests are feasible
for single sources, this notion of model-independent tests
does not carry over to multiple detections. The rest of
the paper presents the details of our argument. Section II
studies the assumptions inherently made when combin-
ing inferences and illustrates these ideas using a simple
model of Gaussian likelihoods. Section III presents a con-
crete example in terms of measuring the Compton wave-
length of the graviton. Section IV summarizes our main
conclusions.

II. ASSUMPTIONS WHEN COMBINING
INFERENCES

In this section we outline assumptions made when us-
ing two common methods for combining inferences from
multiple detections in order to test deviations from rela-
tivity. Each of these is an extreme case of a more general
framework, where the parameters controlling the devia-
tion of a set of signals from the predictions of GR are
drawn from some common (and generally unknown) dis-
tribution. In order to better illustrate these ideas and
how constraints of modified theories scale with the num-
ber of signals analyzed, we use a simple model of Gaus-
sian likelihoods. We then illustrate how the two common
methods of combining inferences can fail to detect devi-
ations from relativity when synthetic signals violate the
underlying assumptions of each method.

A. Model comparison

Consider two competing hypotheses H1 and H2 that
we wish to test with data D. The BF in favor of H1 is
given by

B =
p(D|H1)

p(D|H2)
, (1)

where p(D|Hi) =
∫
p(θi)p(D|θi, Hi)dθi is the evidence

for Hi, θi are the model parameters, p(θi) is the prior on
the parameters, and p(D|θi, Hi) is the likelihood.

We assume thatH1 andH2 are nested models, i.e. θ2 =
{θ1,λ} and p(D|θ1, H1) = p(D|θ1,λ = 0, H2). The pos-
terior for the extra parameters λ is

p(λ|D,H2) =
p(λ|H2)p(D|λ, H2)

p(D|H2)

=
p(D|λ, H2)∫

p(λ′, H2)p(D|λ′, H2)dλ′
. (2)

and using the Savage-Dickey density ratio [17] the BF
simplifies to

B =
p(λ = 0|D,H2)

p(λ = 0|H2)
. (3)

From here on we suppress the explicit dependence on H1

and H2.
As an example, assume thatH2 has only one additional

parameter, λ, for which the likelihood is Gaussian with
a median µ and standard deviation σ,

p(D|λ) = ce−(λ−µ)
2/(2σ2) , (4)

and that the prior is uniform over the width ∆λ, p(λ) =
1/∆λ. The BF is then

B =
1√
2π
e−µ

2/(2σ2) ∆λ

σ
. (5)

The last term, which is greater than 1, is the usual Oc-
cam’s penalty for the fact that H2 has additional param-
eters and is penalized as compared to H1.

Consider now two independent measurements, for ex-
ample two GW events with D = {D1, D2}, and that the
independent events have a parameters λ1 and λ2, respec-
tively. The posterior for the deviation parameters after
both measurements is

p(λ1, λ2|D) =
p(λ1, λ2)p(D|λ1, λ2)∫

p(λ′1, λ
′
2)p(D|λ′1, λ′2)dλ′1dλ

′
2

=
p(λ1, λ2)p(D1|λ1)p(D2|λ2)∫

p(λ′1, λ
′
2)p(D1|λ′1)p(D2|λ′2)dλ′1dλ

′
2

=
p(λ1, λ2)p(D1|λ1)p(D2|λ2)∫

p(λ′1)p(λ′2|λ′1)p(D1|λ′1)p(D2|λ′2)dλ′1dλ
′
2

,

(6)

where to obtain the second line we have factorized the
likelihood by assuming that each measurement is inde-
pendent, and to obtain the third line we have used the
identity p(λ1, λ2) = p(λ1)p(λ2|λ1).

Crucially, before we can proceed, we need to specify
p(λ2|λ1), which quantifies the relation between λ1 and
λ2. Notice that λ1 and λ2 are parameters describing dif-
ferent systems, but measurement of one can influence our
prior belief on the value of the other. This is similar to,
for example, the fact that measurement of the mass of
one binary affects our prior expectation for the mass of a
future binary as the masses are linked through a common
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astrophysical mass distribution [6]. We consider two ex-
treme cases which are commonly used in the literature:
one where each GW signal shares a common parameter
λ, and one where the two additional parameters λi are
unrelated. We also discuss the most general case, where
the properties of each individual signal are related by
some common, underlying distribution.

B. Case 1: Common parameter and multiplying
likelihoods

In the case where we have identified a common param-
eter for all GWs then λ1 = λ2 ≡ λ and

p(λ2|λ1) = δ(λ1 − λ2). (7)

Now in order to make sense of the posterior, we marginal-
ize over λ2, then simplify the result as

p(λ|D) = p(λ1|D) =

∫
p(λ1, λ2|D)dλ2

=

∫
p(λ1, λ2)p(D1|λ1)p(D2|λ2)∫

p(λ′1)p(λ′2|λ′1)p(D1|λ′1)p(D2|λ′2)dλ′1dλ
′
2

dλ2

=
p(λ)p(D1|λ)p(D2|λ)∫

p(λ′)p(D1|λ′)p(D2|λ′)dλ′
. (8)

This equation shows that this case is equivalent to mul-
tiplying the individual likelihoods for λ obtained by each
event, then multiplying by one instance of the common
prior and normalizing the resulting probability distribu-
tion. In other words, this is the standard situation of
measuring a common parameter using multiple, indepen-
dent trials, where the posterior distribution from the pre-
vious measurement can be used as a prior for the next
measurement.

To clearly illustrate the result we specialize to uniform
priors and Gaussian likelihoods, so that

p(Di|λ) = cie
−(λ−µi)

2/(2σ2
i ) . (9)

The product of the two Gaussian likelihoods is propor-
tional to another Gaussian with

σ2
f =

σ2
1σ

2
2

σ2
1 + σ2

2

, µf =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

. (10)

With this the BF is

B = e−µ
2
f/(2σ

2
f )

∆λ√
2πσf

, (11)

but now σf is smaller than the individual standard de-
viations, and µf is a weighted average of the maximum
likelihood value for λ coming from each measurement.
The Occam’s penalty factor is modified from the case of
a single measurement only by the change in σ.

From here is it straightforward to generalize to N
events. For each of the N events, we measure the de-
viation parameter λi. Since the events are independent,

the overall likelihood again factorizes, and only the prior
p(λ1, . . . , λN ) links the inferences. Repeating the pro-
ceeding steps for multiple common parameters, where all
λi = λ, we see that the posterior is proportional to the
product of the individual likelihoods and a single instance
of the prior,

p(λ|D) ∝ p(λ)
∏
i

p(Di, λ) . (12)

To show how this influences the BF, we again assume
the likelihoods are proportional to Gaussians, and note
that for the multiplication of N Gaussians, the result is
again proportional to a Gaussian with parameters

σ2 =

(
N∑
i

1

σ2
i

)−1
, µ = σ2

N∑
i

µi
σ2
i

, (13)

lnC = −1

2

N∑
i

µ2
i

σ2
i

+
µ2

2σ2
. (14)

Now the BF is given by Eq. (11) with the above values
of σ and µ (the factors of C cancel in the numerator and
denominator). To get a clearer picture of how this scales
with N , we assume all events have the same µi and σi,
in which case

B =
√
Ne−Nµ

2
i /(2σ

2
i )

∆λ√
2πσi

. (15)

In the case where H1 is correct and so µi = 0, our BF
grows with

√
N . In reality even in the case where GR is

correct and µi = 0, the specific noise realization of the
detector noise will cause variations in µi with a standard
deviation of σi. Below we numerically show that even if
we include this variation in our results the

√
N scaling is

preserved on average.

C. Case 2: Unrelated parameters and multiplying
BFs

In the opposite extreme, we assume that all systems
have their own additional parameter, so that we learn
nothing about λ2 from measuring λ1. Returning briefly
to the case where we have only two events, in Eq. (6) we
set

p(λ2|λ1) = p(λ2), (16)

and then Eq. (6) becomes

p(λ1, λ2|D) =
p(λ1, λ2)p(D1|λ1)p(D2|λ2)∫

p(λ′1)p(λ′2|λ′1)p(D1|λ′1)p(D2|λ′2)dλ′1dλ
′
2

=
p(λ1)p(λ2)p(D1|λ1)p(D2|λ2)∫

p(λ′1)p(λ′2)p(D1|λ′1)p(D2|λ′2)dλ′1dλ
′
2

=
p(λ1)p(D1|λ1)∫
p(λ′1)p(D1|λ′1)dλ′1

p(λ2)p(D2|λ2)∫
p(λ′2)p(D2|λ′2)dλ′2

.

(17)
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From this posterior and using Eq. (3) we see that the total
BF in this case reduces to the product of the individual
BFs. Generalizing to N measurements and under the
assumption that all λi are unrelated, the total BF is given
by the product of the individual BFs, a simplification
sometimes used in the literature [7–10].

If we specialize once again to Gaussian likelihoods, we
find

B = Ce−µ
2
f/(2σ

2
f )

∆λ1√
2πσ1

∆λ2√
2πσ2

, (18)

where C is the constant prefactor of the multiplied Gaus-
sians, see Eq. (14). We see when comparing to Eq. (11)
that H2 is penalized by two Occam’s factors, one for each
λi, rather than the single factor for the extra parameter
λ. This makes sense, since now H2 includes two new
independent parameters.

Meanwhile, for N measurements where the λi are all
unrelated to each other we have that the product of BFs
is

B = Ce−µ
2/(2σ2)

∏
i

∆λi√
2πσi

. (19)

We see that we have N Occam’s factors which penalize
H2. Again to get a concrete picture we let all the like-
lihoods be equal, in which case C = 1, and all prior are
ranges equal, so that

B = e−Nµ
2
i /(2σ

2
i )

(
∆λ√
2πσi

)N
. (20)

In the case where H1 is the true theory, µi = 0 and this
BF grows exponentially with N .

We conclude that this method leads in general to larger
BFs in favor of GR and tighter constraints compared to
multiplying the likelihoods. However, this method as-
sumes that the theory of gravity has N coupling con-
stants with respect to GR, one for every signal detected.

D. General case: Deviation parameters drawn
from a common distribution

So far we have described two extreme cases for comput-
ing joint inference for nested hypotheses. In each case,
certain assumptions were used to simplify the conditional
probability on the deviation parameters p(λ1, . . . , λN ).
The most general case would allow for a nontrivial distri-
bution for p(λ1, . . . , λN ), though not all distributions are
physically realistic for GW signals. The various datasets
are still assumed to be independent of each other, but
now the parameters λi are drawn from a common distri-
bution, similar for example to the expectation that BBH
masses are drawn from a common mass distribution. We
can then assume that the prior distributions for λ1 and
λ2 can be related by a common set of additional hyper-
parameters [18].

As a concrete example for an underlying distribution,
we return to our Gaussian theme and consider λi drawn
from a Gaussian distribution centered on M , with stan-
dard deviation α,

p(λi|M,α) =
1√
2πα

e−(λi−M)2/(2α2) . (21)

With this, the posteriors of the individual events will be
modified Gaussians with widths σ̃i and means µ̃i,

p(λi)p(Di|λi) =
1

2πσiαi
C̃e−(λi−µ̃i)

2/(2σ̃2
i ) , (22)

where

σ̃2
i =

σ2
i α

2

σ2
i + α2

, µ̃i =
µiα

2 +Mσ2
i

σ2
i + α2

, (23)

and the overall normalization factor is

ln C̃i =
1

2

(
µ̃2
i

σ̃2
i

− µ2
i

σ2
i

− M2

α2

)
= − (µi −M)2

2(σ2
i + α2)

. (24)

With these definitions, we find that the evidences of the
individual posteriors are∫

p(λi)p(Di|λi)dλi =
1

σi

σ̃iC̃i√
2πα

. (25)

The combined BF can be shown to be similar to Eq. (18),
with the numerator unchanged and the denominator
modified as above. The result is

B =
C

C̃1C̃2

e−µ
2
f/(2σ

2
f )
α

σ̃1

α

σ̃2
. (26)

Note that as we hold α fixed and vary σi, we always have
α ≥ σ̃i.

The above analysis gives the BF in the case where H2

is associated with a particular choice of M and α. If we
are interested in the BF for a hypothesis where the λi
are drawn from some Gaussian with unknown M and α,
then we should marginalize over these hyperparameters,
using some prior p(M,α). This leads to

B = Ce−µ
2
f/(2σ

2
f )

(∫
C̃1σ̃1
α

C̃2σ̃2
α

p(M,α)dMdα

)−1
.

(27)

For example, our first case where all the λi are equal
corresponds to drawing the λi from a Gaussian with zero
width α = 0, centered on some unknown λ = M . To
accomplish this we set p(M,α) = p(M)δ(α). Assuming
a flat hyperprior on M , p(M) = 1/(∆M), we integrate in
order to recover the BF of Eq. (11), with the substitution
∆λ→ ∆M .

The second case, where the λi are treated as unrelated
parameters, is given by taking α large and enforcing a
cutoff on the prior range. In this case, we fix M to some
value within the prior range and let α → ∞, which we



5

accomplish by setting p(M,α) to the appropriate delta
functions and integrating over them. Then the BF re-
duces to Eq. (18).

The framework above, where each λi are drawn from
some common distribution controlled by a set of hyper-
parameters, is the most general framework for systems
which do not interact. We have shown how each of the
two common methods for combining multiple GW events
arise out of simple limits from this framework.

E. Combining synthetic observations from multiple
events

The expressions for the BF presented in Eqs. (15)
and (19) were obtained under specific assumptions about
the parameters λi that describe the deviation from GR.
In order to study the implications of indiscriminately ap-
plying these formulas to situations and datasets that vi-
olate these assumptions, we return to our toy model of
Gaussian likelihoods and numerically compute the BFs
by either multiplying the likelihoods, Eq. (15), or by
multiplying the BFs of the individual measurements to-
gether, Eq. (19). To simulate a mock population of mea-
surements for λi we draw the mean µi of the Gaussian
likelihood from various distributions and for simplicity
set the standard deviation to σi = 1. We also assume a
flat prior on λi.

We focus on 5 example cases for the distribution of µi:

1. µi = 0+N (0, σi = 1): This corresponds to the case
that GR is correct, but the posteriors have a scatter
around the true value of µi = 0 due to the detector
noise realization. Here N (µ, σ) indicates a normal
distribution of mean µ and standard deviation σ.

2. µi = 1 + N (0, σi = 1): In this case GR is not
correct, but the true theory of gravity predicts the
same beyond-GR parameter for each event, µi = 1,
plus a scatter due to detector noise. This corre-
sponds to the situation discussed in Sec. II B.

3. µi ∈ [−1, 1] +N (0, σi = 1): Here GR is not correct
and the true theory of gravity predicts beyond-GR
parameters that are unrelated to each other, plus
a scatter due to detector noise. This theory breaks
the assumptions of Sec. II B.

4. µi ∈ [−4, 4] + N (0, σi = 1): This is the same as
3 but here we draw µi from a broader distribution
so that we clearly correspond to the situation dis-
cussed in Sec. II C.

5. µi = 0.1 + N (0, σi = 1): This is the same as 2,
but with a smaller deviation from GR as compared
to the assumed level of the noise in the detectors.
This case breaks the assumptions of Sec. II C.

We then compute the resulting BFs for each scenario
of Secs. II B and II B numerically. The results are in
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FIG. 1. Combined Bayes Factors as a function of the number
of events for an analysis that assumes common λ parameters
between all events (top panel) and uncorrelated λ parameters
for each event (bottom panel). In each panel the black lines
show the theoretically expected scaling of the BF if GR is
correct or if it is wrong. The purple dots show the BF for a
non-GR theory of gravity that obeys the assumption of each
BF calculation on λ, while the pink dots show the BF for a
non-GR theory of gravity that does not obey the assumption
of each BF calculation on λ. The purple dots show expo-
nentially decreasing BFs, while the pink ones lead to BFs in
favor of GR, leading to the incorrect conclusion. These re-
sults suggest that the two non-GR theories cannot be tested
simultaneously in a model-independent way.

Fig. 1 whose top panel shows the BF as a function of the
number of events computed according to Eq. (15), while
the bottom panel corresponds to the case of Eq. (19). On
both panels the black lines show the expected BF scaling
for GR and non-GR, in the case of zero-noise realizations.
The green dots refer to the case where GR is the correct
theory of gravity but also accounts for the specific noise
realization in the detectors. In both cases we find that
even with noise the combined BFs favor GR as expected,
although the exact scaling is affected compared to a set
of zero-noise realizations.

In both panels the purple dots correspond to the BFs
computed given a non-GR theory of gravity that obeys
the assumptions under which each individual BF expres-
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sion was derived. Specifically, in the top panel we show
the second injection case above, in which all GW sys-
tems share a common nonzero parameter, while in the
bottom panel we show the fourth injection case which
corresponds to the scenario where each system has a ran-
domly chosen parameter in the range [−4, 4]. Both these
theories lead to sharply decreasing BFs correctly signal-
ing a deviation from GR.

Finally, the pink dots in both plots correspond to non-
GR theories of gravity that break the assumptions under
which the BF expression was derived. In the top panel,
we show the results from the third case, while in the bot-
tom panel we show the fifth case. Both lead to BFs in fa-
vor of GR, and as a consequence we would conclude that
GR is correct and fail to detect the deviation. Specifi-
cally, if the correct theory of gravity predicted parame-
ters distributed symmetrically around 0 and we analyze
these systems assuming they have the same parameter
(which is equivalent to multiplying the individual likeli-
hoods), we would erroneously build confidence in favor of
the wrong theory of gravity, as shown on the top panel.
We encounter a similar situation in the right panel, where
the pink dots are in fact more in favor of GR than the
case where GR is correct and the data is noisy.

The above considerations lead us to a seemingly ob-
vious conclusion: if we perform an analysis under cer-
tain assumptions which in reality are violated, we are in
peril of obtaining biased answers. However in the case
of testing GR this statement has additional implications.
In Sec. II we argued that certain assumption needs to
be made when combining many events, in the form of
selecting an expression for the term p(λ2|λ1). As a con-
sequence, it is not possible to test all possible theories of
gravity with a common analysis, and so there can be no
truly model-independent test of GR using multiple GW
detections.

III. FULL GW ANALYSIS: MEASURING THE
GRAVITON MASS

As a concrete example of how a joint analysis, calling
on information from several independent observations,
can be either powerful or misleading we present the case
of a theory where the graviton has an unknown but fi-
nite mass. The emitted GW will then be dispersed as
it propagates through the universe. This will manifest
as a modification of the GW phase relative to the GR
prediction where the graviton is assumed to be massless.

In the case of a nonzero graviton mass, the waveform
will be modified starting at the 1PN order1 [19] and the

1 In the post-Newtonian framework, an NPN order term is a fac-
tor of (u/c)2N over the leading order term, where u is some
characteristic velocity of the system and c is the speed of light.

GW phase will get an additional leading-order term of

Ψg = − π2DM
λ2G(1 + z)

u−1, (28)

where M is the detector frame chirp mass of the sys-
tem, λG is the graviton Compton wavelength (with GR
assuming λG =∞), z is the redshift, and D is

D = DL
1 + (2 + z)(1 + z +

√
1 + z)

5(1 + z)2
, (29)

with DL being the luminosity distance. The frequency
dependence of this term is encoded in u = πMf .

In the ppE framework [15], the 1PN ppE parameter β1
is nonzero and equal to ΨG, while all other ppE terms βi
vanish. Using the redefinition of [9] where the ppE devia-
tions are expressed as relative phase shifts dχi, compared
to the GR PN term, the only nonzero modification is

dχ2 =
ΨG

5
96

(
743
336 + 11

4 η
)
η−2/5u−1

. (30)

Restricting to this specific beyond-GR model allows us
to study combining information under different assump-
tions, as the theory is both well understood and easily
quantified through a universal additional parameter λG.

A. Simulated BBH systems

We simulate 18 binary black hole (BBH) systems with
masses drawn from a distribution between 4 − 45M�,
isotropic spin directions, and dimensionless spin magni-
tudes distributed uniformly between 0−0.8. The emitted
gravitational waves are described by the IMRPhenomPv2
waveform family [20–22], with all systems assuming a
common graviton Compton wavelength of λtrueG = 1012

km. Notice that while this value of λG has been ruled out
by recent GW observations [23], here we are primarily in-
terested in an illustration of how a deviation of GR could
be extracted from multiple signals, and not to directly
show how well the graviton mass can be constrained.

The BBHs are distributed uniformly across the sky
with distances drawn from a distribution uniform in co-
moving volume, assuming the cosmology defined in [24].
We inject those systems in a noise-free network of 3
advanced LIGO detectors [25] operating at design sen-
sitivity [26], including the currently-operational LIGO-
Hanford and LIGO-Livingston detectors, and the under-
construction detector LIGO-India. All of the 18 sys-
tems considered here have a network signal-to-noise ratio
above 12.

We perform parameter estimation on those simulated
signals with the publicly-available software library LAL-
Inference [27, 28] under the same prior assumptions as
the BBH analyses presented in [1], with the addition
of a ppE-type deviation from GR at the 1PN order
parametrized as in Eq. (30), with a prior defined as uni-
form across −30 ≥ dχ2 ≥ 30.
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B. General ppE test

Following Eqs. (28) and (30), the specific true value of
the parameter dχ2 differs from source to source as their
respective masses and distances vary. This means that
a joint analysis assuming a common value for dχ2 for
all the BBHs will result in incorrect conclusions when
applied to the massive graviton model. We present such
an analysis here to illustrate what can occur when ppE
parameters are assumed to be common among sets of
GW detections.2

In the case where the individual posteriors for dχ2 from
each event are broad and overlap each other, assuming a
common dχ2 and combining likelihoods as in Eq. (8) is
expected to lead to uninformative joint posteriors. We
would expect to recover the prior on dχ2, and combin-
ing BFs as in Eq. (15) would therefore be uninforma-
tive. Here we face another situation, as illustrated in
Fig. 2, where we show the posterior distributions for dχ2

for all our 18 events. Because our chosen λG provides a
relatively strong deviation in the waveforms, each single-
event analysis can lead to the conclusion that a deviation
from GR is present. None of the posteriors is consistent
with the GR prediction of dχ2 = 0. However, many of
the dχ2 posteriors shown in Fig. 2 are disjoint, so the
joint posterior distribution would have no support over
its prior range. In this case it is not possible to make
a statement about the nature of the observed deviation,
or combine the observations in order to build further ev-
idence of the deviation, without modeling the observed
dχ2 distributions as arising from an underlying popula-
tion.

Hence, treating the general dχ2 parameter as univer-
sal, and as described in Sec. II E, combining their like-
lihoods accordingly, will not provide any relevant infor-
mation about the validity of GR from the ensemble of
observations.

C. Graviton mass analysis

If we instead make the initial, and very strong, assump-
tion that the observed deviations shown in Fig. 2 are
generated by the presence of a massive graviton, we can
reinterpret them as describing the fundamental constant
associated with this specific extension of GR, in this case
the graviton Compton wavelength λG. For each sample
in the posteriors, we compute λG from dχ2, DL, our as-
sumed cosmology, and the masses using Eqs. (28)–(30)
in order to arrive at a posterior for λG for each event.
Now the assumptions about creating a joint posterior
distribution described in Sec. II B are applicable, since

2 Note that published constraints on the graviton mass using mul-
tiple GW events do correctly combine inferences on the common
parameter λG [23], contrary to our illustration in this section.

−18 −16 −14 −12 −10 −8 −6 −4 −2
dχ2

0

1

2
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P
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ri

or
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D
F

FIG. 2. Posterior distributions for the dχ2 parameters mea-
sured individually for the 18 BBH events. The colours of the
distributions are only illustrative in this figure, but the tran-
sition from green to blue follow the same order as in Fig. 3.
The true dχ2 for each event is shown as an black vertical line.
The red horizontal line represents the assumed prior proba-
bility distribution. Most dχ2 distributions are effectively dis-
joint, and as such any common distribution created from them
would lack support throughout the range over which the prior
is specified.

the likelihood distributions from the individual analyses
can be multiplied together to constructively build up the
available information, as is shown in Fig. 3.

The joint measurement of λG from these events is
1.0115+0.0086

−0.0118 × 1012 km given as the maximum poste-
rior value and its associated 90% credible interval, which
encompasses the true value of λtrueG = 1012 km. Fig. 3
shows a slight bias towards larger values of λG. This is
caused by the fact that the distance posteriors are rela-
tively uninformative for these signals, and largely follow
the assumed prior distribution where p(DL) ∝ D2

L. Our
inferences on λG are then affected due to the fact that
λG ∝

√
DL/dχ2. For a larger set of observations, with

a wider spread in both their source parameters and their
SNR distribution, this bias is expected to diminish.

IV. CONCLUSIONS

In this work, we revisit two common methods for com-
bining information from multiple sources employed in
the testing-GR literature and argue that they are the
limiting cases of a more generic hierarchical framework.
Moreover, we show that both methods make certain as-
sumptions about the underlying theory of gravity being
tested. In particular, multiplying the likelihood functions
of beyond-GR parameters from individual binary merger
events amounts to imposing that all signals share the
same beyond-GR parameter. Meanwhile, computing the
BF in favor of GR from each event and multiplying the
BFs together makes the implicit assumption that each bi-
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FIG. 3. Top: Individual λG posterior distributions for the
18 BBH events. Bottom: Joint posterior distributions for the
same 18 BBH events. The colors are assigned such that the
green joint distribution contains only one event, and as they
transition to blue more events are included. The distributions
shown in the top figure follow the same color transient as the
order in which they are added to the bottom joint distribu-
tion. The assumed graviton wavelength λtrue

G = 1012 km is
shown as a black vertical line. The red near-horizontal line
represents the assumed prior probability distribution.

nary has an additional beyond-GR parameter, and these
parameters are unrelated to each other.

We argue that both assumptions are expected to fail
for generic theories of gravity. We present numerical re-
sults of BFs where we show that if the true theory of
gravity does not obey the assumptions under which in-
formation was combined and the BF was calculated, we
might fail to detect a deviation from GR.

Our results suggest that combining inferences from

multiple sources cannot be performed in a completely
model-independent way such that it applies to generic
theories of gravity. Even in the generic hierarchical anal-
ysis, a model for the population distribution needs to be
specified in some fashion. We present here the simple
case where the beyond-GR parameters are distributed
according to a normal distribution, though with enough
detections multiple models for the common distribution
can be explored and compared, while their hyperparam-
eters are measured.

We have also applied these ideas to a more realistic
study of signals generated assuming a theory where the
graviton is massive, which we have analyzed using a full
parameter estimation analysis. We recover the signal pa-
rameters in two ways: either we make inferences on the
Compton wavelength of the graviton directly, in which
case the deviation parameter is the same among all the
signals, or we use a generic ppE parameterization where
the beyond-GR parameter differs from signal to signal.
Although for illustration we select a graviton mass where
the deviations from GR are detectable in the individual
signals, we argue that when using incorrect assumptions
on how to combine these signals we would fail to detect
a deviation from GR in the joint analysis. Meanwhile,
using the correct method for combining the posteriors al-
lows us to draw tight constraints on the graviton mass us-
ing the full dataset. This exercise highlights the needs to
re-interpret the ppE parameters in terms of specific the-
ories of gravity before combining measurements of them.

We emphasize that even though we frame our results
in the context of testing for the true theory of gravity, our
conclusions are applicable to any problem that involves
combining information, for example in making cosmolog-
ical measurements and in inferring populations of com-
pact binaries, where these ideas have long been in use.
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