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S1. MATRIX REPRESENTATION OF THE RASHBA HAMILTONIAN FOR

CENTER OF MASS MOTION OF EXCITONS

As we showed in the main text, for a 2D perovskite system with inversion symmetry

breaking in the ẑ direction and with Rashba splitting in the conduction band, the Rashba

Hamiltonian ĤR,COM for an exciton with wave vector K = Kxx̂+Kyŷ in the plane reduces
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to,

ĤR,COM(K) =
me

M
(αxyKyJx − αyxKxJy) . (S1)

Maintaining the general notation used in Eq.S1, it is convenient to represent ĤR,COM(K)

in Eq.(S1) in matrix form in a basis of the four electron and hole Bloch function products,

|uje=1/2〉|ujh=1/2〉 , |uje=1/2〉|ujh=−1/2〉 , |uje=−1/2〉|ujh=1/2〉 and |uje=−1/2〉|ujh=−1/2〉 . Using

this pair (“P”) basis gives the following matrix representation:

ĤP
R,COM(K) =

me

M


0 0 αxyKy + iαyxKx 0

0 0 0 αxyKy + iαyxKx

αexyKy − iαyxKx 0 0 0

0 αxyKy − iαyxKx 0 0


(S2)

We can easily transform this Hamiltonian into a basis of exciton eigenstates of total angular

momentum, |F, Fz〉 , taken in the order, |0, 0〉 , |1, 1〉 , |1, 0〉 , |1,−1〉 . This is done using

the transformation ĤF,Fz = m̂−1P,F Ĥ
P (K)m̂P,F , where

m̂P,F =


0 1 0 0

− 1√
2

0 1√
2

0

1√
2

0 1√
2

0

0 0 0 1

 . (S3)

The result is,

ĤF,Fz

R,COM(K) =
me

M


0 αxyKy−iαyxKx√

2
0 −αxyKy+iαyxKx√

2

αxyKy+iαyxKx)√
2

0 αxyKy+iαyxKx√
2

0

0 αxyKy−iαyxKx√
2

0
αxyKy+iαe

yxKx√
2

−αxyKy+iαyxKx)√
2

0
αxyKy−iαe

yxKx√
2

0

 (S4)

To study polarization properties it is most convenient to transform into a basis of exciton

states whose dipoles are oriented along the x, y, z directions. We will call the D,X, Y, Z

basis, or the O basis for short, the basis of exciton states |D〉 , |X〉 , |Y 〉 , |Z〉 , whose

dipoles are oriented along the X , Y , and Z directions, and the dark D exciton state. The

unitary transformation from the basis of total exciton angular momentum to the O basis

is,

ĤD,X,Y,Z
R,COM (K) = m̃−1FOĤ

F,Fz

R,COM(K)m̃FO (S5)
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where the transformation matrix, m̃FO = 〈F, Fz|O〉 is given by,

m̃FO =


1 0 0 0

0 − 1√
2

i√
2

0

0 0 0 1

0 1√
2

i√
2

0

 (S6)

The Hamiltonian is represented in the O or D,X, Y, Z basis by the matrix,

ĤD,X,Y,Z
R,COM (K) =

me

M
×


0 −αxyKy αyxKx 0

−αxyKy 0 0 −iαyxKx

αyxKx 0 0 −iαxyKy

0 iαyxKx iαxyKy 0

 (S7)

A. Diagonalization of the exciton COM Hamiltonian and COM dispersion

Diagonalization of Eq. S7 shows that non-zero K splits the degeneracy of the 4 exciton

states. Taking into account the exciton kinetic energy ~2K2/2M written in terms of total

exciton mass M = me + mh , and using K =
√
K2
x +K2

y , the energy for any momentum

direction is determined as a function of Kx, Ky by,

ECOM(K) =
~2K2

2M
± me

M

√
α2
yxK

2
x + α2

xyK
2
y . (S8)

The COM motion of free excitons described by Eq. (S8) has the “Lifshitz Trousers” disper-

sion, well known for 2D electrons in the presence of Rashba terms. From Eq. S8 we can find

the exciton minimum energy along a given direction and estimate a wave vector K that

is relevant to a thermalized exciton population at low temperature. In the absence of the

exciton fine structure splitting at K = 0 , and if αyx = ±αxy , corresponding to the pure

Rashba case, αxy = α , or the pure Dresselhaus case, αxy = β as discussed in the main text,

the dispersion is isotropic in the Kx, Ky plane with the minimum of the dispersion at the

radial wavenumber,

Kmin =
|αxyme|

~2
(S9)

The band dispersion for electrons reaches its minimum at the Rashba wave vector, Ke
R =

meα
e/~2 . As a result the exciton COM dispersion minima also occurs at the Rashba wave
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vector,

Kmin = |Ke
R| (S10)

In the general case that αyx 6= αxy the dispersion is not isotropic and the energy contours

in the Kx, Ky plane are warped with two-fold rotational symmetry.

A complete description of the exciton dispersion requires that we also include the exciton

fine structure splitting due to electron-hole exchange. Neglecting the exchange splitting

between the X and Y exciton states, which is small in comparison to the splitting between

the Z exciton and the X, Y excitons in 2D perovskites,S1 the fine structure Hamiltonian

in the basis D,X, Y, Z can be written as,S2,S3

Hfs =


Ed 0 0 0

0 Et 0 0

0 0 Et 0

0 0 0 Ez

 . (S11)

Thus the total Hamiltonian in the D,X, Y, Z basis is,

Ĥtot
D,X,Y,Z(K)=

[
E0,0 +

~2(K2
x +K2

y )

2M

]
I +

Ed −αxyKy αyxKx 0

−αxyKy Et 0 −iαyxKx

αyxKx 0 Et −iαxyKy

0 iαyxKx iαxyKy Ez

 . (S12)

In this expression, I is the 4x4 unit matrix. Importantly the fine structure Hamiltonian

in Eq. (S12) is not rotationally invariant in the general case. Nevertheless we can find

solutions in several special cases. For the special case when Ez = Et , and if αyx = ±αxy
again corresponding to the pure Rashba case, αxy = α , or the pure Dresselhaus case,

αxy = β , the eigenvalues are,

E1,±1(K) = E0,0 + ∆ +
~2K2

2M
±Kmeαxy

M
,

E1/2±1/2,0(K) = E0,0 +
~2K2

2M
+

∆

2
±
√

∆2M2 + 4K2(meαxy)2

2M
. (S13)

Here, ∆ ≡ Et − Ed is the energy difference between the degenerate X and Y states and

the dark exciton state. The subscripts on the energy in this expression refer to projection of

the exciton angular momentum along a quantization axis that varies with K , taken in the

direction of the effective magnetic field at the given K point as described in the main text.
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In the case of large dark- bright exciton splitting, ∆ , the Rashba terms result in a small

correction to the effective mass of the exciton center of mass motion for the bright and dark

excitons with FFzB
= 0 :

E1,0(K) = E0,0 +
~2K2

2M
+ ∆ +

~2K2

∆

(meαxy
M

)2
,

E0,0(K) = E0,0 +
~2K2

2M
− ~2K2

∆

(meαxy
M

)2
, (S14)

In the more general case that the Z exciton state is split from the X and Y states, the

triplet degeneracy at K = 0 is lifted, resulting in a doublet with energy Et and a singlet

with energy Ez 6= Et at K = 0 . We set δz ≡ Ez − Et and write the energies in the pure

Rashba or pure Dresselhaus cases as,

E1,±1(K) = E0,0 + ∆ +
~2K2

2M
+
δz
2
±
√
δ2zM

2 + 4K2(meαxy)2

2M
,

E1/2±1/2,0(K) = E0,0 +
~2K2

2M
+

∆

2
±
√

∆2M2 + 4K2(meαxy)2

2M
, (S15)

The resulting dispersion and spin textures are plotted in Fig. S1. Parameters are the same

as in Fig. 3 of the main text, but the bright triplet is assumed in Fig. S1 to be split by

crystal field splitting, reflected in the triplet energies Ex = Ey = Et = 11.4 meV, and

Ez = 1.2 meV above the dark state at energy ED = 0 meV.S1,S4

In the general case that αyx 6= αxy where we have mixed Rashba and Dresselhaus char-

acter, we can also find analytical solutions for the energy. The general result is,

E1,±1(K) = E0,0 + ∆ +
~2K2

2M
+
δz
2
±

√
δ2zM

2 + 4me(K2
xα

2
yx +K2

yα
2
xy)

2M
,

E1/2±1/2,0(K) = E0,0 +
~2K2

2M
+

∆

2
±

√
∆2M2 + 4me(K2

xα
2
yx +K2

yα
2
xy)

2M
, (S16)

These solutions give energy contours that are not rotationally invariant about the z axis.

In the most general case that the X and Y excitons are split are K = 0 , there is no closed

form solution but the energies can be found using numerical diagonalization.

B. Effect of angular momentum textures: Transformation to rotated coordinate

system

To understand the angular momentum textures of the excitons, it is useful to align the

in-plane coordinate system with the direction of the wave vector K . To do so, we represent

K = K(cosφnx + sinφny) , where K =
√
k2x +K2

y , nx and ny are unit vectors along the
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Figure S1. Exciton energies and angular momentum textures in 2D layered perovskite with inver-

sion symmetry breaking along the ẑ direction normal to the 2D plane, with crystal field splitting

of the bright triplet. The bright triplet is assumed to be split by crystal field splitting, reflected in

the triplet energies Ex = Ey = Et = 11.4 meV, and Ez = 1.2 meV above the dark state at energy

ED = 0 meV.S1,S4 Panels A and B show the energies calculated versus wave vector K = Kyŷ for

pure Rashba and pure 2D-Dresselhaus spin textures, respectively, with α = 156 meV · nm , β = 0

in A, and α = 0 , β = 156 meV ·nm in B. Electron and hole effective masses me = mh = 0.25m0 .

The dispersion curves for each fine structure level in panels A and B are labelled according to

(F, FzB ) , the exciton total angular momentum and its projection on an axis aligned to the effec-

tive magnetic field, see main text. The curves in A and B are identical reflecting symmetry under

rotation about the ẑ axis as evident in the insets of each figure, which show 3D plots of the energy

surfaces in the Kx,Ky plane for the levels (1,±1) . Panel C(D) shows the angular momentum

textures for these two states along constant energy contours at E = 70 meV with parameters

identical to panel A(B), respectively.
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original x and y directions and angle φ is the angle between the new x′ axis, (parallel to

K ) and the original x axis in the 2D plane. The transition to this coordinate system leads

to a unitary transformation of Hamiltonian ĤD,X,Y,Z
R,COM (K) to a basis |D〉 , |X ′〉 , |Y ′〉 , |Z〉

where the Hamiltonian can be represented as

ĤD,X′,Y ′,Z
R,COM (K,φ) =

me

M
K × (S17)

0 −(αxy − αyx) sinφ cosφ αxy sin2 φ+ αyx cos2 φ 0

−(αxy − αyx) sinφ cosφ 0 0 −i(αxy sin2 φ+ αyx cos2 φ)

αxy sin2 φ+ αyx cos2 φ 0 0 −i(αxy − αyx) sinφ cosφ

0 i(αxy sin2 φ+ αyx cos2 φ) i(αxy − αyx) sinφ cosφ 0

 (S18)

(S19)

The eigenfunctions of the Hamiltonian in Eq. (S19) are a mixture of the basis states |D〉 ,

|X ′〉 , |Y ′〉 , and |Z〉 . As a result each of the eigenstates of the Hamiltonian in Eq. (S19)

has a well defined polarization which is described by the combination of three orthogonal

linear polarized dipoles and the dipole forbidden state. The exact combination can be found

by diagonalization of the total Hamiltonian

Ĥtot = ĤINT + ĤD,X′,Y ′,Z
R,COM (K,φ) (S20)

where ĤINT describes the fine structure of the exciton connected with exciton internal

motion at K = 0 . The general solution of this problem cannot be put into in closed form

but expressions for the pure Rashba and pure Dresselhaus cases are instructive.

In the pure Rashba case, corresponding to αyx = αxy = α , Eq. S19 becomes,

ĤD,X′,Y ′,Z
R,COM (K,φ) =

me

M
K


0 0 α 0

0 0 0 −iα

α 0 0 0

0 iα 0 0

 (S21)

Adding the center of mass and internal motion terms the total Hamiltonian is given for all

values φ by,

Ĥtot
D,X′,Y ′,Z(K) =

(
E0,0 + ~2K2

2M

)
I +


Ed 0 me

M
Kα 0

0 Et 0 −ime

M
Kα

me

M
Kα 0 Et 0

0 ime

M
Kα 0 Ez

 , (S22)

Recalling that the matrix is represented in the O′ basis taken in the order D,X ′, Y ′, Z ,

this matrix clearly shows that the exciton eigenstates comprise two uncoupled pairs, one pair
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comprising mixtures of the D and Y ′ basis states and the other comprising mixtures of the

X ′ and Z basis states. Since the wave vector is in the X ′ direction, these state couple to

light with linear dipoles (the x′ components of the states cannot couple to light propagating

in the x′ direction). The energy eigenvalues are given by Eq. S15 using αxy = α.

The pure Dresselhaus case, corresponding to αxy = β = −αyx , Eq. S19, is distinctly

different. In this case the COM Hamiltonian becomes,

ĤD,X′,Y ′,Z
R,COM (K,φ) =

me

M
K


0 −β sin 2φ −β cos 2φ 0

−β sin 2φ 0 0 iβ cos 2φ

−β cos 2φ 0 0 −iβ sin 2φ

0 −iβ cos 2φ iβ sin 2φ 0

 , (S23)

This matrix can also be put into the form of two decoupled pairs, but the mixtures are more

complex than in the pure Rashba case. It is simplest to analyze the matrix in two special

cases. If φ = π/2n where n is an integer, that is, when K is along the x or y axes, then

the matrix becomes identical to the one shown for the pure Rashba case and the eigenstates

are the same. This reflects the fact that the direction of the effective magnetic field is the

same for pure Rashba and Dresselhaus spin textures for K directed along the symmetry

axes Kx and Ky , see Fig. 2 in the main text. On the other hand, when φ = π/4(2n + 1)

with n integer, then the matrix is distinct from that of the pure Rashba case:

ĤD,X′,Y ′,Z
R,COM

(
K,φ =

π(2n+ 1)

4

)
= (−1)n

me

M
Kβ


0 −1 0 0

−1 0 0 0

0 0 0 −i

0 0 i 0

 . (S24)

In this case it is clear that there are two decoupled pairs of states, one pair comprising

mixtures of the D and X ′ basis states and the other comprising a superposition of the

Y ′ and Z basis states. The later pair has a total angular momentum F = 1 with the

projection of angular momentum in the direction of K of FK̂ = ±1 and therefore has

helicity. These states will couple preferentially to helical light with positive and negative

helicity, respectively. To show this we add in the center of mass and internal motion terms

to form the total Hamiltonian for φ = π/4 , that is, with K along the line Kx = Ky . In
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this case the Hamiltonian is,

Ĥtot
D,X′,Y ′,Z(Kx = Ky) =

(
E0,0 + ~2K2

2M

)
I +


Ed −me

M
Kβ 0 0

−me

M
Kβ Et 0 0

0 0 Et −ime

M
Kβ

0 0 ime

M
Kβ Ez

 , (S25)

The energy eigenvalues are again given by Eq. S15 using αxy = β.

S2. CD CALCULATION

A. Description of polarization and CD measurement geometry

In this study we calculate the magnitude of the CD signal of a 2D perovskite layer with

orthorhombic symmetry C2v . We consider the sample, depicted in Fig. S2, to be oriented

in the x, y plane, with the 2D layers parallel to the top surface of the sample which is

normal to the z direction. The sample has two-fold rotational symmetry about the z axis,

with inversion symmetry broken along the z direction, and mirror symmetry through the

x, z and y, z planes. The sample is assumed to have refractive index nmat and to be

illuminated from air at a polar incidence angle θ measured from the vertical, z , axis in

a plane of incidence defined by azimuthal angle φ measured from the x axis according

to Fig. S2. We consider the incident light to be circularly polarized with helicity ±1 ,

corresponding to angular momentum ±1 along the K direction. For light with its wave

vector kph directed in the positive ẑ direction the ±1 polarizations vectors are,

ê± =
x̂± iŷ√

2
(S26)

These correspond to left ( + ) and right (− ) circular polarization respectively.S5 The vector

potential of ê± helical light of amplitude A0 propagating in the ẑ direction is therefore,

A±,kph=kphẑ = A0ê± = A0
x̂± iŷ√

2
(S27)

The incident light wave vector shown in Fig. S2 is not propagating in the positive ẑ

direction. To determine the vector potential we must rotate both the wavevector kph and

the polarization vectors ê± into an orientation corresponding with the schematic. First

consider light incident in the positive ẑ direction, kph = kphẑ ; we need to obtain kph ,

and the polarization vectors ê± oriented as in the figure with polar angle θ towards the
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Figure S2. Schematic of the sample and CD measurement geometry. Circularly polarized light

with polarization ê± and wave vector kph is incident from air onto the sample, which has refractive

index nmat . The light is incident at polar angle θ measured from the layer normal, at azimuth

angle φ measured from the x axis. The sample has 2D perovskite layers and orthorhombic

symmetry. Layers are oriented in the x, y plane, parallel to the top surface of the sample which is

normal to the inversion symmetry breaking direction along z . The sample has two-fold rotational

symmetry about the z axis and mirror symmetry through the x, z and y, z planes.

negative x̂ direction and azimuth angle φ relative to the x̂ direction. This transformation

is accomplished by first rotating about the ŷ direction by angle γ = π − θinc using kph =

R̃y(γ)kphẑ where the rotation is represented by the matrix,

R̃y(γ) =


cos γ 0 + sin γ

0 1 0

− sin γ 0 cos γ

 (S28)

Following this rotation the vectors are rotated about the positive ẑ direction using the

rotation operator R̃z(φ) represented by,

R̃z(φ) =


cosφ − sinφ 0

+ sinφ cosφ 0

0 0 1

 (S29)
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An additional detail must be accounted for however: The angle of propagation of the light

inside the perovskite layer, θmat, is related to the exterior angle of incidence θ by Snell’s

law,

sin θ = nmat sin θmat (S30)

Moreover the amplitude of the transmitted electric field is modified by the polarization-

dependent Fresnel amplitude transmission coefficients. For light with its field vector polar-

ized parallel versus perpendicular to the incidence plane these coefficients are given by,

t‖(θ, θmat) =
2 cos θ

cos θmat + nmat cos θ
(S31)

t⊥(θ, θmat) =
2 cos θ

cos θ + nmat cos θmat
. (S32)

The amplitude transmission coefficients are shown in Fig S3 calculated for light incident

from air (refractive index 1) into a perovskite sample with a refractive index nmat = 5.

At large incidence angles θ the degree of circular polarization of the transmitted light is

reduced due to the fact that the field component perpendicular to the plane of incidence has

lower transmission that the field component parallel to the plane of incidence. This effect

needs to be taken into account for a CD measurement where the incident light is set to be

perfectly circular in the laboratory before impinging on the sample. The effect is that, for

light propagating as shown in Fig. S2 the transmitted light has wave vector kph,mat , with

magnitude kph,mat = 2πnmat/λ0 and direction defined by azimuthal angle φ , polar angle

θmat from the vertical, set by Snell’s law. It has amplitude,

A±(θmat, φ) = A0ê±(θmat, φ) (S33)

where we have defined,

ê±(θmat, φ) ≡ 1√
2

[
t‖(θmat)ê‖(θmat, φ)± it⊥(θmat)ê⊥(θmat, φ)

]
. (S34)

Here, the vectors ê‖ and ê⊥ set the two orthogonal polarization directions normal to

the direction of propagation kph,mat in the material, parallel and perpendicular to the plane

of incidence, respectively. These are found by starting from Eq. S26 for light propagating

in the positive ẑ direction and rotating them using the rotation matrices, Eqs. S28-S29:

ê‖(θmat, φ) = R̃z(φ)R̃y(π − θmat)x̂ (S35)

ê⊥(θmat, φ) = R̃z(φ)R̃y(π − θmat)ŷ (S36)



S12

For reference, the result for light incident in the x, z plane (φ = 0 ) is,

ê‖(θmat, 0) = − 1√
2

(cos θmatx̂ + sin θmatẑ) (S37)

ê⊥(θmat, 0) =
1√
2
ŷ (S38)

Figure S3. Amplitude transmission coefficients t‖ and t⊥ for light with polarization parallel

( ‖ ) and perpendicular (⊥ ) to the plane of incidence. Light is incident from air ( ninc = 1 ) into

a perovskite film with refractive index nmat =
√

5 corresponding to a high frequency dielectric

constant of ε∞ = 5 , which is typical of metal halide perovskites. Light incident at polar angle θ

measured from the layer normal transmits into the sample with angle θmat determined by Snell’s

law, Eq. S30. The amplitude of the components of the electric field of the vector potential are

modified by the Fresnel amplitude transmission coefficients t‖ and t⊥ calculated using Eq.S31-S32,

respectively. At large incidence angles θ the degree of circular polarization of incident circularly

polarized light is reduced due to the fact that the field component perpendicular to the plane of

incidence has lower transmission that the field component parallel to the plane of incidence.

B. Circular dichroism calculation

In the last section we showed how circularly polarized light is modified when it is trans-

mitted at an angle into a planar material. We now calculate the magnitude of absorption,

and circular dichroism (CD) for the light interacting with a given j exciton state. We con-

sider light incident on the 2D layer with wave vector kph at azimuthal angle φ measured
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from the x̂ direction, at polar angle θ measured from the vertical direction n̂z , and has

polarization ê in air. Once transmitted into the medium its magnitude, Am
± (θmat, φ) is

given by Eq. S33. The probability of excitation of exciton sub-level j of the ground 2D

exciton state with in-plane wave vector K can be described by Fermi’s golden rule:

WK,j =
2π

~
|〈ΨK,j|Ĥint|G〉|2δ(Ej(K)− ~ω) . (S39)

Here, |G〉 is the crystal ground state, which is represented by G = δ(re − rh)
S6, ~ω is the

energy of absorbed photons, and Ej(K) is the energy of the jth exciton sub-level.

The light-matter interaction Hamiltonian Ĥint = −(e/m0c)A
m · p̂ is expressed as usual

in terms of the inner product of the dipole operator p̂ and the vector potential A . To

evaluate this matrix element we need the expression for the exciton wave function. The

wave functions of these states can be obtained easily in the uncoupled electron hole pair “P”

basis , |uje=1/2〉|ujh=1/2〉 , |uje=1/2〉|ujh=−1/2〉 , |uje=−1/2〉|ujh=1/2〉 and |uje=−1/2〉|ujh=−1/2〉 ,

as,

ΨP
K,j(R, r) =

exp(iK ·R)√
S

φ1,0(r)
∑

je=±1/2,jh=±1/2

Cj
je,jh

(K)|uje〉|ujh〉 (S40)

where the coefficients Cj
je,jh

(K) describe the eigenstate of the corresponding matrix. Alter-

nately, having explicitly developed above a description of the exciton fine structure in terms

of the O , or D,X, Y, Z basis of exciton states |D〉 , |X〉 , |Y 〉 , |Z〉 , whose dipoles are

oriented along the X , Y , and Z directions, and the dark D exciton state, we can express

the exciton wave function in terms of this basis:

ΨOK,j(R, r) =
exp(iK ·R)√

S
φ1,0(r)

∑
i=D,X,Y,Z

Cj
i (K)|ui〉 , (S41)

where the coefficients Cj
i (K) describe the eigenstate in the basis of exciton states |ui〉

running over |D〉 , |X〉 , |Y 〉 , |Z〉 .

Either way, evaluating the matrix element in Eq. S39 for the exciton state ΨK,j we find,

〈ΨK,j|Ĥint|G〉 =
e

m0c
Am0 ê · Pj(K)φ1,0(0)δkph,⊥,K , (S42)

where ê is the polarization vector inside the layer described in Eq. (S34). The Kronecker

delta represents the well-known momentum conservation rule, reflecting conservation of mo-

mentum in the 2D layer. The wave vector K of the in-plane exciton created by absorption

of a photon must match the in-plane component kph,⊥ = kph − n̂z(kph · n̂z) of the photon
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that was absorbed. The contact term φn,0(0) in Eq. S42 is non-zero only for states with

m = 0 . Then, in the uncoupled basis, the transition dipole matrix elements are expressed

as,

Pj(K) =
∑
je,jh

[Cj
je,jh

(K)]∗〈ujeujh|p̂|G〉 =
∑
je,jh

[Cj
je,jh

(K)]∗〈uje|p̂T̂ |ujh〉 (S43)

where T̂ = −iσ̂y is the time reversal operator written in terms of the Pauli matrix σ̂y .S7 In

terms of the D,X, Y, Z basis the exciton transition dipole matrix element are expressed as,

Pj(K) =
∑
i=x,y,z

[Cj
i (K)]∗Pi = Pcv

∑
i=x,y,z

[Cj
i (K)]∗gin̂i (S44)

where n̂i are the unit vectors along the x , y and z directions, Pcv = −i〈s|p̂z|z〉 is

the Kane momentum matrix element, assumed equal for the |x〉 , |y〉 and |z〉 conduction

band Bloch states, and gi is a dimensionless parameter giving the relative magnitude of the

transition dipole matrix elements for the |X〉 , |Y 〉 and |Z〉 exciton basis states. The two

representations are related by the basis transformation: |ΨO〉 = m̂−1F,Om̂
−1
P,F |ΨP 〉 , where the

unitary transformation matrices are given in Eq. S3 and S6.

In our calculations we prefer the O basis, and we assume that the x, y and z dipoles

have equal relative magnitudes, gx = gy = gz . (Expressions for gi accounting for crystal

field effects within a six-band K ·P model can be found in Ref. S3). Using Eq. S44 we write

the strength of interaction of the exciton state j with the vector potential Am
± (θmat, φ) ,

neglecting common factors, as,

I±(j) = |Am
± (θmat, φ) · Pj(K)|2 (S45)

It is useful to define a normalized interaction strength for a given set of angles. This should

be normalized by the square of the magnitude of the light field, |Am± (θmat, φ)|2 . To normalize

the magnitude of the transition dipoles, we note that a given exciton state j has oscillator

strength fj given byS2,S3,

fj = f0f̃j . (S46)

Here, the parameter f0 = 2|Pcv|2/(m0~ω) represents the magnitude of the oscillator strength

for a band edge free carrier transition, while f̃j , introduced in Refs. S2,S3 is a reduced

oscillator strength that gives the relative magnitudes of the oscillator strengths among levels

within the exciton fine structure. It is proportional to the norm-square of the dipole for the
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state: f̃j = |Pj|2/|Pcv|2 = g2j . Noting that the sum of the reduced oscillator strengths taken

over the fine structure levels is a constant, an appropriate normalization is the average of the

reduced oscillator strengths taken over the bright exciton basis states X, Y, Z . We therefore

define f̃N as the as the average,

f̃N =
g2x + g2y + g2z

3
(S47)

Then the average squared norm of the transition dipoles taken over the X, Y, Z bright

exciton levels, is f̃N |Pcv|2 . Using this for our dipole normalization we define the normalized

interaction strength for exciton state K , j , as,

I±N(j) =
|Am
± (θmat, φ) · Pj(K)|2

|Am± (θmat, φ)|2f̃N |Pcv|2
(S48)

With this definition we define the circular dichroism for the state j as,

Pj = Iσ
+

med(j)− Iσ−med(j) (S49)

We note that this definition coincides with the degree of polarization for the exciton state

in a cubic perovskite with total angular momentum Fz = ±1 interacting with circularly

polarized light propagating in the ẑ direction.

C. Effect of linewidth broadening

The analysis in the last section provides a set of definitions for describing the CD of

an individual exciton level. In practice, the exciton transitions are broadened so that the

exciton sublevel transitions are often not individually resolvable. We model the effect of

linewidth broadening by convolving the absorption spectrum with a Gaussian line-shape

function,

G(E) =
1√
2πσ

e−E
2/(2σ2) (S50)

where the full-width at half maximum linewidth is given by 2
√

2 ln 2σ . We then calculate a

normalized absorption spectrum for circularly polarized incident light of +1 and −1 helicity

as a function of energy, I±N(E) , for light incident on the 2D layer with wave vector kph at

polar angle θ and azimuthal angle φ . The calculation, made parametrically as a function
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of the angles, is,

I±N(E) =
1

Imax

∑
j

I±N(j)G(E − Ej) . (S51)

In this expression, the sum is taken over the four exciton sub-levels j for a given K , and

the normalization factor Imax is included to normalize the peak absorption to unity. Then

the spectral CD signal is calculated as the difference of the normalized absorption spectra

for positive and negative circularly polarized light:

P (E) = I+N(E)− I−N(E) . (S52)

It should be noted that the spectral CD has a derivative line-shape as shown in the main

text, and similar to the phenomenon of magnetic circular dichroism.S8 It is straightforward

to show that in the limit that the level splitting between the FzB = ±1 transitions is small

compared to the LW, the maximum spectral CD signal occurs at energy ±σ above and

below the centroid Ec of the two transitions:

CDmax = |P (Ec ± σ)| (S53)

This quantity is calculated and displayed in Fig. 5 of the main text. The definition in

Eq. S52 above corresponds to the anisotropy factor defined in Ref. S9. From this quantity,

the ellipticity per unit absorbance can be determined at the exciton resonance as Θ =

P (E) ln 10/4(180◦/π) , or approximately Θ = P (E)× 32.98◦ .S9,S10
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