
Separating Controller Design from Closed-Loop Design:
A New Perspective on System-Level Controller Synthesis

Jing Shuang (Lisa) Li and Dimitar Ho

Abstract— We show that given a desired closed-loop response
for a system, there exists an affine subspace of controllers
that achieve this response. By leveraging the existence of
this subspace, we are able to separate controller design from
closed-loop design by first synthesizing the desired closed-loop
response and then synthesizing a controller that achieves the
desired response. This is a useful extension to the recently
introduced System Level Synthesis framework, in which the
controller and closed-loop response are jointly synthesized
and we cannot enforce controller-specific constraints without
subjecting the closed-loop map to the same constraints.

We demonstrate the importance of separating controller
design from closed-loop design with an example in which
communication delay and locality constraints cause standard
SLS to be infeasible. Using our new two-step procedure, we
are able to synthesize a controller that obeys the constraints
while only incurring a 3% increase in LQR cost compared to
the optimal LQR controller.

I. INTRODUCTION

Large-scale distributed cyberphysical systems (e.g. power
grids, intelligent transportation systems) are composed of
numerous local controllers that exchange local information
via some communication network. The information that each
local controller is able to obtain is limited by properties of
the communication network, e.g. delay. It is a challenge to
scalably synthesize optimal local controllers subject to the
limitations of the communication network [1]–[6].

The recently developed System Level Synthesis (SLS)
framework addresses this challenge by shifting the optimiza-
tion from the space of available controllers to the space
of achievable system closed-loop maps [7]. In doing so, it
allows the problem to be decomposed into sub-problems to
be solved in parallel, resulting in a synthesis procedure with
O(1) complexity [8].

In the original SLS framework, the closed-loop maps
themselves are used to implement the controller, and thus
any constraints applied to the controller are directly enforced
on the closed-loop response as well. However, the above-
mentioned communication limitations motivate constraints
on controllers, not closed-loop maps; by applying these
constraints on the closed-loop response, we unnecessarily
limit the space over which we can search for solutions.

Standard SLS is infeasible under excessive communication
constraints. [9] addresses this by searching over approximate
closed-loop maps instead of exact closed-loop maps; con-
straints are imposed on the approximate closed-loop maps.
We propose an alternative two-step procedure, as follows:

Authors are with the Department of Computing and Mathematical
Sciences, California Institute of Technology. jsli@caltech.edu,
dho@caltech.edu

1) Synthesize the desired closed-loop response, subject to
closed-loop constraints. This can be done using SLS
or any other linear synthesis method (Proposition 1)

2) Synthesize the controller, subject to controller con-
straints

To fully separate closed-loop map constraints from con-
troller constraints, we require a controller that is imple-
mented using transfer matrices other than the closed-loop
maps. We define the space of such matrices in Theorem 2
and give conditions for their existence in Lemma 2.1.

The main contribution of this paper is to introduce the con-
troller synthesis step of the design procedure and demonstrate
its importance. We show that our proposed two-step synthesis
allows us to design low-cost, distributed controllers that were
unavailable to us in the previous framework. Additionally,
the controller synthesis problem can be decomposed into
parallelizable sub-problems, much like the original SLS
problem.

II. PRELIMINARIES

A. Notation

We use italicized lower-case letters (e.g. xt) to denote vec-
tors in the time domain. We use italicized upper-case letters
(e.g. A) to denote constant matrices. We use superscripts to
denote individual matrix elements (e.g. Ai,j).

We use boldface lower and upper case letters (eg. x, Φx,
Rc) to denote signals and transfer matrices in the frequency
domain. We use Rc(k) to denote the kth spectral component
of Rc, i.e. Rc(z) =

∑∞
k=0Rc(k)z−k.

In this paper, we will restrict ourselves to strictly proper
finite-impulse-response (FIR) transfer matrices, i.e. Rc(z) =∑T
k=1Rc(k)z−k, T ∈ Z+.

B. System setup

We use the same setup as in (2.1) of [7]:

xt+1 = Axt +But + wt (1)

where x, w ∈ Rn and u ∈ Rm. In this paper we focus on
the time-invariant case (i.e. A, B have no time-dependence)
with state feedback.

Φx and Φu are the closed-loop maps from w to x and u,
with FIR time horizon T :[

x
u

]
=

[
Φx

Φu

]
w (2)

ar
X

iv
:2

00
6.

05
04

0v
1

 [
ee

ss
.S

Y
]

 9
 J

un
 2

02
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/345074242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

zMc
x δ̂ u

I− zRc

−x̂

Fig. 1. Implementation of state feedback controller

C. Controller implementation

Fig. 1 shows the controller implementation. Rc and Mc

are the implementation matrices, with order (i.e. FIR time
horizon) Tc.

The controller includes two internal signals; x̂ and δ̂. The
equations describing the controller are

δ̂t = xt −
Tc∑
k=2

Rc(k)δ̂t−k+1 (3a)

ut =

Tc∑
k=1

Mc(k)δ̂t−k+1 (3b)

where (3a) assumes that Rc(1) is the identity. For a more de-
tailed derivation, refer to [10]. The corresponding frequency-
domain equations are

δ̂ = x + (I− zRc)δ̂ (4a)

x = zRcδ̂ (4b)

u = zMcδ̂ (4c)

Proposition 1. Any linear controller (i.e. u = Kx) can be
implemented using the controller structure defined in Fig. 1.

Proof. We can construct closed-loop maps Φx and Φu

directly from K, as shown in (4.4) of [7]:

Φx = (zI −A−BK)−1 (5a)

Φu = K(zI −A−BK)−1 (5b)

We can then set Rc = Φx and Mc = Φu in (4), which
gives back the original controller u = Kx.

III. IMPLEMENTATION MATRICES

A. Controllers and closed-loop maps

Theorem 1. Let (Φx, Φu) be stable closed-loop maps. The
only linear controller K (i.e. u = Kx) that achieves these
closed-loop maps is K = ΦuΦ

−1
x .

Proof. By Theorem 4.1 in [7], K = ΦuΦ
−1
x achieves the

closed-loop maps. We show uniqueness by contradiction.
Assume there is another linear controller K1, K1 6= K,
that also achieves the desired closed-loop maps. Since both
K and K1 achieve (Φx, Φu),

Φx = (zI −A−BK1)−1 = (zI −A−BK)−1 (6a)

Φu = K1(zI −A−BK1)−1 = K(zI −A−BK)−1 (6b)

Substituting (6a) into (6b) gives

K1Φx = KΦx (7)

Since Φx is invertible, this implies that K1 = K. Contra-
diction!

Theorem 1, along with the definitions from (5), show a
one-to-one mapping between (Φx, Φu) and K. However, the
linear controller K can be implemented in a variety of ways.
For example, we could directly implement u = Kx; we
could also implement a linear controller using the structure
shown in Figure 1. In the original SLS framework, the latter
is used to avoid direct matrix inversion of Φx.

B. Implementing closed-loop maps

For the controller structure defined in Fig. 1, let the
controller implemented by (Rc, Mc) achieve closed-loop
maps (Φ̃x, Φ̃u). We define the following terminology:

Definition 1. (Rc, Mc) are the implementation transfer
matrices for the closed-loop maps (Φ̃x, Φ̃u). We will refer
to them as implementation matrices.

Definition 2. We call (Φ̃x, Φ̃u) the implemented closed-loop
maps of the controller (Rc, Mc).

The implemented closed-loop maps are found by combin-
ing (3) and (1) as done in [10]:[

Φ̃x

Φ̃u

]
=

[
Rc

Mc

]
∆c
−1 (8)

Where ∆c is a helper variable defined as

∆c =
[
zI −A −B

] [Rc

Mc

]
(9)

Note that ∆c can also be written as I + ∆. This is the
same formulation used by (4.22) in [7], modulo notational
differences (we use Rc and Mc instead of Φ̂x, Φ̂u). ∆c is
invertible since its leading spectral element, I , is invertible.

Our analysis largely focuses on closed-loop maps
(Φx,Φu) instead of the controller K. However, due to
the one-to-one mapping between controller and closed-loop
maps, we can also view (Rc, Mc) as implementation matri-
ces for the controller K = ΦuΦ

−1
x .

Theorem 2. For Rc(1) = I , (Rc, Mc) are implementation
matrices for (Φx, Φu) if and only if they satisfy[

Rc

Mc

]
=

[
Φx

Φu

] [
zI −A −B

] [Rc

Mc

]
(10)

Proof. Necessity. If (Rc, Mc) are implementation matrices
for (Φx, Φu), then we require[

Φ̃x

Φ̃u

]
=

[
Φx

Φu

]
(11)

Substituting (8) into (11) and multiplying by ∆c, then
writing out ∆c in terms of (A, B, Rc, Mc), gives (10).

Sufficiency. If (Rc, Mc) satisfy (10), we can substitute
(10) into (8) to conclude that (Φ̃x, Φ̃u) = (Φx, Φu), i.e.
(Rc, Mc) are implementation matrices for (Φx, Φu).

This constraint describes an affine subspace of implemen-
tation matrices for (Φx, Φu).

Corollary 2.1. If (Rc, Mc) are implementation matrices for
(Φx, Φu), then the first spectral components of Φu and Mc

are equal, i.e. Mc(1) = Φu(1).

This equivalence arises directly from writing (10) in terms
of its spectral elements.

Corollary 2.2. For Tc ≥ T , (Φx, Φu) are implementation
matrices for themselves.

(Φx, Φu) are used as implementation matrices in [7].

Corollary 2.3. If (Rc, Mc) are implementation matrices for
(Φx, Φu), then K = ΦuΦ

−1
x = McRc

−1

C. Existence of solutions

To better understand the dimension of the space of im-
plementation matrices, we rearrange the constraint (10) so
that the variables (Rc, Mc) appear on only one side of the
constraint.

Rewrite ∆c in block-matrix form:

∆c(0)
∆c(1)

...
∆c(Tc)

 =

I 0
−A I −B

.
−A −B

Rc(1)
...

Rc(Tc)
Mc(1)

...
Mc(Tc)

(12)

Rewrite the right hand side of (10) in block-matrix form:

Rc(1)
...
...

Rc(Tc)
0
...
0

=

Φx(1)

Φx(2)
. . .

...
Φx(T)

. . .
Φx(T)

∆c(0)
∆c(1)

...
∆c(Tc)

 (13)

We show only the formulation for Rc; the formulation for
Mc is identical but with Φu and Mc instead of Φx and Rc.

Using the block-matrix formulations, we can rearrange
(10) into a constraint of the form

Fv = G (14a)

v =

Rc(2)
...

Rc(Tc)
Mc(1)

...
Mc(Tc)

(14b)

where F and G are matrices that do not depend on Rc

and Mc. The total number of constraints is (Tc+T)(m+n).

Lemma 2.1. The implementation constraints (as defined in
(10)) are feasible if and only if rank(F) = rank(F |G). If
feasible, the solution space has dimension dim(null(F))×n,
where n is the number of states in the system.

Proof. This result is a direct application of the Rouché-
Capelli theorem to the linear system defined in (14).

Corollary 2.2 states that (10) has at least one solution for
Tc ≥ T . When Tc < T , we can check the rank of F and
[F |G] and calculate the dimension of the solution space if it
exists.

IV. STABILITY

A. Internal dynamics

The system is internally stable if the dynamics of δ̂, the
internal signal, are stable. By substituting (3) into (1) and
rearranging, we can obtain internal dynamics of the form

zt =

δ̂t−Tc+1

...
δ̂t−1
δ̂t

 , zt+1 = Azzt (15a)

Az =

0 I . . . 0 0
...

. . .
0 0 . . . 0 I

−∆c(Tc) . . . −∆c(1)

 (15b)

B. Stability check

We can verify internal stability a posteriori by checking
that Az is stable. Alternatively, a sufficient condition for
internal stability is ‖∆‖ < 1 [7].

The stability of Az can be checked in a distributed manner.
First, a helpful proposition:

Proposition 2. Let ‖ · ‖ be an induced matrix norm. For
A ∈ Rn×n, if ∃m > 0 s.t. ‖Am‖ < 1, then A is stable.

Proof. Let ρ = ‖Am‖1/m, ρ ∈ [0, 1). Using norm submul-
tiplicativity and some algebra, we can show that ∀t > m,
‖At‖ ≤ Cρt where C is some constant. Using this upper
bound and induced norm properties, we can show that ∀xo ∈
Rn, limt→∞ ‖Atxo‖ = 0. This is the definition of stability
in the discrete time setting.

Let each processor store Az and some columns of Akz ,
denoted Akz(i:j). Overall, every column of Akz is stored on
some processor. The stability check procedure is as follows,
starting with k = 1:

1) Calculate Akz(i:j) by multiplying Az and Ak−1z(i:j)

2) Check the induced 1-to-1 norm of Akz(i:j)
3) Consensus on whether a termination condition has

been met. If no termination condition is met, increment
k and return to Step 1

The clear termination condition is ‖Akz‖ < 1; then, Az
is certified to be stable by Proposition 2. We suggest two
additional termination conditions:

• ‖Akz‖ > M , where M is some predetermined threshold.
Since ‖Akz‖ corresponds to the amplitude of the tran-
sient response, this termination condition corresponds
to finding an unacceptably large transient condition

• k > kmax, where kmax is some predetermined maxi-
mum number of iterations

Both conditions would indicate that the stability check
failed to certify stability. Since we select a column-wise
separable norm, the entire procedure can be distributed. The
complexity per iteration scales quadratically with n, under
the conservative assumption that each node has at least one
processor. For the system in Section VII, this procedure
certifies stability in 7 iterations for the low-order controller
and 32 iterations for the full-order controller.

V. APPROXIMATE IMPLEMENTATIONS
The solution space defined by (10), although it exists for

Tc ≥ T , often yields solutions that are unstable. Further,
Corollary 2.1 gives a fundamental limit on the sparsity of
Mc. If Φu(1) is dense, we cannot find implementation ma-
trices that support any type of sparsity (e.g. communication
delay, locality). These necessitate relaxations of (10).

For a relaxed implementation, we want the implemented
closed-loop maps (Φ̃x, Φ̃u) to be as close to the optimal
closed-loop maps (Φx, Φu) as possible while maintaining
internal stability, i.e.

min
Rc,Mc

‖
[

Rc

Mc

]
(I + ∆)−1 −

[
Φx

Φu

]
‖

s.t. (I + ∆)−1stable,
[

Rc

Mc

]
∈ S

(16)

where S includes sparsity and FIR constraints, and I +
∆ = ∆c. This optimization problem is clearly nonconvex.
Factoring the objective function as

‖(
[

Rc

Mc

]
−
[
Φx

Φu

]
(I + ∆))(I + ∆)−1‖ (17)

and using similar submultiplicativity, small-gain, and power
series arguments as Section 4.5.1 of [7], we can upper
bound the optimization problem (16) with this quasi-convex
problem:

min
γ∈[0,1)

1

1− γ
min

Rc,Mc,∆
‖
[

Rc

Mc

]
−
[
Φx

Φu

]
(I + ∆)‖

s.t.
[
zI −A −B

] [Rc

Mc

]
= (I + ∆),

‖∆‖ ≤ γ,
[

Rc

Mc

]
∈ S

(18)

This is similar to the virtualized SLS method [9] [7],
with one key difference. For an objective g(Φx,Φu), the
virtualized SLS method uses g(Rc,Mc) as the objective,
while our two-step method uses

‖
[

Rc

Mc

]
−
[
Φx

Φu

]
(I + ∆)‖ (19)

as the objective. This is the equation error for (10), and is a
heuristic for the closed-loop difference.

The nested optimization problem defined by (18) is time-
consuming to solve; it can also be mathematically infeasible
if the sparsity constraints S are too strict. We instead solve
(20), which is much quicker and uses a regularizer on ∆ to
promote stability. We suggest starting with a small λ, solving
(20), checking for stability using the distributed method
presented in Section IV-B, and increasing λ if the stability
check is failed. Alternatively, we can enforce ‖∆‖ < 1.

min
Rc,Mc,∆

‖
[

Rc

Mc

]
−
[
Φx

Φu

]
(I + ∆)‖+ λ‖∆‖

s.t.
[
zI −A −B

] [Rc

Mc

]
= (I + ∆),

[
Rc

Mc

]
∈ S

(20)
We can also include additional objectives in (20), e.g. L1

regularization on (Rc, Mc) to promote sparsity.
The optimization problem (20) is column-wise separable if

we choose a column-wise separable norm for the objective
(e.g. H2 norm). Like the original SLS problem, it can be
decomposed into subproblems to be solved in parallel.

VI. CLOSED-LOOP CONSTRAINTS VS.
CONTROLLER CONSTRAINTS

In this section, we discuss the physical interpretation of
separately applying locality and delay constraints to the
closed-loop and to the controller, and when such constraints
are appropriate. This separation is not possible in standard
SLS, since the closed-loop maps themselves are used as
implementation matrices for the controller.

First, a result on how applying controller constraints on
the closed-loop maps can be overly restrictive:

Lemma 2.2. Let K be the controller corresponding to the
closed-loop maps (Φx, Φu). Then, the operator Φu lies in
the range of the operator K.

Proof. By Theorem 1, we have that KΦx = Φu.

Lemma 2.2 shows that sparsity constraints (e.g. locality,
delay) on K will translate to sparsity constraints on Φu, but
not Φx; directly applying these constraints on Φx may be
too restrictive. Note that although it is also true that KRc

= Mc, both Mc and Rc must obey sparsity constraints as
they are directly used in the implementation.

A. Locality

Let L(i) denote the locality of node i. Generally, L(i)
consists of the l closest neighbours of node i in the network.
Locality constraints restrict spectral components of Rc and
Mc (or Φx and Φu) to have nonzero support only over the
allowed localities; i.e.

Rc(k)i,j = 0 ∀j /∈ L(i)

BMc(k)i,j = 0 ∀j /∈ L(i)
(21)

where B is the actuation matrix of the system.
For a system with nodes arranged in a chain configuration

and L(i) equal to the l closest neighbours of node i, these

constraints result in banded diagonal Rc(k) and Mc(k) with
a band width of 2l + 1 ∀k.

When we apply locality constraints on the implementation
matrices as per (21), we enforce that node i will only
communicate with nodes in L(i) for all time. When we apply
locality constraints on the closed-loop maps (i.e. replace
Rc and Mc in (21) with Φx and Φu), we limit how far
a disturbance at a node spreads before it is contained.
While both are useful, controller locality tends to be a
hard constraint that arises from physical limitations in the
communication network, while closed-loop locality is a soft
constraint that can be relaxed.

B. Delay
Let d(i, j) denote the delay from node j to node i. In

general, d(i, j) is proportional to the distance between nodes
i and j. Delay constraints are like time-varying locality
constraints with an expanding locality, where L(i) at time k
contains all nodes j for which k ≥ d(i, j). Delay constraints
are enforced as follows:

Rc(k)i,j = 0 ∀k < d(i, j)

BMc(k)i,j = 0 ∀k < d(i, j)
(22)

where B is the actuation matrix of the system.
For a system in a chain configuration and d(i, j) pro-

portional to inter-nodal distance, these constraints result in
banded diagonal Rc(k) and Mc(k), with wider bands for
higher values of k.

When we apply delay constraints on the implementation
matrices as per (22), we are ensuring that controllers do not
require information that cannot be communicated to them
in time. For example, node i cannot use any information
about node j that is more recent than t − d(i, j). When
we apply delay constraints on the closed-loop maps (i.e.
replace Rc and Mc in (22) with Φx and Φu), we limit
how fast a disturbance at node j propagates to the state
and input at node i. As with locality, the controller delay
constraint tends to be a hard constraint arising from physical
communication limitations. Unlike in the locality case, the
closed-loop delay constraint serves no clear purpose; by
separating the controller design from the closed-loop design,
we avoid imposing this unnecessary constraint on the closed-
loop map.

C. Delay and locality as optimization objectives
We can augment the objective in (20) with the following

terms to encourage tolerance for communication delay:
Tc∑
k=1

n∑
i=1

n∑
j=1

edist(i,j)−k(‖Rc(k)i,j‖+ ‖BMc(k)i,j‖) (23)

where dist(i, j) is the distance between nodes i and j in the
network.

We can encourage tolerance for communication locality
by using similar terms (note the removal of k from the
exponential weight):

Tc∑
k=1

n∑
i=1

n∑
j=1

edist(i,j)(‖Rc(k)i,j‖+ ‖BMc(k)i,j‖) (24)

Again taking the chain configuration as an example, these
terms encourage banded-diagonal Rc(k) and Mc(k) with
higher penalties on elements farther away from the diagonal.
Elements that survive despite heavy penalty represent edges
in the network that require fast communication in order to
best preserve the desired closed-loop map.

VII. EXAMPLES
All subsequent analysis was done on MATLAB using the

cvx toolbox with SDPT3 on the low precision setting. The
optimization was done on a laptop with an Intel i7 processor
and 8GB of RAM.

The system we work with is a 10-node chain with the
following tridiagonal A matrix:

A =

0.6 0.4 0 . . .

0.4 0.2
. . .

0
.

...
. . . 0.2 0.4

0.4 0.6

(25)

The system has three actuators, located at nodes 3, 6, and
10. The system is marginally stable, with a spectral radius of
1. General observations below extend to larger chains with
similarly sparse actuation.

A. Low-norm centralized controllers

We first synthesize a desired closed-loop map via SLS,
with no communication or locality constraints. We use an
FIR horizon of T = 20 and an LQR objective. We then
synthesize unconstrained controllers using (20) with an ad-
ditional L1 regularization term on (Rc, Mc). We synthesize
controllers with order ranging from Tc = 2 to Tc = 25.

5 10 15 20 25
Tc

0

0.02

0.04

0.06

0.08

0.1

%
 d

iff
er

en
ce

Closed-loop differences

x_diff

u_diff

5 10 15 20 25
Tc

0.2

0.4

0.6

0.8

1

sp
ec

tr
al

 r
ad

iu
s

Spectral radii

new
original

5 10 15 20 25
Tc

0

2

4

6

8

10

L1
 n

or
m

L1 norms

new
original

Fig. 2. Closed-loop differences, spectral radii of internal dynamics, and
L1 norms for controllers with varying Tc

Fig. 2 shows the differences between the desired closed
loop maps (Φx, Φu) and the implemented closed-loop maps
(Φ̃x, Φ̃u), normalized by ‖Φx‖ and ‖Φu‖, respectively. As
expected, the closed loop differences decrease with increas-
ing Tc. Interestingly, we are able to approximate the system
relatively well even for Tc � T ; at Tc = 2, we are less than
10% away from the optimal closed-loop map.

Fig. 2 also shows the spectral radii of Az . The spectral
radius of the original controller is far lower than that of
the new controllers, suggesting a possible tradeoff between
controller norm and internal stability margins. All imple-
mentations are internally stable, and spectral radius remains
relatively constant over Tc.

Lastly, Fig. 2 shows the L1 norms of the implementation
matrices. All new controllers have significantly lower norm
than the original controller, and L1 norm remains almost
constant over Tc.

B. Localized LQR controller

In this example, separating closed-loop synthesis from
controller synthesis yields much better results than the origi-
nal synthesis procedure, in which controller and closed-loop
synthesis are coupled.

The objective of this example is to synthesize a controller
with an LQR objective and FIR horizon of T = 20. An SLS
formulation of LQR can be found in [11]. The following
constraints must be obeyed: the controller at each node is
only allowed to use information from its two neighbouring
nodes, and communication speed is restricted to be the same
speed as propagation speed.

Directly applying the constraints to the closed-loop map
renders the standard SLS problem infeasible (“Constrained
CL map” in Table I); the algorithm cannot find a controller
that meets the constraints. We use the virtual localization
technique introduced in [9] to synthesize a controller that
meets these constraints (“Virtually local” in Table I), while
relaxing the constraints on the closed-loop map.

We then apply our proposed two-step procedure. First,
we synthesize the desired closed-loop maps (Φx, Φu) via
SLS without communication and locality constraints. We use
these closed-loop maps to implement a centralized controller
for comparison purposes (“FIR centralized” in Table I). We
then synthesize a controller subject to the communication and
locality constraints (“Two-step” in Table I), using (20) with
L1 regularization. We synthesize one low-order controller
with order Tc = 2, and one full-order controller with Tc = T .

For all controllers, we evaluate the LQR cost, spectral
radius of the internal dynamics, and L1 norm of the im-
plementation matrices. The LQR cost is normalized by the
optimal infinite horizon LQR cost. Results are shown in
Table I.

TABLE I
COMPARISON OF LQR COSTS

Controller LQR cost Spectral radius L1 norm
FIR centralized 1.001 0.214 9.688
Constrained CL map Infeasible
Virtually local 1.294 0.847 9.704
Two-step, Tc = T 1.033 0.876 1.495
Two-step, Tc = 2 1.034 0.851 1.426

In this example, both the full-order and low-order con-
troller (“Two-step”) give an LQR cost increase of about 3%
over the optimal infinite-horizon controller. In contrast, the
virtually local controller incurs a cost increase of nearly 30%.

All synthesized controllers are internally stable, with
spectral radius less than one. The centralized controller has
lower spectral radius than the constrained controllers, which
have comparable spectral radii. Additionally, both of our
controllers are able to attain an L1 norm that is very close

to the L1 norm achieved in the previous example, despite
much more severe constraints. Overall, our proposed two-
step synthesis procedure generates a controller that performs
better than the controller generated by existing techniques,
without sacrificing internal stability margins.

Interestingly, the low-order controller performs almost as
well as the full-order controller, with only 0.1% performance
degradation. This suggests that in this case, highly delayed
information (which correspond to higher order terms of
the implementation matrices) are not very useful to the
controller.

VIII. CONCLUSIONS AND FUTURE WORK

By separating controller synthesis from closed-loop syn-
thesis, we are able to apply constraints to the controller
without unnecessarily limiting the closed-loop map. As
demonstrated above, our proposed two-step procedure offers
benefits over the original single step procedure. This pro-
cedure offers a new perspective on system-level controller
design, and an alternative approach for regimes in which
standard SLS is infeasible. In future work, we would like to
better understand how our method relates to the existing work
on virtually localized SLS, and which types of problems each
method is better suited to. Additionally, we would like to
extend this work to the output feedback case.

Synthesis methods mentioned in this paper can be found
in the SLS-MATLAB toolbox at https://github.com/
sls-caltech/sls-code.

REFERENCES

[1] Y. C. Ho and K. C. Chu, “Team Decision Theory and Information
Structures in Optimal Control Problems-Part I,” IEEE Transactions
on Automatic Control, vol. 17, no. 1, pp. 15–22, 1971.

[2] A. Mahajan, N. C. Martins, M. C. Rotkowitz, and S. Yuksel, “Infor-
mation structures in optimal decentralized control,” in Proceedings of
the IEEE Conference on Decision and Control, 2012, pp. 1291–1306.

[3] M. Rotkowitz and S. Lall, “A characterization of convex problems
in decentralized control,” IEEE Transactions on Automatic Control,
vol. 50, no. 12, pp. 1984–1996, 2005.

[4] B. Bamieh, F. Paganini, and M. A. Dahleh, “Distributed control of
spatially invariant systems,” IEEE Transactions on Automatic Control,
vol. 47, no. 7, pp. 1091–1107, 2002.

[5] B. Bamieh and P. G. Voulgaris, “A convex characterization of dis-
tributed control problems in spatially invariant systems with commu-
nication constraints,” Systems and Control Letters, vol. 54, no. 6, pp.
575–583, 2005.

[6] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochastic
control with partial history sharing: A common information approach,”
IEEE Transactions on Automatic Control, vol. 58, no. 7, pp. 1644–
1658, 2013.

[7] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level
synthesis,” Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

[8] Y. S. Wang, N. Matni, and J. C. Doyle, “Separable and Localized
System-Level Synthesis for Large-Scale Systems,” IEEE Transactions
on Automatic Control, vol. 63, no. 12, pp. 4234–4249, 2018.

[9] N. Matni, Y. S. Wang, and J. Anderson, “Scalable system level
synthesis for virtually localizable systems,” in Proceedings of the IEEE
Conference on Decision and Control, 2018, pp. 3473–3480.

[10] D. Ho and J. C. Doyle, “Scalable Robust Adaptive Control
from the System Level Perspective,” 2019. [Online]. Available:
http://arxiv.org/abs/1904.00077

[11] Y. S. Wang, N. Matni, and J. C. Doyle, “Localized LQR optimal
control,” in Proceedings of the IEEE Conference on Decision and
Control, 2014, pp. 1661–1668.

https://github.com/sls-caltech/sls-code
https://github.com/sls-caltech/sls-code
http://arxiv.org/abs/1904.00077

	I INTRODUCTION
	II PRELIMINARIES
	II-A Notation
	II-B System setup
	II-C Controller implementation

	III IMPLEMENTATION MATRICES
	III-A Controllers and closed-loop maps
	III-B Implementing closed-loop maps
	III-C Existence of solutions

	IV STABILITY
	IV-A Internal dynamics
	IV-B Stability check

	V APPROXIMATE IMPLEMENTATIONS
	VI CLOSED-LOOP CONSTRAINTS VS. CONTROLLER CONSTRAINTS
	VI-A Locality
	VI-B Delay
	VI-C Delay and locality as optimization objectives

	VII EXAMPLES
	VII-A Low-norm centralized controllers
	VII-B Localized LQR controller

	VIII CONCLUSIONS AND FUTURE WORK
	References

