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Retrieval of cavity-generated atomic spin squeezing after free-space release
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We demonstrate that releasing atoms into free space from an optical lattice does not deteriorate cavity-
generated spin squeezing for metrological purposes. In this work, an ensemble of 500 000 spin-squeezed atoms
in a high-finesse optical cavity with near-uniform atom-cavity coupling is prepared, released into free space,
recaptured in the cavity, and probed. Up to ∼10 dB of metrologically relevant squeezing is retrieved for 700 μs
free-fall times, and decaying levels of squeezing are realized for up to 3 ms free-fall times. The degradation of
squeezing results from loss of atom-cavity coupling homogeneity between the initial squeezed state generation
and final collective state readout. A theoretical model is developed to quantify this degradation and this model is
experimentally validated.
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I. INTRODUCTION

Atomic sensors, including atom interferometers and atomic
clocks, typically operate near the quantum projection noise
limit permitted by uncorrelated ensembles of atoms [1–4].
This limit can be overcome using quantum entanglement. For
example, with spin-squeezed states [5] it is feasible to surpass
the performance of current state-of-the-art sensors as long as
typical atom numbers can be preserved and large levels of
squeezing can be obtained. Experimentally, spin squeezing
has been demonstrated through a number of methods [6–14].
To date, the best levels of metrologically relevant squeezing
(∼20 dB) have been obtained in systems where cold atoms
are trapped and coupled to an optical cavity and the collective
state of the atoms is probed through a cavity mode [6,14].
In these systems, up to order of one-million atoms can be
utilized, conforming to standards of well engineered sensors.

Implementation of squeezed-state protocols in sensors with
freely moving atoms—devoid of perturbations due to an ex-
ternal confining potential—requires that the initial squeezed
states are prepared in a spatially homogeneous way, i.e., that
each atomic spin must contribute equally to the collective spin
that is being measured. Otherwise, the retrieval of squeezing
is hindered: once the atoms are free to move, the information
about their individual contributions to the original collective
spin is lost, and a different collective spin, which is not
necessarily squeezed, is probed [15]. Methods to meet the
homogeneity requirement in cavity-generated spin squeezing
experiments have been studied in Refs. [6,16].

Here we show that, by using an optical cavity apparatus
specifically designed to enforce homogeneous atom-cavity
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coupling [6], squeezing can be generated and retrieved af-
ter the atoms are released to millisecond-long duration free
falls and recaptured back into the cavity. With this config-
uration, we experimentally characterize the change in atom-
cavity coupling and its effect on retrieval of spin squeez-
ing. We develop and experimentally validate a theoretical
model which quantifies the degradation of squeezing in terms
of experimentally accessible observables. Prior work has
quantified squeezing for inhomogeneously coupled ensem-
bles where the inhomogeneous coupling is fixed for each
atom during both the squeezing and retrieval measurement
sequences [9,17]. In this work, we quantitatively assess the
impact of changes in coupling homogeneity between the
squeezing and retrieval operations. This is relevant to atomic
sensors which seek to exploit squeezing for enhanced noise
performance.

II. EXPERIMENTAL SYSTEM

In our experimental demonstration, we trap N ∼ 500 000
87Rb atoms inside of a 10-cm-long high-finesse dual-
wavelength near confocal cavity that supports both 1560 nm
and 780 nm modes. The 1560 nm light forms a 520 μK
deep one dimensional (1D) optical dipole lattice to trap the
25 μK atoms, and the 780 nm light interacts near resonantly
with the D2 transition of the atoms to act as a dispersive
probe [6,18]. By design, the trapping locations of atoms are
aligned with the intensity maxima of the probe standing wave
near the center of the cavity spanning a thousand lattice sites.
This alignment gives an almost uniform atom-cavity coupling
[Fig. 1(a)]. The magnetically insensitive hyperfine ground
states |F = 2, mF = 0〉 and |F = 1, mF = 0〉 constitute the
|↑〉 and |↓〉 states for a pseudo-spin-1/2 system.

The atom-cavity detuning is set such that, when inter-
acting with the atoms in the |↑〉 state, the cavity resonance
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FIG. 1. (a) Near-homogeneous atom-cavity coupling of 87Rb
atoms to a 780 nm probe via a commensurate 1560 nm optical
lattice. (b) Release-recapture protocol: timing sequence, illustrations
for phase-space evolution of the atomic cloud in the transverse
direction of the cavity, and rms transverse cloud size evolution. In
the phase-space illustration, clouds are modeled to execute harmonic
oscillations when trapped in the lattice. MW: microwaves; OAT:
one-axis twisting; π/2: composite microwave pulse that prepares
the initial superposition state; 0.6π and π : probe power expressed
in terms of the relative ac Stark phase shifts induced between the two
atomic states; �t : free-fall time; ε: a small microwave rotation.

frequency acquires a shift equal in magnitude but opposite in
sign compared to when it interacts with the |↓〉 state atoms.
Measurement of this frequency shift by interferometric moni-
toring of the light reflected from the cavity realizes a quantum
nondemolition (QND) measurement of the collective spin
Jz = ∑N

i=1 j (i)
z , where j (i)

z = (|↑〉i〈↑|i − |↓〉i〈↓|i )/2 refers to
the z component of the pseudospin associated with the ith
atom [19]. In our work, a single spin flip between the |↑〉 and
|↓〉 states results in an ∼5.6 Hz shift in the cavity resonance
frequency, as determined from our cavity parameters and
independently verified by measuring the quantum projection
noise for coherent spin states [6].

For the generation of spin squeezed states, we follow the
procedure in [6] with an added step of a free space release
recapture of the atoms between the preparation and readout
probes. A one-axis twisting squeezing procedure [20,21] is
performed before the first QND measurement (preparation
probe) to allow for squeezing of a large number of atoms
[6]. After release and recapture, a second QND measurement
(readout probe) is performed to observe the collective spin.
The preparation probe is chosen to be weaker than the read-
out probe to obtain large state coherence. In this work, the
maximum recovered metrologically relevant squeezing of this
back-to-back measurement protocol is limited to ∼13 dB for
such a configuration in the absence of release.

III. MEASUREMENT PROTOCOL

The release-recapture protocol is shown in Fig. 1(b). The
trapping lattice is turned off after the first probe to release the
spin-squeezed atoms in free space. The lattice switching time
is 50 μs, which is adiabatic for the motion in the longitudinal
trapping direction but sudden for the transverse one. After a
variable free-fall time �t accompanied by a ballistic expan-
sion (∼5 cm/s from a 17 μm rms radius), the lattice is turned
on again with the same switching time as the release stage to
recapture the atoms. After the recapture, the atomic cloud size
and position starts oscillating in the transverse direction of
the 1D lattice. The maximum recovered squeezing is achieved
when the readout probe is turned on while the atomic cloud is
maximally compressed during such oscillations.

The ballistic expansion of the atom cloud and accelera-
tion due to gravity lead to an asymmetry in the atom-cavity
coupling between the two probes. This asymmetry between
the two probes grows with the free-fall time due to the
(fixed) Gaussian spatial profile of the cavity mode. Therefore,
the readout probe measures a different observable than the
preparation probe that degrades the observed squeezing. In
principle one can engineer more advanced release-recapture
sequences to better preserve the symmetry in the atomic
cloud shape between the two probes. However, such attempts
lead to marginal improvements in recovered squeezing (see
Appendix D). Following the formalism of [15], and as de-
tailed in the Appendix, the loss of homogeneity can be
treated as an effective atom loss irrespective of the details
of the coupling inhomogeneity: N0 → Nr and Jz,0 → Jz,r ,
where subscript 0 and subscript r stand for observables seen
by the near homogeneously coupled state-preparation probe
and the inhomogeneously coupled readout probe, respectively.

In earlier squeezed-state measurement-based metrology
demonstrations, where the atom-cavity coupling did not sub-
stantially change between the state-preparation and readout
probes, squeezing efficacy could be directly assessed through
comparison of collective spin measurements resulting from
back-to-back QND probes. In the current experiment, this
approach is no longer accurate. The effective atom numbers
and atom-cavity couplings result in different cavity frequency
shifts in the two probes. In order to accommodate this change,
we translate observed cavity shifts into Bloch vector angles:
θ0 = Jz,0/(N0/2) and θr = Jz,r/(Nr/2) for the preparation and
readout probes, respectively (in this experiment Jz,0 � N0 and
Jz,r � Nr). While the measured cavity shifts differ, the mean
values for θ0 and θr preserve between the two probes (i.e.,
〈θ0〉 = 〈θr〉) (see Appendix A).

IV. RESULTS

We demonstrate this equivalence experimentally by in-
serting an additional small microwave rotation between the
preparation and readout probes [see Fig. 1(b)] whose phase
is 90◦ from the atomic phase in order to prepare a Bloch
vector angle θ0 away from the equator. We then compare 〈θr〉
to 〈θ0〉 at different free-fall times. Since θ0, θr � 1, these
angles can be determined experimentally from the ratio of
the observed cavity shift to the maximal shift observed when
atoms are prepared in the |↓〉 state. The result is shown in
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FIG. 2. Relation between 〈θr〉 and 〈θ0〉 for different free-fall
times �t . Black line: function 〈θr〉 = 〈θ0〉. Error bars stand for 68%
confidence interval.

Fig. 2. Linear regression to data points for all the free-fall
times with zero intercept gives a slope of 0.97 ± 0.01 (68%
confidence interval), which shows that experimentally we test
the angle 〈θr〉 to be equal to 〈θ0〉 with less than 5% error. This
discrepancy is from the uncertainty in the initial alignment of
the microwave phase to the atomic phase. For this data, we
use small atom numbers (∼50 000 atoms) so that the cavity
shifts remain well within the linear response of the homodyne
cavity readout.

The phase resolution �θ of the squeezing protocol is de-
termined experimentally from the measured values of θr and
θ0 over an ensemble of measurements. Specifically, (�θ )2 =
var(θr − θ0). Figure 3 shows the measured resolution �θ for
ensembles of N ∼ 500 000 spin-squeezed atoms (circles) as a
function of free-fall time �t when the state is near the equator
of the Bloch sphere. Each data point for �θ is obtained using
more than 700 independent measurements (inset, Fig. 3). The
best observed angle sensitivity is 298(8) μrad. As expected,
�θ increases with free-fall time since the asymmetry between
the two probe couplings increases with this time. For com-
parison, the projection noise level associated with a coherent
spin state with atom number N0 measured by the preparation
probe is also shown in Fig. 3. N0 ≈ N is determined from the
observed cavity frequency shift, following Ref. [21].

V. DISCUSSION

Remarkably, the observed loss in phase resolution—
fundamentally associated with the loss in coupling homo-
geneity of the readout probe—can be accurately described
by a model which parametrizes this homogeneity loss in
terms of a single parameter, the effective atom number Nr ,
regardless of the detailed structure of the coupling. Explicitly,
Nr ≡ (

∑N
i=1 ηi )2/

∑N
i=1 η2

i , where ηi ∈ [0, 1] is the fractional
coupling of the ith atom in the ensemble and N is the total
atom number. From this definition, it can be shown that

(�θ )2 
 1 − γr

γr

1

N0
+ σ 2

p + σ 2
r , (1)
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FIG. 3. Single-shot phase sensitivity �θ as a function of free-
fall time �t . �t = 0 indicates no release. Circles show �θ for spin
squeezed state. The solid line is the quantum projection noise level
given by atom number N0. The width of the shaded region is given
by the uncertainty in determination of N0 (68% confidence interval).
Some of the error bars are smaller than the plotted data points. Inset:
histogram of θr − θ0 at �t = 0.7 ms.

where γr ≡ Nr/N0 is the ratio of the effective atom number
measured by the inhomogeneous readout probe to the atom
number measured by the homogeneous preparation probe, and
the terms σ 2

p and σ 2
r account for the photon shot noise and

spin-flip noise for the preparation and readout probes, respec-
tively. At longer free-fall times, where coupling homogeneity
loss plays a significant role (γr is small), the σp and σr terms
are dominated by the first term in Eq. (1). In the limit of
no homogeneity loss (γr → 1), the expression approaches the
noise of the initial spin squeezed state.

Comparison of the data shown in Fig. 3 with Eq. (1)
requires experimental determination of γr . This can be done
by noting that Nr is defined such that the projection noise
in the corresponding effective spin component Jz,r for an
initially prepared coherent spin state is var(Jz,r ) = Nr/4,
while |Jr | = Nr/2 [14]. Combining these definitions yields
var(Jz,r )/|Jr |2 = 1/Nr , which allows determination of Nr

through measurement of the ratio var(Jz,r )/|Jr |2 for coherent
states. We experimentally determine the value of this ratio
through the ratio of the observed fluctuations in the homodyne
signal for a coherent spin state on the equator [proportional
to var(Jz,r )1/2] and the overall cavity shift observed when
the atoms are instead prepared in the |↓〉 state (proportional,
with the same constant of proportionality, to |Jr |). Combined
with an initial measurement of N0, γr is thus determined.
Figure 4(a) shows the resulting inferred values of γr as a
function of free-fall time. Since γr is independent of initial
atom number, we determine γr with smaller ensembles of
∼100 000 atoms to avoid the influence of microwave ro-
tation noise in the preparation of the initial coherent spin
state. Substitution of the measurement of γr , together with
the known value of σ 2

p + σ 2
r and N0, into Eq. (1) leads

to Fig. 4(b).

012224-3



YUNFAN WU et al. PHYSICAL REVIEW A 102, 012224 (2020)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

0.2 0.4 0.6 0.8 1

10-1

100

101

(a)

(b)

FIG. 4. (a) Measured value of γr as a function of �t . (b) (�θ )2 as
a function of γr . The solid line is a theory curve for N0 = 500 000 and√

σ 2
p + σ 2

r = 298 μrad using Eq. (1). The shaded region is due to the
uncertainty in determination of N0 and

√
σ 2

p + σ 2
r (width indicates

68% confidence interval). Error bars show 68% confidence interval.
Some of the error bars in y axis are smaller than the plotted points.

Metrologically relevant squeezing can be quantified with
the Wineland parameter ξ 2 [9,22], which compares the angle
resolution �θ obtained with a squeezed state to that obtained
with an (unsqueezed) coherent spin state having the same
number of atoms and also accounts for coherence C of the
ensemble. Using the notation defined above, the Wineland
parameter ξ 2 takes the form

ξ 2 =
(

�θ

1/
√

Nr

1

C

)2

. (2)

Experimentally, we characterize C with an additional mi-
crowave π/2 rotation just before recapturing the atoms. We
find C 
 0.96, independent of free-fall time [see Fig. 5(a)].
Figure 5(b) shows the inferred Wineland parameter as a
function of �t , given the measurements of �θ and Nr with
N ∼ 500 000 atoms. Despite substantial loss of homogeneity,
metrologically relevant squeezing is observed to persist for
time scales as long as 3 ms. We can recover most of the initial
squeezing for shorter free-fall times (�t < 1 ms).

VI. CONCLUSION

Although the successful retrieval of squeezing was limited
to ∼3 ms free-fall times in this work, a substantial extension
of this duration should be possible using a significantly colder
atomic ensemble and an optimized cavity orientation with
respect to gravity. We expect the model used to quantify the
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FIG. 5. (a) Coherence of atoms during free falling and (b) re-
trieved metrologically relevant squeezing ξ 2 as a function of free-fall
time �t . Error bars indicate 68% confidence interval.

loss of squeezing to be useful in designing and predicting the
performance of future squeezed-state sensors especially for
those that require high bandwidth readout.
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APPENDIX A: THEORY ON HOMOGENEITY LOSS

1. Modeling the loss in atom-cavity coupling homogeneity

We use Jz,0 and N0 to stand for collective Jz and atom
number measured by the homogeneous preparation probe.
When the particles are identically prepared and uncorre-
lated, 〈Jmax

z,0 〉 = N0/2 and var(Jz,0) = N0/4. Following the
formalism described in [15], we introduce effective ob-
servable Jz,r and effective atom number Nr to model the
quantities measured by the inhomogeneous readout probe
so that the standard relations for uncorrelated particles
〈Jmax

z,r 〉 = Nr/2 and var(Jz,r ) = Nr/4 are satisfied. Here, Jmax
z,r

is shorthand for Jz,r when the quantum state gives j (i)
z =

1/2 for all i. This state is represented by the Bloch
vector that is pointing to the north pole of the Bloch
sphere. Accordingly, we write Jz,r = 〈η〉e

∑
i ηi j (i)

z /〈η2〉e =
Nr

∑
i ηi j (i)

z /N0〈η〉e and Nr = N0〈η〉2
e/〈η2〉e, where ηi ∈ [0, 1]

is the fractional coupling of the ith atom and N0 is the
actual total atom number. Here 〈·〉e is the ensemble average
of a quantity over the atoms, e.g., 〈η〉e = ∑

i ηi/N0. Given
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the total cavity frequency shift δcav = ∑
i δ0ηi j (i)

z = δrJz,r , the
frequency shift per spin flip seen by the readout probe can be
defined as δr = δ0〈η2〉e/〈η〉e, where δ0 is the frequency shift
per spin flip seen by the preparation probe.

Now we relate the observations of Jz,r to those of Jz,0. We
rely on the fact that 〈 j (i)

z 〉 and 〈 j (i)
z j (i �=k)

z 〉 are independent of i
and k owing to the homogeneity of the prepared states. Thus
we get

〈Jz,0〉 =
∑

i

〈
j (i)
z

〉 = N0
〈
j (i)
z

〉
, (A1)

〈
J2

z,0

〉 =
∑
i,k

〈
j (i)
z j (k)

z

〉

=
∑
i �=k

〈
j (i)
z j (k)

z

〉 + ∑
i

〈
j (i)2
z

〉

= N0(N0 − 1)
〈
j (i)
z j (i �=k)

z

〉 + N0
〈
j (i)2
z

〉
, (A2)

〈Jz,r〉 = 〈η〉e

〈η2〉e

∑
i

ηi
〈
j (i)
z

〉 = Nr

N0
〈Jz,0〉, (A3)

〈
J2

z,r

〉 = 〈η〉2
e

〈η2〉2
e

∑
i,k

ηiηk
〈
j (i)
z j (k)

z

〉

= Nr

N0

〈
J2

z,0

〉 − Nr

N0

(
1 − Nr

N0

)〈
j (i)
z j (i �=k)

z

〉
N2

0 , (A4)

〈Jz,rJz,0〉 = Nr

N0

〈
J2

z,0

〉
. (A5)

Defining Bloch vector angles θ0 = Jz,0/(N0/2) and
θr = Jz,r/(Nr/2) for the homogeneous and inhomogeneous
probes, respectively, we prove that 〈θr〉 = 〈Jz,r〉/(Nr/2) =
〈Jz,0〉/(N0/2) = 〈θ0〉.

Assuming the atomic state is lying close to the equator
of the Bloch sphere and each location in space contains
only one atom, we obtain 〈 j (i)

z 〉 = σ (σ � 1) and 〈 j (i)2
z 〉 =

1/4 + σ 2. Consequently, 〈 j (i)
z j (i �=k)

z 〉 = (ξ 2 − 1)/4(N0 − 1) +
σ 2, where the variance of Jz,0 with respect to the coherent
spin state (CSS) noise is defined as var(Jz,0)/(N0/4) = ξ 2. In
addition, 〈 j (i)2

z 〉 − 〈 j (i)
z j (i �=k)

z 〉 = [1 + (1 − ξ 2)/(N0 − 1)]/4 ≈
1/4, where the approximation is valid if the Jz noise is close
to the CSS noise; for example, for a Jz noise 20 dB above CSS
noise (ξ 2 = 100), the fractional correction is only 2×10−4 for
500 000 atoms. Therefore,

var(Jz,r ) = N2
r

N2
0

var(Jz,0)

+ Nr

(
1 − Nr

N0

)(〈
j (i)2
z

〉 − 〈
j (i)
z j (i �=k)

z

〉)

≈ γ 2
r var(Jz,0) + (1 − γr )

Nr

4
, (A6)

var(Jz,r − Jz,0) ≈ (1 − γr )2var(Jz,0) + (1 − γr )
Nr

4
, (A7)

where γr = Nr/N0 is the ratio of the effective atom number
measured by the inhomogeneous readout probe to the atom
number measured by the homogeneous preparation probe.

2. Modeling back-to-back conditional measurement

Since Jz is inferred from the X quadrature of a probe field
through a calibrated discriminator, we label the X quadrature
of the two probes in the back-to-back measurements as X ′

p
and X ′

r , where p and r stand for preparation and readout,
respectively. Since these two field modes are uncorrelated,
cov(X ′

p, X ′
r ) = 0. We also label the collective spin opera-

tors for the atoms during the preparation and readout mea-
surements as J ′

z,0 and J ′
z,r , respectively. Since before send-

ing probes to the atoms, there are no correlations between
the spins and the fields, i.e., cov(J ′

z,r, X ′
p) = cov(J ′

z,0, X ′
p) =

cov(J ′
z,r, X ′

r ) = cov(J ′
z,0, X ′

r ) = 0, after probe interactions, the
quadrature operators (in the Heisenberg picture) become

X ′
p → Xp = DpJ ′

z,0 + X ′
p, (A8)

X ′
r → Xr = DrJ ′

z,r + X ′
r , (A9)

where Di are calibrated discriminators determined by the
strength of the probes. Thus the inferred Jz values from the
two probes are Jz,0 = Xp/Dp and Jz,r = Xr/Dr . The variance
of the inferred Jz difference is

var(Jz,0 − Jz,r )

= var(J ′
z,r − J ′

z,0) + 1

D2
p

var(X ′
p) + 1

D2
r

var(X ′
r )

≈ (1 − γr )
Nr

4
+ (1 − γr )2var(J ′

z,0) + σ 2
X p + σ 2

Xr . (A10)

Here σ 2
X p and σ 2

Xr are the squares of Jz resolutions by the
preparation and the readout probes respectively due to optical
shot noise and spin flips. J ′

z,r and J ′
z,0 are Jz observables that

are defined in Sec. A 1 of the Appendix without the prime.
Jz,r and Jz,0 are inferred quantities through cavity frequency
measurements used in the main paper. The second term is
an excess noise due to changes in Jz between the two probes
whose value depends on the outcome of the preparation probe
which itself is random.

To eliminate this noise, we work with Bloch vec-
tor angle θ . The angles inferred from the Jz measure-
ments are defined as θ0 = Jz,0/(N0/2) = 2Xp/N0Dp and θr =
Jz,r/(Nr/2) = 2Xr/NrDr , respectively. The variance of the
difference between the two inferred angles is

var(θr − θ0)

= var(θ ′
r − θ ′

0) + 1

D2
pN2

0 /4
var(X ′

p) + 1

D2
r N2

r /4
var(X ′

r )

≈ 1 − γr

Nr
+ σ 2

p + σ 2
r

= 1 − γr

γr

1

N0
+ σ 2

p + σ 2
r . (A11)

Here θ ′
r = J ′

z,r/(Nr/2) and θ ′
0 = J ′

z,0/(N0/2). This equation
gives the angle resolution for our setup that accounts for the
noise due to changes in atom-cavity coupling between the
preparation and readout probes (1 − γr )/γrN0 and noise from
the initial squeezing σ 2

p + σ 2
r .
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APPENDIX B: CAVITY READOUT

We measure resonance frequency shift of a high finesse
optical cavity to infer the atomic state and calibrate the atom
number in this experiment.

1. Linewidth broadening

The cavity frequency shift is measured by comparing the
time-dependent homodyne signal to a normalized template
taken in the absence of atoms. Corrections to nonlinearities
of the cavity frequency response and linewidth broadening
factor κs due to atomic scattering are applied in the same way
as in Refs. [6,23]. However, the atom-cavity coupling is less
homogeneous for the second probe after release recapture; this
effect changes the linewidth broadening factor to 〈η〉eκs.

2. Measurement of maximum cavity frequency shift and 〈η〉e

To measure maximum cavity frequency shift and 〈η〉e,
we prepare all the atoms in |↓〉 state. Since 500 000 |↓〉
state atoms give a cavity resonant frequency shift of more
than 1 MHz, which is far more than the cavity linewidth
∼10 KHz, we use a different method to measure cavity
frequency shift than the back-to-back method used in the
main paper [6]. In this new method, the 780 nm probe is on
continuously through the release-recapture (RR) sequence
and its frequency is scanned from 50 KHz to −50 KHz
detuned from cavity resonance in 200 μs that overlaps with
the time when the second probe is on during the RR sequence
in the back-to-back method. This scan gives a dispersive
signal by the homodyne detection when no atom is loaded.
This dispersive signal changes its shape due to the added
|↓〉 atoms. Adjusting the starting frequency of the frequency
scan brings the dispersive signal back to empty cavity shape,
though the frequency range of the scan remains 100 KHz.
The amount of adjusted frequency tells the maximum cavity
frequency shift caused by the amount of added atoms which
is counted by fluorescent imaging.

Due to the bandwidth of the laser frequency lock, the
maximum adjustment on the frequency scan starting point
is limited to ∼900 KHz. This also limits the maximum
added atom number to ∼300 000. To get the maximum cavity
frequency shift for all different atom numbers (∼50 000,
100 000, and 500 000 in this work) and reduce uncertainties,
we measure this shift as a function of atom number and fit
this function with a straight line (as expected). The maximum
cavity frequency shift that corresponds to a specific atom
number is found by interpolation or extrapolation.

We measure and linearly fit this frequency shift as a
function of atom number for each free-fall time. The slope
of each fitting is proportional to 〈η〉e with the same constant
of proportionality. This constant can be calculated by fitting
of the zero free-fall time data whose 〈η〉e = 0.9254 is known
[6]. 〈η〉e for other free-fall times are thus calculated.

APPENDIX C: COHERENCE MEASUREMENT

The coherence of the atomic state is measured by
microwave-induced Ramsey oscillations. The first Ramsey
π/2 pulse is the composite π/2 microwave pulse at the
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FIG. 6. Delta-kick protocol: timing sequence; illustration for
phase-space evolution of the atomic cloud in the transverse direction
of the cavity; illustration for rms transverse cloud size evolution. In
the phase-space illustration, clouds are modeled to execute harmonic
oscillations when trapped in the lattice. MW: microwaves; Presqz:
presqueezing by one-axis twisting; π/2: composite microwave pulse
that prepares the 50-50 superposition state; 0.6π and π : probe power
expressed in terms of the ac Stark phase shifts induced between the
two atomic states; �t ′: short free-fall time for atomic phase space
reshaping; �t : free-fall time. The values for �t ′ and �t are shown
in Table I.

beginning of the experimental sequence to prepare the initial
superposition state where the atoms are trapped by the lattice.
The second π/2 pulse is applied after atoms have freely
fallen for a certain amount of time. The phase of this pulse
is adjusted to be roughly 90◦ to the atoms by a frequency
shift key and is scanned by a small amount. This scan covers
the bottom (top) part of the Ramsey fringes. A quadratic fit
is applied to this part of the fringes. The lowest (highest)
point of this fit stands for the coherence. The 68% prediction
interval of that point gives the uncertainty on the coherence
measurement. Every step in the sequence before the release
remains the same as the squeezing measurement. Since the
cavity resonance is shifted out of the cavity linewidth, a
fluorescence population spectroscopy is used to measure the
collective Jz [21]. This coherence is measured with ∼500 000
atoms.

APPENDIX D: DELTA-KICK PROTOCOL

In the “delta-kick” protocol (Fig. 6), we utilize a series of
lattice on-off sequences to reshape the phase-space distribu-
tion of the atomic cloud. The timing in this protocol is based
on a simulation assuming the lattice is a harmonic trap and is
experimentally chosen. See Table I. This protocol gives less

TABLE I. Delta-kick protocol timing sequence. �t ′ stands for
the short free-fall time before the measurement sequence to reshape
the phase-space distribution of the cloud. �t is the free-fall time that
is used for free-space atomic sensors.

�t ′ (ms) �t (ms)

0.8 0.4
0.7 0.7
0.6 1.2
0.5 1.4, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0
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coherence (<92%) compared to the RR protocol irrespective
of free-fall times, because the extra lattice on-off sequences
induce more inhomogeneous ac Stark shifts on the atoms. The
metrologically relevant squeezing decreases to 0 in less than
5 ms free-fall times.

APPENDIX E: UNCERTAINTY CALCULATIONS

We calculate uncertainties using a standard error propaga-
tion formula where the uncertainty of each quantity stands
for 68% confidence interval. These quantities are assumed

to be independent and their errors are assumed to follow
normal distributions. When determining the uncertainties of
�θ , only statistical uncertainty on cavity frequency mea-
surements is considered. This uncertainty is estimated by
a bootstrapping method where we resample 10 000 times
from the measured frequency distribution, calculate 10 000
standard deviations from the resampled data, and estimate
this uncertainty as the standard deviation of these 10 000
standard deviations, whereas the uncertainty of squeezing
includes uncertainties on cavity frequency and atom number
measurements.
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