$H_2O \xleftarrow{k_{1f}}{k_{2f}} H^+ + OH^-$	$k_{lf} = 10^8 \mathrm{s}^{-1}$
-1 <i>b</i>	$k_{1b} = 10^{19} \mathrm{M}^{-1} \mathrm{s}^{-1}$
	1 1 27 1
$H_3PO_4 \xleftarrow{k_{2f}}{k_{2h}} H_2PO_4^- + H^+$	$k_{2f} = 10^7 \mathrm{s}^{-1}$
	$k_{2b} = 1.32 \mathrm{x} 10^9 \mathrm{M}^{-1} \mathrm{s}^{-1}$
1	1 107 -1
$H_2PO_4^- \xrightarrow{k_{3f}} HPO_4^{2-} + H^+$	$k_{3f} = 10^{7} \text{ s}^{-1}$
UC	$k_{3b} = 1.62 \mathrm{x} 10^{14} \mathrm{M}^{-1} \mathrm{s}^{-1}$
$HPO_4^{2-} \xleftarrow{k_{4f}} PO_4^{3-} + H^+$	$k_{4f} = 10^7 \text{ s}^{-1}$
K _{4b}	$k_{4b} = 4.68 \mathrm{x} 10^{19} \mathrm{M}^{-1} \mathrm{s}^{-1}$
$CO + HO \xrightarrow{k_{5b}} H^+ + HCO^-$	$k_{5f} = 0.036 \text{ s}^{-1}$
$CO_2 + H_2O \underset{k_1}{\leftarrow} H + HCO_3$	
~5 <i>)</i>	$k_{5b} = 7.83 \mathrm{x} 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$
k	$k_{cc} = 2.22 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$
$CO_2 + OH^- \rightleftharpoons HCO_2^-$	$k_{6f} = 2.25 \times 10^{-1} \text{ M}^{-1} \text{ S}^{-1}$
k_{6b}	$k_{6b} = 4.85 \mathrm{x} 10^{-5} \mathrm{s}^{-1}$
k _{7 f}	$k_{7f} = 2.5 \text{ s}^{-1}$
$HCO_{2}^{-} \rightleftharpoons H^{+} + CO_{2}^{2-}$	
k_{7b}	$k_{7b} = 5 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$
k _{8 f}	$k_{sf} = 6 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$
$HCO_{2}^{-} + OH^{-} \rightleftharpoons H_{2}O + CO_{2}^{2-}$	
<i>k</i> _{8b} 2 5	$k_{8b} = 1.2 \text{ s}^{-1}$
	•

Table S1Forward and backward rate constants used in the modeling.

D _H +	9.31 x 10^{-5} cm ² s ⁻¹	Diffusion coefficient of H^+
D _{OH} +	$5.26 \text{ x } 10^{-5} \text{ cm}^2 \text{ s}^{-1}$	Diffusion coefficient of <i>OH</i> ⁺
D _{CO}	$1.02 \text{ x } 10^{-5} \text{ cm}^2 \text{ s}^{-1}$	Diffusion coefficient of CO
D _{CO2}	$1.92 \text{ x } 10^{-5} \text{ cm}^2 \text{ s}^{-1}$	Diffusion coefficient of CO ₂
D _{HCO3}	1.185 x 10 ⁻⁵ cm ² s ⁻¹	Diffusion coefficient of HCO_3^-
$D_{H_2PO_4^-}$	$0.879 \text{ x } 10^{-5} \text{ cm}^2 \text{ s}^{-1}$	Diffusion coefficient of $H_2PO_4^-$
D _{HP04} ²⁻	$0.439 \text{ x } 10^{-5} \text{ cm}^2 \text{ s}^{-1}$	Diffusion coefficient of HPO_4^{2-}
D _{P04} ³⁻	$0.612 \text{ x } 10^{-5} \text{ cm}^2 \text{ s}^{-1}$	Diffusion coefficient of PO_4^{3-}
<i>D</i> _{<i>H</i>₃<i>PO</i>₄}	$0.879 \text{ x } 10^{-5} \text{ cm}^2 \text{ s}^{-1}$	Diffusion coefficient of H_3PO_4
А	1 x 10 ⁵ m ⁻¹	Specific active surface area
α _e	0.35	transfer coefficient for C ₂ H ₄ formation
α _m	1.33	transfer coefficient for CH ₄ formation
α_{HER}	0.258	transfer coefficient for HER
Je	1.18 x 10 ⁻⁸ mA cm ⁻²	Constant present in Eq (8) for C ₂ H ₄ formation
J _m	3.47 x 10 ⁻¹⁸ mA cm ⁻²	Constant present in Eq (9) for CH ₄ formation
i _{0_HER}	0.01 mA cm ⁻²	Exchange current density for HER

Figure S1 A schematic illustration of a nanostructured electrode

Figure S2 (a) The geometric partial current densities for CH_4 and C_2H_4 generation under the initial pH of 14 in both nanostructured- and planar electrode. (b) The spatially resolved pH and CO concentration for a nanostructured at different overpotentials

Figure S3 (a) The geometric partial current densities and (b) The Faraday efficiencies for CH_4 and C_2H_4 generation under different assumptions of CO coverage in the catalyst layer (@HER stands for low CO coverage and @0.1HER stands for high CO coverage)

Figure S4 The geometric partial current densities for CH_4 and C_2H_4 generation with phosphate buffer and bicarbonate buffer, both under the initial pH value of 8.

Figure S5 The volumetric product generation rates from CO_2 reduction as a function of position within GDE at -1.65 V vs. SHE.

Figure S6 The CO₂ concentration as a function of position inside GDEs with different kinds of CO₂ supply at 1.4 V vs. SHE.

Figure S7 The OH^{-} concentration as a function of position inside GDEs with two different water content assumptions at -1.4 V vs. SHE.