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Abstract

Barrier options are one of the most widely traded exotic options on stock ex-

changes. In this paper, we develop a new stochastic simulation method for pricing

barrier options and estimating the corresponding execution probabilities. We show

that the proposed method always outperforms the standard Monte Carlo approach

and becomes substantially more efficient when the underlying asset has high volatil-

ity, while it performs better than multilevel Monte Carlo for special cases of barrier

options and underlying assets. These theoretical findings are confirmed by numer-

ous simulation results.
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1 Introduction

A barrier option is among the most actively-traded path–dependent financial deriva-

tives whose payoff depends on whether the underlying asset has reached or exceeded

a predetermined price during the option’s contract term (Hull, 2009; Dadachanji,

2015). A barrier option is typically classified as either knock -in or -out depending

on whether it is activated or expires worthless when the price of the underlying asset

crosses a certain level (the barrier) (Derman and Kani, 1996, 1997; Guardasoni and

Sanfelici, 2016). Then, the payoff at maturity is identical to that of a plain–vanilla

European option, in case the price of the underlying asset has remained above the

barrier (for a knock-out barrier option) or zero otherwise. Barrier options tend to be

cheaper than the corresponding plain vanilla ones because they expire more easily

and are less likely to be executed (Jewitt, 2015). It was estimated that they ac-

counted for approximately half the volume of all traded exotic options (Luenberger

and Luenberger, 1999). Despite the 2007–08 credit crunch and the subsequent drop

in the demand for path–dependent instruments, barrier options can still be a useful

investment or hedging vehicle when the structure and the risks of the product are

comprehensible.

In the financial industry, barrier options can be traded for a number of reasons,

using mostly foreign exchanges, commodities and interest rates as the underlying

asset(s). First, barrier options more accurately represent investor’s beliefs than

the corresponding plain–vanilla options, as a down-and-out barrier call option can

serve the same purpose as a plain–vanilla option but at a lower cost, given one has

a strong indication that the price of the underlying asset will increase. Second, bar-

rier options offer a more attractive risk–reward relation than plain–vanilla options,

and their advantage stems from their lower price that reflects the additional risk

that the spot price might never reach (knock–in) or cross (knock–out) the barrier

throughout its life (further discussion about ins and outs of barriers options can

be found in Derman and Kani, 1996, 1997). In specific, barrier options on high

volatility underlying assets can be used in a similar way as cheap deep out–of–the–

money options, serving as a hedge to provide insurance in a financial turmoil, given

their volatility–dependence (Carr and Chou, 2002). Hence, the development of a
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framework able to deal efficiently with barrier options on high volatility underlying

assets tackles an actual problem in computational finance, which to our knowledge

has not been explicitly studied in past. According to Andersen et al. (2001), the

mean annualized volatility of the thirty stocks in the Dow Jones Industrial Average

(DJIA) is approximately equal to 28% (ranging between 22% and 42%) while it is

not uncommon to record stocks with volatility levels between 33% and 40%.

Therefore, the pricing of barrier options is a challenging problem due to the need

to monitor the price of the underlying asset and compare it against the barriers

at multiple discrete points during the contract life (Kou, 2007). In fact, barrier

options pricing provides particular challenges to practitioners in all areas of the

financial industry, and across all asset classes. Particularly, the Foreign Exchange

options industry has always shown great innovation in this class of products and

has committed enormous resources to studying them (Dadachanji, 2015). However,

pricing discretely monitored barrier options is not a trivial task as in essence we

have to solve a multi–dimensional integral of normal distribution functionals, where

the dimension of the integral is defined by the number of discrete monitoring points

(Fusai and Recchioni, 2007).

Computationally, certain barrier options such as down-and-out options, can be

priced via the standard Black–Scholes–Merton (BSM) (Merton, 1973)’s paper.

This idea can be further extended to more complicated barrier options which can

be priced using replicating portfolios of vanilla options in a BSM framework (Carr

and Chou, 2002). All these approaches, however, suffer from the BSM model’s

dependence on a number of assumptionswhich are not met in real–world trading

(Hull, 2009). As a result, the estimates we obtain for option’s price under the

equivalent martingale measure (EMM) are often inaccurate. While there are other

models for barrier options with analytical solutions, such as jump-diffusion models

(Kou, 2002; Kou and Wang, 2004), the constant elasticity of variance (CEV) model

(Boyle and Tian, 1999; Davydov and Linetsky, 2001), exact analytical approaches

(Fusai et al., 2006), the Hilbert transform-based (Feng and Linetsky, 2008), the

Laplace transform method built on Lévy processes (Jeannin and Pistorius, 2010)

or the Fourier-cosine-based semi-analytical methods (Lian et al., 2017), all of them
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depend on assumptions similar to the ones of the BSM pricing equation. Another

set of methods for pricing barrier options based on solving partial differential equa-

tions (PDEs) was proposed in Boyle and Tian (1998), Zvan et al. (2000), Zhu and

De Hoog (2010) and Golbabai et al. (2014). Although these methods are generally

powerful, they depend on being able to accurately model the option with PDEs and

cannot be used in all circumstances (other approaches used in the pricing of exotic

derivatives include the method of lines (Chiarella et al., 2012), where the Greeks are

also estimated, robust optimization techniques (Bandi and Bertsimas, 2014), ap-

plicable also to American options, finite–difference based approaches (Wade et al.,

2007), where a Crank–Nicolson smoothing strategy to treat discontinuities in barrier

options is presented, and regime–switching models (Elliott et al., 2014; Rambeerich

and Pantelous, 2016)). As a result, Monte Carlo simulation (MCS) is often used for

option pricing (Schoutens and Symens, 2003) and particularly for barrier options

(Glasserman and Staum, 2001).

The main advantage of MCS over other pricing methods is its model–free prop-

erty and its non–dependence on the dimension N of the approximated equation.

The latter is an important property since as N → ∞ (∆t → 0), the price of a

discretely monitored barrier option converges to that of a continuously monitored

one (Broadie et al., 1997). On the other hand, MCS has a serious drawback: it is

inefficient in estimating prices of barrier options on high volatility assets. Indeed,

high volatility makes it difficult for the asset to remain within barriers, which, in

turn, makes a positive payoff a rare event (Glasserman et al., 1999). As a result,

any standard MCS method will be inaccurate and highly unstable (Geman and

Yor, 1996). This motivates the development of more advanced stochastic simula-

tion methods which inherit the robustness of MCS, and yet are more efficient in

estimating barrier option prices. A range of stochastic simulation techniques for

speeding up the convergence have been proposed, such as the MCS approximation

correction for constant single barrier options (Beaglehole et al., 1997), the simula-

tion method based on the Large Deviations Theory (Baldi et al., 1999), and more

recently the sequential MCS method (Shevchenko and Del Moral, 2017).

The main results of this study can be summarized as follows. First, we develop
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a novel stochastic simulation method for pricing barrier options which is based on

the Subset Simulation (SubSim) method, a Markon chain Monte Carlo (MCMC)

–based algorithm originally introduced in Au and Beck (2001) to deal with complex

engineered systems and later extended by Zuev et al. (2015) to complex networks

(for more details, the reader is referred to Au and Wang, 2014). MCMC provides

us with a more efficient way to simulate the quantity of interest, compared to naive

MCS methods, by sampling from a target distribution and has been widely used

in statistical modelling in finance (see Eraker, 2001; Philipov and Glickman, 2006;

Gerlach et al., 2011; Stroud and Johannes, 2014, amongst others for finance–related

applications of MCMC). Here, we apply and further extend this idea to compute

both the execution probabilities and prices of barrier options.

Second, we calculate the fair price for double barrier options on high volatility

assets and barriers set near the starting price of the underlying asset. In our frame-

work, the “failure” probability corresponds to the probability of the barrier option

to be executed at maturity (i.e., the price of the underlying asset to remain with-

ing the barriers). This setting in a simple MCS setup results – with an extremely

large probability – in asset price trajectories which cross the barriers, rendering the

barrier option invalid before maturity.

Third, we show by measuring the coefficient of variation (CV), and the mean

squared error (MSE) that the proposed SubSim–based algorithm is an efficient

technique for the pricing of such derivatives. In particular, the SubSim estimator

has a CV which is O(| log pE |d/2), where pE is the execution probability and d ≤ 3

is a constant. Comparing this against the MCS estimator whose CV is O(p
−1/2
E )

and for very small values of pE , we can easily see that the latter increases at a

dramatically faster pace compared to the SubSim estimator. Moreover, the MSE

of the created SubSim estimator is O(| log pE |−k) – where k ≤ 3 is a constant –,

which decreases for increasing pE .

Finally, we compare our results against the Multi–level Monte Carlo (MLMC)

(Giles, 2008b,a) approach and show that for very small values of the option’s sur-

vival probability pE the SubSim estimator outperforms the MLMC estimator in

terms of the observed CV. Thus our method can be seen as an alternative to price
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path–dependent options which also complements MLMC for special cases of under-

lying assets.

This paper begins with the introduction of the problem of barrier option pricing

and the modification of the SubSim method in order to be able to accommodate it.

In section 3, we show how SubSim can be used specifically for the estimation of the

execution probability and the option payoff at maturity. Section 4 subsequently

presents the main theorem and its proof. This establishes the limiting behaviour of

the MSE and the computational complexity for a broad category of applications.

Finally, numerical results and comparisons with the standard MCS and the MLMC

methods are presented to provide support for the theoretical analysis followed by

some concluding remarks.

2 Barrier Option Pricing with SubSim

2.1 Geometric Brownian Motion (GBM)

The starting point in option pricing is modeling the price St of the underlying asset.

Given the focus of this paper which is more on the simulation and statistical aspects

of the method, and less on the modeling of the underlying price process, we use a

standard GBM instead of a more complex jump process or a model with stochastic

volatility which is frequently used in pricing exotic derivatives (see Kou, 2002; Kou

and Wang, 2004; Chiarella et al., 2012, amongst others). Assume that St follows

the stochastic differential equation (SDE)

dSt = Stµ(t)dt+ Stσ(t)dWt, (1)

a risk–neutral proces, where µ(t) is the drift, σ(t) is volatility, andWt is the standard

Brownian motion defined on a common probability space (Ω,F ,P). The discretized

solution of (1) can then be written as follows

Sn = Sn−1 exp

((
µn −

σ2n
2

)
∆t+ σn

√
∆tZn

)
, (2)
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where Z1, . . . , ZN ∼ N (0, 1) are i.i.d. standard normal random variables.

2.2 SubSim for Barrier Options

We first consider how SubSim can be used specifically for pricing barrier options

and why it is especially efficient for options on assets with high volatility. The goal

is to estimate the barrier option price P , which is given by the following discounted

expectation under the risk–neutral measure Q:

P = E

[
h(SN )

N∏
n=1

I[Ln,Un](Sn)

]
, (3)

where h(SN ) is the payoff at the contract maturity (t = T ), h(SN ) = max{SN −

K, 0}, K is the strike price, and I[A,B](x) stands for the indicator function: I[A,B](x) =

1 if A ≤ x ≤ B, where A and B are the upper and lower barriers respectively, and

zero otherwise.

In order to use the SubSim method we need to bring the problem in (3) in a

form suitable to be used as input by the method. Suppose that the time–evolution

of the dynamic system under study (e.g. evolution of the asset price Sn) is modeled

by the following discrete model:

Sn = F (Sn−1, Un), n = 1, . . . , N, (4)

where Sn is the price of the underlying asset at time tn, S = (S1, . . . , SN ) is the

trajectory of the underlying asset, Un is a random input at time tn, and F is a

certain function that governs the evolution of S (i.e., the GBM (1) in our case). Let

g(S) be the performance function – a function related to the quantity of interest S

– (e.g. the maximum value of the asset price g(S) = max
n=1,...,N

Sn). We say that a

target event E occurs if g(S) exceeds a critical threshold α:

E = {U = (U1, . . . , UN ) : g(S(U)) ≥ α} ⊂ RN . (5)

The central idea behind SubSim is to break down the rare event of interest E

into a series of “less rare” events that have easier-to-compute probabilities. This
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idea is implemented by considering a collection of nested subsets starting from the

entire input space RN and finishing at the target rare event,

RN = E0 ⊃ E1 ⊃ . . . ⊃ EL ≡ E. (6)

The intermediate events Ei can be defined by simply repeatedly relaxing the value

of the critical threshold α in (5),

Ei = {U = (U1, . . . , UN ) : g(S(U)) ≥ αi} , α1 < α2 < . . . < αL ≡ α. (7)

To make SubSim directly applicable, we need to specify suitable functions for the

underlying asset price trajectory and the expected payoff at maturity. Let E ⊂ RN

be a set of vectors Z = (Z1, . . . , ZN ) that lead to a positive payoff. In other words,

E represents the target event for our problem and consists of all vectors Z that

result into those asset price trajectories that remain within barriers and end up

above the strike price. This is schematically illustrated in Figure 1.

Let π be the payoff function,

π(Z) =


SN −K, if Z ∈ E,

0, if Z /∈ E,
(8)

equal to the payoff of a plain vanilla call in case the asset price trajectory remains

within the barriers and ends up above the strike price or zero otherwise.

[Figure 1 about here.]

As for the performance function, in the case of option pricing, this quantifies

how far the asset price trajectory S = (S1, . . . , SN ) lies from the positive payoff, or

equivalently, how far Z = (Z1, . . . , Z) is from E. We define it as follows:

g(S) =

N∑
n=1

gn(Sn), (9)

where terms gn(Sn) quantify how far the asset prices Sn is from the barriers Ln, Un
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and strike K,

gn(Sn) =



Un − Sn, if Sn > Un,

Sn − Ln, if Sn < Ln,

0, otherwise.

for n = 1, . . . , N − 1.

gN (SN ) =



UN − SN , if SN > UN ,

SN −K, if Sn < K,

0, otherwise.

(10)

The difference between gn for n = 1, . . . , N − 1 and gN stems from the fact that

at maturity tN = T , the role of the lower barrier is played by the strike price

K. The performance function g is schematically shown in Figure 2. In terms of

g, the positive-payoff event E can be written, according to the definition of the

performance function g(S) in eq. (10), as follows:

E = {Z = (Z1, . . . , ZN ) : g(S(Z)) ≥ 0} , (11)

where α is now replaced by zero and the defined performance function brings the

problem of estimating the probability of positive payoff pE into the general SubSim

framework developed in Au and Beck (2001).

[Figure 2 about here.]

Then, combining equations (8) and (10), the option price, which in our case is

the expected payoff of the contract at maturity, can be rewritten as follows:

P = E[π(Z)]

= E[π(Z)|Z ∈ E]P(Z ∈ E) + E[π(Z)|Z /∈ E]P(Z /∈ E)

= E[π(Z)|Z ∈ E]P(Z ∈ E) = E[SN −K|Z ∈ E]P(E)

= P(E)(E[SN |Z ∈ E]−K).

(12)

Now, the problem boils down to estimating the execution probability pE = P(E)

and the expectation of the payoff at maturity, given by the second term in the
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product of eq. (12).

3 Probability of contract execution pE and op-

tion payoff via SubSim

We start with the calculation of pE to notice that given the sequence (6), the

small probability pE of rare event E can be written as a product of conditional

probabilities:

pE = P(EL) = P(EL|EL−1)P(EL−1)

= P(EL|EL−1)P(EL−1|EL−2)P(EL−2) = . . . =
L∏
i=1

P(Ei|Ei−1).
(13)

By choosing the intermediate thresholds αi appropriately (in the actual implemen-

tation of SubSim described below, αi are chosen adaptively on the fly), we can

make all conditional probabilities P(Ei|Ei−1) sufficiently large, and estimate them

efficiently by MC-like simulation methods. In fact, the first factor in the right-hand

side of (13), P(E1|E0) = P(E1), can be directly estimated by MCS:

P(E1) ≈
1

m

m∑
i=1

IE1

(
U (i)

)
, U (1), . . . , U (m) ∼ fU . (14)

Estimating the remaining factors P(Ei|Ei−1) for i ≥ 2 is more difficult since this

requires sampling from the conditional distribution fU (u|Ei−1) ∝ fU (u)IEi−1(u),

which is a nontrivial task, especially at later levels, where Ei−1 becomes a rare event.

In SubSim, this is achieved by using the so-called modified Metropolis algorithm

(MMA) (Au and Beck, 2001; Zuev and Katafygiotis, 2011), which belongs to a large

family of MCMC algorithms (Liu, 2001; Robert and Casella, 2004) for sampling

from complex probability distributions. The MMA algorithm is a component-wise

modification of the original Metropolis algorithm (Metropolis et al., 1953), which is

specifically tailored for sampling in high dimensions, where the original algorithm

is known to perform poorly (Katafygiotis and Zuev, 2008).

To sample from fU (u|Ei−1), MMA generates a Markov chain whose stationary
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distribution is fU (u|Ei−1). The key difference between MMA and the original

Metropolis algorithm is how the “candidate” state of a Markov chain is generated (in

appendix A, the MMA algorithm used for the sampling is presented). Then, using

the detailed balance equation, it can be shown (see Au and Beck, 2001, for details)

that if U (j) is distributed according to the target distribution, U (j) ∼ fU (u|Ei−1),

then so is U (j+1), and fU (u|Ei−1) is thus indeed the stationary distribution of

the Markov chain generated by MMA. Now, to estimate the small probability of

execution pE the method starts by generating m MCS samples U (1), . . . , U (m) ∼ fU

and computing the corresponding system trajectories S(1), . . . , S(m) via (4) and

performance values g
(i)
U = g(S(i)). Without loss of generality, we can assume that

g
(1)
U ≥ g

(2)
U ≥ . . . ≥ g

(m)
U . (15)

Indeed, to achieve this ordering, we can simply renumber the samples accordingly.

Since E is a rare event, all U (i) /∈ E with large probability. The ordering (15)

means however that, in the metric induced by the performance function, U (1) is the

closest sample to E, U (2) is the second closest, etc. Let’s define the first intermediate

threshold α1 as the average between the performance values of the m̃th and (m̃+1)th

system trajectories, where m̃ = βm with β ∈ (0, 1):

α1 =
g
(βm)
U + g

(βm+1)
U

2
, 0 < β < 1. (16)

Setting α1 to this value has two important corollaries: (1) the MCS estimate of

P(E1) given by (14) is exactly β, and (2) samples U (1), . . . , U (βm) are i.i.d. random

vectors distributed according to the conditional distribution fU (u|E1).

In the next step, SubSim generates m̃ = βm Markov chains by MMA starting

from m̃ most closest to E samples U (1), . . . , U (βm) as “seeds”:

U (i) = V (i,1) MMA−→ V (i,2) MMA−→ . . .
MMA−→ V (i,l). (17)

Since by construction, all seeds are in the stationary state, U (i) ∼ fU (u|E1), i =

1 . . . , m̃, so are all Markov chains states V (i,j) ∼ fU (u|E1), j = 1, . . . , l. The length
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of each chain is l = 1/β, which makes the total number of states m̃l = m. To

simplify the notation, let’s denote samples V (i,j) by simply V (1), . . . , V (m). Next,

the second intermediate threshold α2 is similarly defined as follows:

α2 =
g
(βm)
V + g

(βm+1)
V

2
, (18)

where g
(1)
V ≥ g

(2)
V ≥ . . . ≥ g

(m)
V are the ordered performance values corresponding to

samples V (1), . . . , V (m). Again, by construction, P(E2|E1) ≈ β and V (1), . . . , V (βm) ∼

fU (u|E2). The SubSim method, schematically illustrated in Figure 3, proceeds in

this way by directing Markov chains towards the rare event E until it is reached

and sufficiently sampled. Specifically, it stops when the number mE of samples

in E, which a priori 0 ≤ mE ≤ m, is mE ≥ βm. All but the last factor in the

right-hand side of (13) are then approximated by β and P(E|EL−1) ≈ mE/m. This

results into the following estimate:

pE ≈ p̂SubSimE = βL−1
mE

m
, (19)

where L is the number of subsets in (13) required to reach E. The total number of

samples used by SubSim is then

M = m︸︷︷︸
MCS

+m(1− β)(L− 1)︸ ︷︷ ︸
MMA

. (20)

[Figure 3 about here.]

The first factor, the probability of positive payoff pE = P(E), can be readily

estimated by SubSim,

P(E) ≈ p̂SubSimE . (21)

Moreover, the conditional expectation in (12) for the terminal asset price can

be estimated using the samples generated by SubSim at the last level. Namely, let

Z(1), . . . , Z(m) be the last batch of MMA samples generated by SubSim before it

stops,

Z(1), . . . , Z(m) ∼ N (z|EL−1), EL−1 ⊃ EL ≡ E, (22)
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where N (z|A) ∝ N (z)IA(z) denotes the standard multivariate normal distribution

conditioned on A. By construction (this is the SubSim stopping criterion), at least

m̃ = βm of these samples are in E. Let

Z(1), . . . , Z(m∗) ∼ N (Z|E), βm ≤ m∗ < m, (23)

denote those samples. The conditional expectation can then be estimated as follows:

E[SN |Z ∈ E] ≈ ÊQ
SubSim =

1

m∗

m∗∑
i=1

SN (Z(i)), (24)

where SN (Z(i)) = SN (Z
(i)
1 , . . . , Z

(i)
N ) is the final value of the asset price obtained

from (2). The expression in (24) in essence gives the expected terminal price of the

underlying asset under the risk–neutral measure as the average of all the generated

asset price paths. Combining (21) and (24), we obtain the SubSim estimate of the

option price:

P ≈ P̂SubSim = p̂SubSimE (ÊQ
SubSim −K). (25)

SubSim as described above, yields an estimator for the execution probability pE

which scales like a power of the logarithm of pE (Au and Beck, 2001):

δ
(
p̂SubSimE

)
=

√
(1 + γ)(1− β)

Mβ(| lnβ|)d
| ln pE |d ∝ | ln pE |d/2, (26)

where γ is a constant that depends on the correlation of the Markov chain states

and 2 ≤ d ≤ 3. Comparing (26) against the CV of a standard MCS method (Liu,

2001; Robert and Casella, 2004)

δ
(
p̂MC
E

)
=

√
Var

[
p̂MC
E

]
E
[
p̂MC
E

] =

√
1− pE
MpE

∝ p−1/2E (27)

reveals a serious drawback of MCS: it is inefficient in estimating small probabilities

of rare events. Indeed, as pE → 0, then δ
(
p̂MC
E

)
≈ 1/

√
MpE . This means that the

number of samples M needed to achieve an acceptable level of accuracy is inversely

proportional to pE , and therefore very large, M ∝ 1/pE � 1. Therefore, for rare

events, where probabilities are small pE � 1, the CV of SubSim is significantly
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lower than that of MCS, δ
(
p̂SubSimE

)
� δ

(
p̂MC
E

)
. This property guaranties that

SubSim produces more accurate (on average) estimates of small probabilities of

rare events.

In case the asset price S has high volatility, then discrete asset price trajectories

S1, . . . , SN will have large variability and with large probability will either cross the

barriers and expire or end up bellow the strike. This means that having a positive

payoff will be a rare event. This suggests – and we confirm this by simulation in

Section 5 – that SubSim should be substantially more efficient in estimating prices

of barrier options on high volatility assets than MC-based methods.

4 Complexity Theorem

The complexity theorem relates the execution probability pE with the mean squared

error (MSE) and the computational complexity/cost of the SubSim estimator P̂ for

the option price P at t = 0, by examining their limiting behavior. The theorem

does not make any assumptions regarding the underlying SDE or the functional of

the solution used.

Theorem 1. The SubSim estimator P̂ for a functional of the solution Ŝ to a given

SDE has

(i) a MSE bounded from above by c1δ
2| log pE |−k,

(ii) with computational cost which has an upper bound of c2δ
−2| log pE |r,

where c1, c2 are constants, δ is the CV of P̂ , pE is the probability of positive payoff at

maturity and r a parameter dependent on the correlation between the intermediate

execution probabilities.

Proof. Using result (26) we have that the squared CV of the execution proba-

bility pE is equal to

δ2 =
(1 + γ)(1− β)

β| log β|rLm
| log pE |r, (28)

where γ is a constant related to the correlation between the states of the Markov

chains used for the sampling at different levels, β is the level probability, L is the

total number of subsets and m represents the number of samples per subset (the
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product Lm approximates the total number of samples M in (26)). By (25) we

see that the option price estimate given by SubSim is a function of the execution

probability pE , the number of MMA samples that lead to a non-zero payoff and

the payoff at maturity SN (Z(i))−K. As a result, the CV of the SubSim estimator

P̂ for the option price P is equal to the CV of pE times a scaling factor (the payoff

at t = T ) and the CV in (28) can be used. Now, the complexity of P̂ given by the

product of the samples per level times the number of simulation levels used is equal

to

C = Lm =
(1 + γ)(1− β)

β| log β|rδ2
| log pE |r =

(1 + γ)(1− β)

βδ2
|L|r, (29)

by noting that the number of simulation levels L is chosen as L = log pE/ log β.

Fixing β and treating γ as a known constant we have that

C ∝ |L|rδ−2 ≤ c2|L|rδ−2 or C ≤ c2δ−2| log pE |r, (30)

which yields the upper bound of the computational complexity, given that L is

O(| log pE |r) for fixed β. Moreover, considering the definition for the coefficient of

variation for P̂ we have

δP̂ =

√
V AR[P̂ ]

E[P̂ ]
=

√
MSE[P̂ ]−BIAS[P̂ , P ]2

E[P̂ ]
. (31)

Squaring both sides of (31) gives

δ2
P̂

=
MSE[P̂ ]−BIAS[P̂ , P ]2

E[P̂ ]2
, (32)

which equivalently can be written as

MSE[P̂ ] = δ2
P̂
E[P̂ ]2 +BIAS[P̂ , P ]2. (33)

Now, we use Propositions 1 and 2 (Au and Beck, 2001) which prove that both the

bias and the squared CV δ2 of pE are bounded above by c3/m. As a result, the

first term of the MSE is O(1/m) while the second term is O(1/m2) which gives an

MSE bounded above by 1/m as for large values of m it dominates the O(1/m2)

15



term.

By (28) we also notice that δ2 is O(| log pE |rL−1m−1) from which we obtain

m = O(| log pE |rL−1δ−2). Setting L = log pE/ log β = O(| log pE |) and fixing δ2,

the number of samples m becomes O(| log pE |k) where k = r − 1 ≤ 3 is a new

constant. Consequently, we end up with an MSE bounded from above by

MSE , E[(P − P̂ )2] ≤ c1
1

| log pE |k
. � (34)

The result in (i) is very important as it shows that by decreasing the proba-

bility of contract execution (i.e., generating a more rare event) results in a smaller

MSE while at the same time, the corresponding CV grows (see also results in Table

1). Moreover, in (ii) we show that the computational complexity of SubSim is

inversely proportional to the square of the target CV δ and the natural logarithm

of the execution probability pE . On one hand, as the target CV becomes smaller

(i.e., we demand a more accurate output), the cost increases as the method uses

more subsets and subsequently a larger number of samples. On the other hand, as

the execution probability decreases, the absolute value of its logarithm increases,

resulting in a higher computational cost as the lower the execution probability the

more demanding the estimation of P̂ becomes. Figure 4 shows the results of a

simulation run (repeated 100 times) to compare how the MSE and the computa-

tional complexity scale with respect to pE according to the SubSim theory and the

experimental outputs.

[Figure 4 about here.]

5 Simulation Study

5.1 Barrier Options

Our numerical experiments focus on pricing double knock-out barrier call options,

but it is straightforward to extend the proposed methodology to other types of

barrier options. Suppose that barriers are monitored during time period [0, T ] at

equally spaced times 0 = t0 < t1 < . . . < tN = T with frequency ∆t = T/N , and
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the option expires if the asset St hits either the upper U or the lower L barrier.

Let us denote the corresponding asset prices by Sn = Stn , the drift by µn = µ(tn)

and the volatility by σn = σ(tn).

The quantity of interest is the barrier option price at the beginning of the

contract (t0 = 0), given by (3), which takes a non–zero value only in case the asset

price trajectory remains within the two barriers. For illustrative purposes, Figure 5

shows several asset trajectories that lead to both option expiration and positive

payoff.

[Figure 5 about here.]

5.2 Simulation results for SubSim vs standard MCS

In the first of our numerical experiments, we consider a double knock-out barrier

call option with a starting price (spot) S0 = 100, strike K = 100, and constant

lower and upper barriers L = 90 and U = 110. A double knock–out option expires

worthless in case either the upper or the lower barrier is crossed by the asset price

trajectory over the life of the option ([0, T ]). In any other case, the payoff at

maturity is calculated as a plain vanilla European call option (i.e., P = (ST −K)+,

where ST is the terminal asset price). The option is discretely monitored during

time period [0, T ] at equally spaced times 0 = t0 < t1 < . . . < tN = 1 with

frequency ∆t = T/N , where N = 250 (approximate number of trading days in a

financial year). We further assume that the drift of the underlying asset is constant

µ = 0.1. To observe the effect of high volatility, we vary the value of σ over ten

different values logarithmically spaced between σmin = 0.2 and σmax = 0.4.

The quantity of interest, the fair option price at the beginning of the contract

(t0 = 0) is given by

P0 = P exp

(
−
∫ T

0
r(t)dt

)
, (35)

where P is the value of the option at the end of time period given by (3) and

estimated by (25), e−
∫ T
0 r(t)dt is the discounting factor from maturity tN = T to

t0 = 0, and r(t) is the interest rate, which is assumed to be constant in this example,

r = 0.1.
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First, we use SubSim with m = 50, 000 samples per subset to estimate both the

probability pE of having a positive payoff at the end of the period, pE ≈ p̂SubSimE ,

and the option price,

P0 ≈ P̂SubSim0 = P̂SubSime
−rT . (36)

The mean values of estimates and their CVs computed from 100 independent runs of

the SubSim algorithm are presented in Table 1. As expected, as the asset volatility

σ increases, the event of having a positive payoff becomes increasingly rare (e.g. if

σ = 0.4, then pE ≈ 2× 10−7) and, as a result, the option becomes cheaper. The

right plot in Figure 6 shows the average (based on 100 runs) total number of samples

M used by SubSim versus the volatility σ. The obtained trend is again expected:

as σ increases, the probability pE becomes smaller, and, therefore, the number L of

subsets in (19) increases, which leads to the increase in the total number of samples

(20).

[Table 1 about here.]

Next, we use MCS to estimate pE and P0. To ensure fair comparison of the two

methods, for each value of σ, MCS is implemented with the same total number of

samples as in SubSim. The mean values of Monte Carlo estimates for the execution

probability p̂MCS
E and the option price P̂MCS

0 = P̂MCSe−rT , with their CVs are

presented in Table 1. The mean values of p̂MCS
E and P̂MCS

0 are approximately the

same as those of p̂SubSimE and P̂SubSim0 , which confirms that SubSim estimates are

approximately unbiased. The CVs, however, differ drastically. Namely, δ(p̂SubSimE )

and δ(P̂SubSim0 ) are substantially smaller than δ(p̂MCS
E ) and δ(P̂MCS

0 ), respectively.

This effect is more pronounced the larger the volatility. For example, if σ = 0.4,

then SubSim is approximately 20 times more efficient than MCS, i.e., on average,

SubSim produces 20 times more accurate estimates, where the accuracy is measured

by the CV. As explained at the end of Section 3, this result stems from the fact

that SubSim is more efficient than MCS in estimating small probabilities of rare

events, and if volatility is large, then the event of having a positive payoff is rare.

To visualize how SubSim outperforms MCS as the volatility increases, in the left

plot of Figure 6 we plot the ratios of CVs δ(p̂MCS
E )/δ(p̂SubSimE ) and δ(P̂MCS

0 )/δ(P̂SubSim0 )
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versus σ. Since the mean values of SubSim and MCS estimates are approximately

the same, the ratios of CVs are approximately the ratios of the corresponding

standard errors. Graphically, the cases where SubSim outperforms MCS for the

estimation of the execution probability and the option price are those for which the

corresponding value of δ(p̂MCS
E )/δ(p̂SubSimE ) or δ(P̂MCS

0 )/δ(P̂SubSim0 ) lies above the

horizontal line y = 1 (dotted line in Figure 6). At that level, both methods would

exhibit the same level of accuracy measured by the CV, since δMCS would equal

δSubSim. We notice that SubSim outperforms MCS in every examined case as both

lines (for P̂0 and p̂E) lie above the y = 1 level.

[Figure 6 about here.]

In the second of our simulation tests we increase the number of samples to

m = 200, 000 using also different levels for the lower and the upper barrier. The

reason we consider more samples is to compare SubSim against not only MCS but

also multilevel Monte–Carlo (see subsection 5.3), where m = 200, 000 is considered

in the original barrier option numerical experiments. To maintain a fair comparison

we perform our MCS tests with the same number of samples as in SubSim. The top

graph of Figure 7 plots the ratio of CV between SubSim and standard MCS with

respect to the volatility of the underlying asset for four levels of the upper and lower

barrier. It is immediately noticeable that for volatility values up to 0.25 the two

methods have comparable CVs (SubSim outperforms standard MCS as reported

in Table 3 but not significantly), providing evidence that for low–volatility assets

the two methods produce sufficiently accurate results. This result is not surprising

as SubSim is designed by construction to deal with problems with extremely small

execution probabilities.

[Figure 7 about here.]

However, as volatility increases, SubSim outperforms naive MCS in all barrier

levels, while especially in the case of L = 90 and U = 110 (barriers close to S0)

and σ ≥ 0.40 (a high–volatility asset), SubSim is up to 50 times more efficient than

standard MC; for lower levels of σ, SubSim still outperforms MCS.
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5.3 Simulation results for SubSim vs MLMC

In this section we compare the performance of SubSim against the multilevel Monte

Carlo method (Giles, 2008b,a), when both used to price a double knock–out barrier

call option with two fixed barriers set at four different levels, while all the other

parameters remain the same as in subsection 5.2. The original multilevel MCS

method was developed to price single knock–out barrier options, amongst other

exotic derivatives, and thus we add a component for the second barrier in order to

accommodate double barrier options as well (see appendices B and C).

The price at t = 0 of the asset is S0 = 100, the strike price is K = 100 and

the time–increment is ∆t = h = T/n where n represents the number of discrete

monitoring points of the barrier option. In the case of MLMC, n varies between

levels as it is a function of a constant M and level l, where l = 0, 1, 2, . . . , L. The

barriers take four different values in increments of ten between 60 and 90 (lower)

and 110 and 140 (upper). The drift of the diffusion equation is equal to µ = 0.10,

while the volatility (diffusion coefficient) varies between 0.05 and 0.45 taking nine

discrete values linearly spaced in this interval. Finally, the risk–free rate at which

we discount the terminal payoffs is known and fixed at r = 0.10.

The bottom graph of Figure 7 plots the ratio of CV between SubSim and MLMC

for four levels of barriers against asset’s volatility. For barriers which lie far from the

price of the asset at t = 0 (i.e., [60, 140] and [70, 130] represented by the solid and

the dotted line respectively), MLMC produces more accurate results than SubSim.

Nevertheless, we notice that as asset volatility increases the performance of SubSim

improves, approaching that of MLMC without surpassing it. SubSim outperforms

MLMC when L = 90 and U = 110 (dashed/dotted line) and when L = 80 and

U = 120 (dashed line) and the volatility of the underlying asset is higher than 0.25.

In both cases, the probability of a non–zero payoff at t = T is extremely small

(Table 1), and hence the use of SubSim provides more accurate results compared

either to standard MCS or MLMC. The evidence we obtain here further supports

the findings in Section 5.2 that SubSim is an efficient technique to price barrier

options on high volatility assets, especially when the barriers are close to the initial

price of the underlying asset.
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Exact values for P̂
{MCS,MLMC,SubSim}
0 (option price at t = 0 for each of the three

methods) and CV
{MCS,MLMC,SubSim}
P0

can be found in Tables 2 and 3, respectively

in appendix D. For visualization purposes, we also plot these results in Figures 8

and 9.

6 Conclusion

In this paper, we develop a new stochastic simulation method for pricing barrier

options. The method is based on Subset Simulation (SubSim), a very efficient

algorithm for estimating small probabilities of rare events. The key observation

allowing to exploit the efficiency of SubSim is that the barrier option price can be

written as a function of the probability of option execution and a certain conditional

expectation, which can both be estimated efficiently by SubSim. In the case of

barrier options on high–volatility assets, SubSim is especially advantageous because

of the very small probability of the contract to remain valid until maturity. We first

compare the proposed SubSim method against the standard Monte Carlo simulation

(MCS) to show that SubSim always outperforms MCS, confirming this with a series

of numerical examples. Moreover, we show that the higher the volatility of the

underlying asset (i.e. the smaller the probability of option execution), the larger the

advantage of SubSim over MCS. Next, we compare our proposed method with the

multilevel Monte–Carlo (MLMC) simulation introduced in Giles (2008b). Although

MLMC outperforms SubSim in general, we find that SubSim can still be more

efficient than MLMC, – where efficiency is measured by the coefficient of variation

(CV) – in cases where the volatility of the underlying asset is high and the barriers

are set close to the starting price of the asset. As a result, the method we propose

here complements MLMC, handling special cases of barrier option settings more

efficiently.
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Appendices

A MMA sampling from the target distribu-

tion fz

To sample from the target distribution fz(z|Ei−1), the MMA generates a Markov chain

with stationary distribution fz(z|Ei−1). Namely, if we let Z(j) ∈ Ei−1 be the current state,

then the next state Z(j+1) is generated as follows:

1. Generate a candidate state Υ = (Υ1, . . . ,ΥN ):

(a) For each k = 1, . . . , N , generate Ψk ∼ q(ψ|U (j)
k ), where q is a symmetric,

q(ψ|u) = q(u|ψ), univariate proposal distribution, e.g. Gaussian distribution

centered at U
(j)
k , the kth component of U (j).

(b) Compute the acceptance probability:

ak = min

{
1,

fk(Ψk)

fk(U
(j)
k )

}
, (37)

where fk is the marginal PDF of Uk, fU (u) =
∏N

k=1 fk(uk), and U1, . . . , UN are

assumed to be independent.

(c) Set

Υk =


Ψk, with probability ak,

U
(j)
k with probability 1− ak.

(38)

2. Accept or reject the candidate state:

U (j+1) =


Υ, if Υ ∈ Ei−1,

U (j), if Υ /∈ Ei−1.

(39)

B Probability of survival of a barrier option

The pricing of barrier options is a first passage time problem in which we are interested in

the first time that the price trajectory of the underlying asset crosses a prespecified barrier.

Now, assuming that U > S0 and L < S0 are the upper and lower barriers respectively, the

survival indicator function of the barrier option in (3) can be approximated via its discrete
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form
n−1∏
i=0

I{M̂i≤U ∧ m̂i≥L} (40)

where M̂i and m̂i are the maximum and minimum, respectively, of (2) in [0, nh] and T =

nh or h = T/n is the size of the timestep on a discrete grid. Equation (40) takes the

value one if and only if the conditions for M̂i and m̂i are met at every time–step of the

discretized problem, otherwise the product (40) becomes zero and the option expires

worthless. Following Glasserman (2013) (see particularly section 6.4 and example 2.2.3) we

sample the minimum and the maximum of S by formulating the following problem:

M(t) = max
0≤u≤t

S(u) (41)

with

M̂h(n) = max{S(0), S(h), S(2h), . . . , S(nh)} (42)

the maximum of the approximation of S on [0, nh], and

m(t) = min
0≤u≤t

S(u) (43)

with

m̂h(n) = min{S(0), S(h), S(2h), . . . , S(nh)} (44)

the minimum of a discrete time approximation of S on [0, nh].

In the sampling of the maximum, conditioning on the endpoints S(0) and S(T ), the

process {S(t), 0 ≤ t ≤ T} becomes a Brownian bridge, and thus we sample from the

distribution of the maximum of a Brownian bridge, a Rayleigh distribution, which results

in

M(T ) =
S(T ) +

√
S(T )2 − 2T logX

2
, (45)

where X is a uniformly distributed random variable in [0, 1]. Now, let Ŝih be a discrete

time approximation of the solution of S in (1), where i = 0, 1, . . . , n, h = T/n. To obtain

a good estimation for M̂h (i.e. the maximum of the interpolating Brownian bridge) and

decrease the error induced by the discretization (i.e., the case where Su crosses U or L

between two grid points), we interpolate over [ih, (i + 1)h], which given the end points Si

and Si+1 results in

Mi =
S(i) + S(i+ 1) +

√
[S(i+ 1)− S(i)]2 − 2b2h logX

2
(46)
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with X ∼ Unif[0, 1].

Given a barrier U , the probability of survival for the option (the maximum price of the

underlying asset to remain below U) in the fine–path estimation is given by

p̂i,U = P (M̂i ≤ U |Ŝi, Ŝi+1) = 1− exp

(
− 2(U − Ŝi)(U − Ŝi+1)

b2h

)
, (47)

where b is the fixed standard deviation of the underlying asset price and h is the time–step

in the discretization process. The corresponding estimation for a coarse–path is equal to

p̂i,U = P (M̂i ≤ U |Ŝi, Ŝi+1) =

{
1− exp

(
−

2(U − Ŝi)(U − Ŝi+1/2)

b2h

)}
×
{

1− exp

(
−

2(U − Ŝi+1/2)(U − Ŝi+1)

b2h

)}
. (48)
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C Minimum of Brownian bridge

We now derive analytically the probability of survival for a double barrier option in a fine

path estimation, by calculating also the probability of the minimum of Ŝ to cross the lower

barrier L. Conditioning on endpoints Ŝi and Ŝi+1, the distribution of the minimum of the

Brownian bridge (interpolated over [i, (i+ 1)h]) is given by

mi =
S(i) + S(i+ 1)−

√
[S(i+ 1)− S(i)]2 − 2b2h logX

2
, (49)

where X ∼ Unif[0, 1]. Subsequently, the probability of the minimum mi of Ŝ to cross the

lower barrier L is equal to

P (m̂i ≤ L|Ŝi, Ŝi+1)

= P

(
Ŝ(i) + Ŝ(i+ 1)−

√
[Ŝ(i+ 1)− Ŝ(i)]2 − 2b2h logX

2
≤ L|Ŝi, Ŝi+1

)
= P

(√
[Ŝ(i+ 1)− Ŝ(i)]2 − 2b2h logX ≥ (Ŝ(i) + Ŝ(i+ 1))− 2L|Ŝi, Ŝi+1

)
= P

(
Ŝ(i+ 1)2 − 2Ŝ(i)Ŝ(i+ 1) + Ŝ(i)2 − 2b2h logX

≥ (Ŝ(i) + Ŝ(i+ 1))2 − 4L(Ŝ(i) + Ŝ(i+ 1)) + 4L2|Ŝi, Ŝi+1

)
= P

(
Ŝ(i+ 1)2 − 2Ŝ(i)Ŝ(i+ 1) + Ŝ(i)2 − 2b2h logX

≥ Ŝ(i)2 + Ŝ(i+ 1)2 + 2Ŝ(i)Ŝ(i+ 1)− 4L(Ŝ(i) + Ŝ(i+ 1)) + 4L2|Ŝi, Ŝi+1

)
= P

(
− b2h logU ≥ 2Ŝ(i)Ŝ(i+ 1)− 2LŜ(i) + 2LŜ(i+ 1) + 2L2|Ŝi, Ŝi+1

)
= P

(
logU ≤ −2Ŝi(Ŝi+1 − L)− 2L(Ŝi+1 − L)

b2h
|Ŝi, Ŝi+1

)
= P

(
logU ≤ −2(Ŝi − L)(Ŝi+1 − L)

b2h
|Ŝi, Ŝi+1

)
= P

(
U ≤ exp

(
− 2(Ŝi − L)(Ŝi+1 − L)

b2h

)
|Ŝi, Ŝi+1

)
= exp

(
− 2(Ŝi − L)(Ŝi+1 − L)

b2h

)
.

(50)

The probability in (50) refers to the case of the running minimum crossing the lower barrier.

The probability to remain above the lower barrier is thus equal to its complement

p̂i,L = 1− exp

(
− 2(Ŝi − L)(Ŝi+1 − L)

b2h

)
, (51)
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and the probability of the asset price to remain within the barriers on [0, T ] is equal to

p̂i = p̂i,U p̂i,L =

{
1−exp

(
− 2(U − Ŝi)(U − Ŝi+1)

b2h

)}{
1−exp

(
− 2(Ŝi − L)(Ŝi+1 − L)

b2h

)}
.

(52)

The calculation of the probability of survival for the coarse path estimation follows trivially

from (52) by adjusting it using (48). Then, the option remains alive until time t = T = nh

when the asset price is bounded between L and U , which in the case of a coarse path

estimation, using a midpoint equal to i+ 1/2, equals

p̂i =

{
1− exp

(
−

2(U − Ŝi)(U − Ŝi+1/2)

b2h

)}{
1− exp

(
−

2(U − Ŝi+1/2)(U − Ŝi+1)

b2h

)}
(53)

×
{

1− exp

(
−

2(Ŝi − L)(Ŝi+1/2 − L)

b2h

)}{
1− exp

(
−

2(Ŝi+1/2 − L)(Ŝi+1 − L)

b2h

)}
.

(54)

D Simulation study results

[Figure 8 about here.]

[Figure 9 about here.]

[Table 2 about here.]

[Table 3 about here.]
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Figure 1: Target event. The target event E consists of all Z-vectors that lead to the positive
payoff (option execution). The mapping between Z-space and S-space is given by (2).
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Figure 2: Performance function. The function g(S) quantifies how far the asset price
trajectory S is from the positive payoff, which occurs when S stays between the barriers U and
L and ends up above the strike K. The value of g(S) on the depicted trajectory is the negative
sum of the heights of the vertical bars above the upper barrier (red), below the lower barrier
(blue), and ending below the strike (purple).
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Figure 3: Schematic illustration of Subset Simulation. First, Monte Carlo samples
U (1), . . . , U (m) are generated. Next, m̃ = βm “seeds” (the closest samples to E) are chosen and
MMA is used to generate V (1), . . . , V (m) from these seeds in the direction of E. The SubSim
algorithm proceeds in this way until the target rare event E has been reached and sufficiently
sampled. In this visualization, m = 6 and β = 1/3.
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Figure 4: Mean squared error and complexity/cost of P̂ . The simulation results show
that the MSE scales like 1/| log pE |k, where k = 3, is a constant (left). In accordance with the
theoretical findings, simulated MSE drops with increasing pE . Computational cost/complexity
of SubSim with respect to the probability of execution (right). The simulation results show
that the cost can be bounded above by a function of | log pE |r, r = 4. The theoretical lines are
calculated using the results in eq. (30) and eq. (34) with the CVs and execution probabilities
of table 1.
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Figure 5: Asset price trajectories. The top panel shows two asset trajectories that lead to
a zero payoff: one trajectory breaks the upper barrier U at time tk, the other ends up below
the strike, SN < K. The bottom panel shows an asset price trajectory that results in a positive
payoff SN −K. For the sake of illustration, both lower and upper barriers are constant.
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Figure 6: Ratios of CVs. The ratios δ(p̂MCS
E )/δ(p̂SubSimE ) and δ(P̂MCS

0 )/δ(P̂SubSim0 ) versus
the volatility σ are presented (left). Total number of samples used in Subset Simulation when
L = 90 and U = 110 (right).
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Figure 7: Ratios of CVs of the option price P0. The results are plotted with re-
spect to asset volatility, for Subset Simulation against Monte Carlo (top) and Subset Sim-
ulation against multilevel Monte Carlo (bottom). Four different barrier levels are pre-
sented (to perform the simulations we use mainly the codes provided by Mike Giles at
https://people.maths.ox.ac.uk/gilesm/mlmc/ doing the necessary adjustments in file mc-
qmc06.m).
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Figure 8: Barrier option prices. Results reported for the three methods with respect to
volatility. The four graphs correspond to different levels of the upper and lower barrier.
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Figure 9: Coefficient of variation (CV). Results reported for the three methods with
respect to volatility for 100 runs of the pricing algorithm. The four graphs correspond to
different levels of the upper and lower barrier.
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Table 1: Simulation results. This table shows the mean values and coefficients of variations
of the estimates of the execution probability pE and the barrier option price P0, obtained
by SubSim and MCS for different values of volatility σ. All statistics are obtained from 100
independent runs of the algorithms.

σ p̂SubSim
E /p̂MCS

E P̂SubSim
0 /P̂MCS

0 δ(p̂SubSim
E )/δ(p̂MCS

E ) δ(P̂SubSim
0 )/δ(P̂MCS

0 )
0.200 8.30× 10−3 / 8.26× 10−3 2.93× 10−2 / 2.91× 10−2 0.030 / 0.0281 0.034 / 0.0347
0.216 4.32× 10−3 / 4.34× 10−3 1.52× 10−2 / 1.53× 10−2 0.032 / 0.0391 0.036 / 0.0476
0.233 2.04× 10−3 / 2.04× 10−3 7.18× 10−3 / 7.19× 10−3 0.039 / 0.0596 0.044 / 0.0673
0.252 8.67× 10−4 / 8.76× 10−4 3.06× 10−3 / 3.11× 10−3 0.048 / 0.0788 0.055 / 0.0985
0.272 3.23× 10−4 / 3.21× 10−4 1.14× 10−3 / 1.15× 10−3 0.057 / 0.126 0.062 / 0.160
0.294 1.06× 10−4 / 1.08× 10−4 3.75× 10−4 / 3.80× 10−4 0.060 / 0.217 0.069 / 0.282
0.317 2.91× 10−5 / 2.63× 10−5 1.03× 10−4 / 9.38× 10−5 0.076 / 0.406 0.081 / 0.476
0.343 6.85× 10−6 / 5.66× 10−6 2.46× 10−5 / 2.14× 10−5 0.099 / 0.759 0.109 / 1.014
0.370 1.31× 10−6 / 9.93× 10−7 4.69× 10−6 / 3.06× 10−6 0.153 / 1.971 0.160 / 2.337
0.400 1.99× 10−7 / 2.45× 10−7 7.20× 10−7 / 1.10× 10−6 0.180 / 3.844 0.205 / 4.017
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Table 2: Barrier option prices. A comparison of the option prices derived by each of the
three methods (MCS, MLMC and SubSim) for four barrier levels against volatility.

Barriers
[60,140] [70,130] [80,120] [90,110]

Volatility (σ) Method

0.05 Standard MCS 9.5559 9.5345 8.3761 1.9009
MLMC 9.5549 9.5339 8.3008 1.7882
SubSim 9.5573 9.5351 8.3728 1.8997

0.10 Standard MCS 9.8679 8.2903 4.5155 0.6617
MLMC 9.8271 8.1682 4.3242 0.5941
SubSim 9.8656 8.2862 4.5137 0.6615

0.15 Standard MCS 8.6454 5.7592 2.3743 0.1712
MLMC 8.4688 5.5283 2.1859 0.1956
SubSim 8.6413 5.7570 2.3734 0.1711

0.20 Standard MCS 6.6578 3.8014 1.2839 0.0290
MLMC 6.3772 3.5392 1.1595 0.0716
SubSim 6.6477 3.7958 1.2839 0.0292

0.25 Standard MCS 4.8993 2.5194 0.6712 0.0033
MLMC 4.5896 2.2841 0.6406 0.0273
SubSim 4.8970 2.5148 0.6707 0.0033

0.30 Standard MCS 3.5877 1.6833 0.3226 0.0003
MLMC 3.2844 1.5152 0.3668 0.0120
SubSim 3.5840 1.6792 0.3223 0.0003

0.35 Standard MCS 2.6423 1.1106 0.1406 1.33E-05
MLMC 2.3811 1.0275 0.2233 5.70E-03
SubSim 2.6414 1.1096 0.1403 1.61E-05

0.40 Standard MCS 1.9638 0.7114 0.0554 1.84E-06
MLMC 1.7620 0.7101 0.1306 3.00E-03
SubSim 1.9604 0.7107 0.0554 7.19E-07

0.45 Standard MCS 1.4525 0.4387 0.0199 5.79E-08
MLMC 1.3312 0.4956 0.0776 1.70E-03
SubSim 1.4501 0.4371 0.0198 2.49E-08
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Table 3: Coefficient of variation (CV). A comparison of the CVs of the barrier option
price as derived by each of the three methods (MCS, MLMC, SubSim) for four barrier levels
against asset’s volatility.

Barriers
[60,140] [70,130] [80,120] [90,110]

Volatility (σ) Method

0.05 Standard MCS 0.0018 0.0016 0.0019 0.0045
MLMC 0.0004 0.0004 0.0005 0.0024
SubSim 0.0011 0.0013 0.0013 0.0031

0.10 Standard MCS 0.0027 0.0026 0.0038 0.0080
MLMC 0.0004 0.0006 0.0010 0.0077
SubSim 0.0018 0.0019 0.0025 0.0059

0.15 Standard MCS 0.0037 0.0040 0.0054 0.0177
MLMC 0.0005 0.0008 0.0017 0.0229
SubSim 0.0027 0.0026 0.0037 0.0092

0.20 Standard MCS 0.0041 0.0053 0.0084 0.0444
MLMC 0.0007 0.0013 0.0044 0.0598
SubSim 0.0032 0.0039 0.0055 0.0156

0.25 Standard MCS 0.0054 0.0066 0.0095 0.1122
MLMC 0.0009 0.0020 0.0063 0.1623
SubSim 0.0042 0.0053 0.0068 0.0219

0.30 Standard MCS 0.0069 0.0089 0.0180 0.4069
MLMC 0.0014 0.0053 0.0104 0.1992
SubSim 0.0043 0.0061 0.0093 0.0347

0.35 Standard MCS 0.0075 0.0099 0.0301 1.9758
MLMC 0.0020 0.0041 0.0310 0.2169
SubSim 0.0061 0.0072 0.0129 0.0652

0.40 Standard MCS 0.0098 0.0126 0.0373 5.6981
MLMC 0.0025 0.0057 0.0288 0.2257
SubSim 0.0067 0.0088 0.0166 0.1047

0.45 Standard MCS 0.0087 0.0106 0.0254 8.2893
MLMC 0.0059 0.0164 0.0538 0.2465
SubSim 0.0077 0.0128 0.0217 0.1808
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