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Survival of the fractional Josephson effect in time-reversal-invariant topological superconductors
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Time-reversal-invariant topological superconductor (TRITOPS) wires host Majorana Kramers pairs that have
been predicted to mediate a fractional Josephson effect with 47 periodicity in the superconducting phase dif-
ference. We explore the TRITOPS fractional Josephson effect in the presence of time-dependent ‘local mixing’
perturbations that instantaneously preserve time-reversal symmetry. Specifically, we show that just as such
couplings render braiding of Majorana Kramers pairs non-universal, the Josephson current becomes either ape-
riodic or 27-periodic (depending on conditions that we quantify) unless the phase difference is swept sufficiently
quickly. We further analyze topological superconductors with 72 = 41 time-reversal symmetry and reveal a
rich interplay between interactions and local mixing that can be experimentally probed in nanowire arrays.

Introduction. Topological superconducting wires hosting
unpaired end Majorana zero modes (MZMs) [1-10] display
remarkably rich phenomenology with applications for topo-
logical quantum computation [11-15]. Well-separated MZMs
span a set of degenerate ground states that are locally indis-
tinguishable and hence define a fault-tolerant qubit subspace.
Braiding unpaired MZMs implements universal non-Abelian
rotations within the ground state subspace—thereby generat-
ing fault-tolerant qubit gates. Under a ‘fusion’ process, a pair
of MZMs brought together in space hybridizes and yields a
finite-energy fermionic state that can be either empty (I fu-
sion channel) or filled (¢) fusion channel). Detecting which
fusion channel emerges provides a means of qubit readout.

An elegant method of probing topological superconductiv-
ity and performing readout utilizes the so-called fractional
Josephson effect [1, 16-18]. In a conventional Josephson
junction, Cooper-pair tunneling generates a current that is 27
periodic in the superconducting phase difference across the
barrier. A pair of MZMs fused across a topological Joseph-
son junction mediates single-electron tunneling, resulting in
an anomalous 4m-periodic fractional Josephson current whose
sign correlates with the associated fusion channel. This pe-
riod doubling intimately relates to non-Abelian braiding: Ad-
vancing the phase difference by 27 has the same effect as
fully braiding the MZM pair on one side of the junction (in
turn swapping the fusion channel I <+ 1 for the hybridized
MZMs). Two such braids are necessary to return the system
to its initial state, corresponding to 47 phase evolution.

When some time-reversal symmetry 7 is present, topolog-
ical superconducting wires can host multiple MZMs at each
boundary. In particular, a time reversal invariant topologi-
cal superconductor (TRITOPS) for which 72 = —1 [19-46]
hosts a Kramers pair of end MZMs that cannot hybridize pro-
vided 7T is preserved. MZM Kramers pairs in a TRITOPS
wire accordingly generate a symmetry-protected ground state
degeneracy consisting of locally distinguishable states—and
thus furnish a qubit subspace with limited fault-tolerance. In-
deed, even time-dependent local perturbations that instanta-
neously preserve 7 can rotate the Majorana Kramers pair
wavefunctions, generating a non-universal non-Abelian Berry

phase [47]. As a result of this ‘local mixing,” braiding MZM
Kramers pairs generically produces non-universal rotations in
the ground-state subspace [48].

Given these non-universalities, to what extent does a frac-
tional Josephson effect survive in TRITOPS wires? This ques-
tion turns out to be exceedingly subtle. On one hand, in a
TRITOPS Josephson junction that preserves 7 at phase dif-
ferences 0 and 7, each subgap level is certainly 47-periodic
(Fig. 1), suggesting that a fractional Josephson effect ap-
pears as predicted in numerous works [26, 29, 30, 43, 49-57].
But on the other, the braiding/fractional Josephson connec-
tion noted earlier naively implies that non-universality of the
former spells doom for the latter. There is, however, reason
for optimism: The Josephson-junction energy levels become
degenerate only at discrete phase differences, suggesting that
time-dependent local perturbations may play a less dramatic
role compared to the braiding problem (for which degeneracy
persists throughout the evolution).

Here we show that, when the superconducting phase winds
adiabatically, local mixing indeed spoils the fractional Joseph-
son effect and yields either an aperiodic or 27-periodic
current-phase relation depending on local-mixing time scales.
This result holds even in an otherwise ideal situation for which
effects known previously to destroy 4n-periodicity [17, 49,
51, 58-63]—e.g., explicit 7 breaking, overlap between dis-
tant MZMs, energy relaxation, and quasiparticle poisoning—
are absent. By mapping the problem onto an effective model
that features avoided crossings in the energy spectrum, we fur-
ther demonstrate that 47 periodicity is recovered when the
phase difference evolves sufficiently quickly that local mix-
ing remains benign. We extend our analysis to junctions of
T2 = +1 topological superconductors, which can be real-
ized (approximately) with proximitized nanowire arrays [64].
Without interactions, local mixing can similarly spoil the
fractional Josephson effect in a junction of 2m wires when
m > 1. Interestingly, however, we find that interactions stabi-
lize 47 periodicity for any odd m and 27 periodicity when
m mod 4 = 0. The nontrivial m dependence reflects an
interplay between local mixing and the Zg classification of
one-dimensional fermionic topological phases [65], and thus



FIG. 1. Top panel: TRITOPS Josephson junction with each wire
modeled by two time-reversed copies of a topological superconduc-
tor. Dotted lines indicate hybridization of Majorana Kramers pairs
(dark purple) leading to Eq. (2). Local mixing arises when Majorana
Kramers pairs undergo time-dependent coupling to excited states.
Bottom panel: Many-body energy spectrum for a TRITOPS Joseph-
son junction. Solid and dashed curves respectively correspond to
even and odd fermion-parity sectors.

provides an experimental window into both phenomena.

Local mixing. Let vy (2), Y1(2) denote the MZM Kramers
pair at the left (right) end of a TRITOPS wire. Time reversal
sends

Vi = 8% Vi 857 (D
for convention-dependent signs s; = =1; note consistency
with 72 = —1. Bilinears hybridizing a given MZM Kramers
pair are odd under 7 and thus forbidden.

Local, adiabatic time-dependent perturbations that instan-
taneously preserve 7 endow the MZM operators at each end
with nontrivial time dependence. Such perturbations can re-
sult, e.g., from external manipulation or stochastic noise that
couples the initial MZMs and bulk energy modes, as re-
viewed in the Supplemental Material. Reference 47 showed
that after the Hamiltonian completes a closed cycle in time
T, the final state generically differs in a non-universal way
from the initial state. The ground-state rotation resulting
from this “local mixing” is implemented by the unitary matrix
U=exp|>_10 Qﬂj(O)ij(O)/ﬂ, with 6; a local-mixing
angle determined by evolution details. Local mixing ac-
cordingly spoils the topological protection of braiding MZM
Kramers pairs [48].

TRITOPS Josephson junction. Consider a TRITOPS
Josephson junction (Fig. 1, top) with superconducting phase
¢r, = 0 on the left and ¢ = ¢ on the right. The Majorana
Kramers pair 7y, vz, at the left side of the junction hybridizes
with the Majorana Kramers pair v, g on the right side, me-
diating a supercurrent contribution that we wish to explore in
the presence of local mixing. When ¢ = nm for n € Z the
junction preserves 7 ; at these values we adopt a convention
where vy, 4 transform under 7 according to Eq. (1) with
s, = 1, while yg, ¥R transforms with sg = —(—1)"™. A min-
imal time-independent junction Hamiltonian compatible with

this symmetry reads

Hyy = iXc cos (¢/2) (YLYR + YLAR)
+ iAo sin (¢/2) (YL YR — YLAR) 5 )

where A, , are real-valued tunneling amplitudes (see Supple-
mental Material for a derivation). In the even-parity sector
(ivLvr)(i9L7r) = +1 only the first line survives, whereas
in the odd-parity sector (iy.vr)(i9.7r) = —1 only the sec-
ond line survives [66]. Figure 1, bottom panel, sketches the
corresponding energy-phase relation FE(¢). Each subgap en-
ergy is 4m-periodic in ¢, and hence at this level of analysis the
Josephson current (I(¢)) = 2—{% is also 47r-periodic under
adiabatic phase evolution.

Crucially, however, the TRITOPS fractional Josephson ef-
fect hinted at here does not constitute a robust adiabatic cycle.
As proof of concept, suppose that we begin in the ground state
of the even-parity sector (solid lines in Fig. 1, bottom), and
then implement the following process: (%) adiabatically wind
¢ from 0 to 7, yielding two-fold Kramers degeneracy, (i¢) turn
on a local-mixing closed adiabatic subcycle, and (ii¢) adia-
batically wind ¢ from 7 to 27r. After stage (i¢) local mixing
rotates the system into a superposition of even-parity junc-

tion eigenstates via Ujj = exp [ZJ:L,R HJWJ(O)ﬁlJ(O)/2}
for some non-universal ;, p mixing angles. Specifically, if
|—) and |+) denote states that respectively evolve from the
even-parity ground state and excited state at ¢ = , the sys-
tem evolves to

Ul = eos (P52 ) - i (230 ) ),
(3)

Repeated implementations of the closed adiabatic cycle above
generically result in aperiodic unitary state evolution, signal-
ing a breakdown of the TRITOPS fractional Josephson effect.

A more physically relevant scenario arises when local mix-
ing and phase winding occur simultaneously. For an illus-
trative toy model, we incorporate a Kramers pair of Andreev
bound states described by f = (7. +i7:)/2, f = (5. +i7:)/2
and supplement Eq. (2) with [47]

SH(t) = 5 [=i (167, +73L) +2] 0

+ zg [cos a(t) (YLVe +FLAe) +sina(t) (v29e — Frve)] -

The Andreev bound states exhibit an energy gap ¢ encoded by
the first line and couple to the Majorana Kramers pair on the
left side of the junction via the second line; all terms instanta-
neously preserve 7.

We take ¢ to be the largest energy scale and,
for simplicity, project onto the even-parity subspace
YLYRVLYRYYer Ve Ve = +1. In this formulation, the Hamil-
tonian H(t) = Hy + SH(t) supports two ‘low-energy’
instantaneous eigenstates—denoted |¢1(¢)) and |1)o(t))—
separated from the next lowest instantaneous eigenstates
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FIG. 2.  Transition probability after evolution by Heg(t) from
t = 0toty for at) = 2mn[f(t) — f(t:)]/[f(ts) — f(t:)]
with f(t) =log [(1 + e“*tl)/T) / (1 + e(tftz)/T)] and
¢(t) =2nmt/t;.  Parameters are \e = ¢/80, 8 = /40,
ty =2x 107", 10 = ty/2 £ 0.0025ts, and n = 25 x 10°.
The choice of a(t) yields step-like jumps in 6(¢) over a time scale
7, as shown in the inset. In the main plot’s horizontal axis, Q(¢1)
denotes the magnitude of the instantaneous energy at the time of
the jumps. ‘Slow’ jumps [7€2(¢1) 2 1] yield nearly zero transition
probability, signifying a 27-periodic Josephson effect. ‘Fast’ jumps
[T2(t1) < 1], however, generate aperiodicity—even for arbitrarily
slow ¢(t). Inset: Off-diagonal element of Heg (t)/\, near ¢ = 7
for 7Q(t1) & 1.257 (red) and 7(¢1) =~ 0.00629 (blue), along with
diagonal elements (grey).

by an excess energy ~ e. We further assume that «(t)
varies slowly in time, i.e., S&(t) < €2, so that transitions
between the low- and high-energy states are negligible.
Solutions to Schrodinger’s equation then approximately
take the form |B(t)) = wi(Bva(t)) + valt)lia(t)):
the coefficients satisfy the equation of motion
232517 = [Hinst (t) + HB (t)]’ﬁ = Heff (t)ﬁ, with Hinst a
diagonal matrix populated by the instantaneous energies
and Hg;; = —(1;(t)]i0:|y(t)) a Berry-phase term. Re-
taining terms up to O (5*2) (except an unimportant term
proportional to identity), we explicitly find

Hon(t) = 2X, cosl6 (1) 2o — 20)r,  (9)
where A, = A.[1—p3%/(2¢%)] is a renormalized tun-
neling amplitude, (t) = —a(t)3%/e?, and the Pauli
matrices now refer to the basis of instantaneous eigen-
states |¢;(¢)). When A, = 0, the time-evolution op-
erator U = e~ Jo Hett() = ¢i59y implements local mixing
among the degenerate junction states with mixing angle
0= fOT dt6(t), in agreement with Ref. 47 [67] at 8 < e.
More interestingly, with A, # 0, the o, term responsible for
local mixing effectively couples the bound states related by
time-reversal symmetry—even though the crossings in Fig. 1
are protected.

To analyze the Josephson effect described by Eq. (5), we
first consider ng and 6 approximately constant. Treating local
mixing as a small perturbation away from the time-reversal-
invariant point, we expand Hy(f) near ¢ = m to obtain a

(J {
° A Ae?? )
(] {

m mod 4 | non-interacting I(¢) | interacting I(¢)
1 47 4
2 27, 4, or aperiodic |27, 47, or aperiodic
3 47 or aperiodic 4
4 27, 4, or aperiodic 2T

FIG. 3. Josephson junction between two sets of m proximitized
nanowires that each (approximately) obey 72 = +1 time-reversal
symmetry [64]. Table: Summary of the periodicity for the current-
phase relation in the presence of local mixing, both in the non-
interacting limit and with interactions. Multiple values are given
when the result depends on local-mixing details.

standard Landau-Zener Hamiltonian. The transition probabil-
ity between instantaneous Hg(t) eigenstates monotonically
increases as = = 02/, ¢ decreases. At 2 > 1, the adiabatic
criterion is satisfied; here a system initialized into the instan-
taneous ground state at ¢ = 0 evolves into the instantaneous
ground state at ¢ = 2, yielding a 27-periodic current-phase
relation. For z < 1 “fast’ phase winding instead overwhelms
local mixing, and a 4n-periodic fractional Josephson effect
emerges.

Next we examine a ‘quench’ that more closely resembles
the proof-of-concept picture considered earlier: As sketched
in the inset of Fig. 2, during an interval at which ¢ ~ m,
O(t) jumps from zero to a finite value over a time scale 7
and then similarly decays back to zero. Figure 2, main panel,
depicts the numerically obtained transition probability as a
function of 7Q(¢1), where 2€2(¢1) is the instantaneous energy
gap evaluated at the jump; see caption for parameters. For
‘large’ 7 a local-mixing-induced 27-periodic Josephson ef-
fect again arises (Supplemental Material derives a condition
for adiabatic evolution in this case). As 7 decreases, however,
the transition probability becomes appreciable and eventually
plateaus—indicating an aperiodic current-phase relation.

Thus far we have focused on unitary time evolution. We
now note that continuously measuring the current can sta-
bilize 47 periodicity through the quantum Zeno effect. Al-
though current eigenstates correspond to energy eigenstates,
the current is most distinguishable when the energies are de-
generate; hence measurement backaction competes against
local mixing. If the measurement projects onto a current
eigenstate faster than the time scale of local mixing, the frac-
tional Josephson effect survives (up to processes not consid-
ered here).

T2 = +1 Josephson junction. Topological superconduc-
tors with 72 = +1 time-reversal symmetry can support an ar-
bitrary number m of MZMs at each end in the non-interacting
limit, but only m mod 8 with interactions [65]. As a physical
realization, we envision an array of m proximitized semicon-
ductor nanowires in a magnetic field [10, 68-70], for which
the minimal low-energy Hamiltonian preserves 72 = +1



symmetry [64]. Figure 3, top, sketches a Josephson junction
assembled from such arrays. Our goal is to explore the impact
of local mixing and interactions on the Josephson effect.

Consider first the non-interacting limit. The junction hosts
MZMs vr1.....m from the left end and yg; ..., from the right,
which hybridize via

HI= =3 idjn cos(6/2) 7L ai- ©)
7,k

Time-reversal symmetry persists at ¢ = nm (n € Z); more-
over, at ¢ = 7 the hybridization vanishes, yielding 2m MZMs
at the junction. As for the 72 = —1 case, each energy de-
scribed by Eq. (6) is 47 periodic in ¢, and hence a fractional
Josephson effect exists at this level of analysis. Figure 4(a)
illustrates the energies versus ¢ for m = 3, with solid and
dashed lines respectively denoting even- and odd-parity states.

To incorporate local mixing, observe that § H (¢) in Eq. (4)
also preserves T2 = +1 symmetry (with v, 1,7, 7. —
YLy AL, Ve, AL and Yo, e — —7e, —9:). Thus one can imme-
diately construct a local-mixing Hamiltonian for the 72 = +1
problem by replacing vr, — vYr;, ¥ — Yrr in 0H(t) and
summing over j,k pairs. The net effect is that local mix-
ing can once again nonuniversally rotate the system among
same-parity Hamiltonian eigenstates that are degenerate at
¢ = m. For any m > 1 this degeneracy is nontrivial, implying
that local mixing spoils the fractional Josephson effect unless
the phase is swept sufficiently rapidly. Interestingly, for odd
m > 1 local mixing can never generate 27 periodicity since
the junction parity switches upon sweeping ¢ by 27; see, e.g.,
Fig. 4(a).

Symmetry-preserving interactions, which we now turn on,
substantially enrich this story. First, one only needs to
consider m mod 4. Indeed with m = 4 the junction at
¢ = m hosts 8§ MZMs—whose degeneracy interactions com-
pletely obliterate [65], thus stabilizing 27 periodicity. For m
mod 4 = 1 a given fermion-parity sector has a unique ground
state at ¢ = m, so the fractional Josephson effect is immune to
local mixing. The case m mod 4 = 2 essentially reduces to
the TRITOPS Josephson junction already examined in great
detail; at ¢ = 7 a two-fold degeneracy in a given parity sector
persists even with interactions, and local mixing accordingly
generates 27-periodicity, 47-periodicity, or aperiodicity de-
pending on details. Finally, for m mod 4 = 3 interactions
shift crossings between same-parity states [recall Fig. 4(a)]
away from ¢ = 7, where they become avoided crossings due
to the absence of 7 symmetry; see Fig. 4(b). Interactions con-
sequently protect the fractional Josephson effect against local
mixing. See the Table from Fig. 3 for a summary.

Discussion. A very general implication of our study is that
symmetry-protected degeneracies among locally distinguish-
able states do not necessarily suffice for generating robust
nontrivial adiabatic cycles; examination of dynamics under
generic conditions is additionally required. We have seen that
T-symmetric local mixing perturbations that render braid-
ing non-universal in TRITOPS wires [47, 48] also preclude

avoided crossing

FIG. 4. (a) Non-interacting many-body spectrum versus ¢ for the
Josephson junction in Fig. 3 in the m = 3 case. Solid and dashed
lines respectively denote even- and odd-fermion-parity states. Cross-
ings necessarily occur at ¢ = 7 due to 72 = +1 symmetry, and lo-
cal mixing generically rotates among equal-parity degenerate states.
(b) Many-body spectrum with interactions—which shift the locations
of the crossings away from the time-reversal-invariant point, where
they are no longer protected. Interaction-induced avoided crossings
between same-parity states protect the fractional Josephson effect
against local mixing.

a well-defined adiabatic fractional Josephson effect. Simi-
lar results hold in junctions of 72 = +1 topological su-
perconductors, with the interesting addition that interactions
in some cases immunize against local mixing. Our analy-
sis exemplifies a more general result in Ref. 71 that time-
reversal-symmetry-protected effects are fragile in an open sys-
tem. Whether an analogous fate befalls cycles in systems with
degeneracies protected by local unitary symmetries remains
an interesting open question.

Our findings are relevant for experiments on both TRITOPS
and nanowire-based Josephson junctions. Recent experiments
investigating the Josephson effect in proximitized quantum
spin Hall edges [72-74] observed signatures of 47- and 27-
periodicity, whereas theory predicts an 87-periodic Josephson
effect [62, 75-77]. Subgap energy levels corresponding to the
same fermion parity are predicted to have a Kramers degen-
eracy at integer multiples of ¢ = ; thus, local mixing could
induce transitions at these time-reversal-invariant points. Ad-
ditionally, the degree of 72 = +1 symmetry breaking in Ma-
jorana nanowires has important implications for topological
quantum computing with MZMs [13-15]. Projective MZM
parity measurements proposed in Ref. 13 rely on pairs of
MZMs hybridizing through adjacent quantum dots. Estimat-
ing the magnitude of symmetry breaking, e.g., by observing
the time scale of qS(t) for which the junction in Fig. 3 recov-
ers a periodic Josephson effect, would bound the visibility of
these measurements.
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Local mixing review

Reference 47 derived that when the operators describing a
Majorana Kramers pair depend on some parameters 7, the lo-
cal mixing angle is given by

1 -
0= ifdn{v(n), Vay(m)}- )
We review a simple example of how a non-zero mixing angle
can arise microscopically.
Consider a TRITOPS wire modeled by two Kitaev chains.
In the dimerized limit, the Hamiltonian is given by

Hy = %Zi%ba”/jﬂaa ¥
2,0

where o € {1,]} labels the two time-reversed copies, a and
b the two Majorana flavors that form the spinful fermion, and
7 the site. The two Majorana operators corresponding to the
same j and o transform oppositely under 7: here we take the
signs in Eq. (1) to be s, = —1, s, = 1. This model has four
MZMSs, Y1405 YNbo- Let us assume that local perturbations on
the left end of the wire take the form of a chemical potential
H,, and s-wave pairing Ha:

t

H,(t) = ﬁc%a() > (iao V10 + 1) )
i t

HA(t) = ﬁs%a() (1Y1a1Y164 — Y104 Y101) 5 (10)

where « parametrizes the ratio of the two terms and is time-
dependent. Both Eq. (9) and Eq. (10) commute with 7. In the
presence of these perturbations, the new zero mode operators
become time-dependent as well:

71(t) = cos (Yiar — sin ¢ (cos a(t)Yaqr + sin a(t)y2a,)
(11)

Y1(t) = cos (Yiay — sin € (cos a(t)yaa) — sina(t)yaar) ,
12)

where tan { = §/¢. Solving Eq. (7), we have
T
0, = —sinQ(?{da = fsin2g/ dta(t),  (13)
0
where a(T") = a(0) + 2mn, with n € Z. Therefore, provided

« has non-trivial winding, #; # 0 and 7;, 41 undergo local
mixing.

TRITOPS Josephson junction

A TRITOPS wire can be thought of as two topological su-
perconductors related by time reversal symmetry. Labeling

TR

Ae'?

FIG. 5. TRITOPS Josephson junction with each wire modeled by
two Kitaev chains in the dimerized limit. Dotted lines indicate
hybridization of Majorana Kramers pairs (dark purple) leading to
Eq. (2). Local mixing arises when Majorana Kramers pairs undergo
time-dependent coupling to gapped Majorana modes.

the two copies with a spin degree of freedom o € {1,]},
time reversal acts on the fermionic operators of the Jth wire
ascjy = (CJ’T, CL]’L)T as [43]

Te T =isg(¢)e®’o,cy. (14)

The sign s;(¢) = =1 represents a Zy gauge-freedom
when defining symmetry transformations of superconductors.
When multiple TRITOPS are present but disconnected, each
satisfies its own time reversal symmetry according to Eq. (14).
When two TRITOPS are connected, e.g. by a Josephson junc-
tion, the global symmetry transformation must be consistent
between the two. Therefore, a TRITOPS Josephson junction
is only symmetric under 7 when the phase difference between
the left and right superconductors is a multiple of 7. We label
these discrete values the “time-reversal-invariant points” and
fix s;,(¢r) = +1 and sp(pr = nw + ¢r) = —(—1)" below.
A simple model of a TRITOPS Josephson junction is

Hy = S‘CTLTCRT — S‘*CTL¢CRi + )‘CTLTCRl + )‘*CTL¢CRT + h.c.
(15)

where L/R denote whether the fermion belongs to the wire
on the left/right end of the junction and we can generically
allow for different tunneling amplitudes between wires with
the same and different o labels.
Each fermionic operator can be written as
iy

e 2

Clo = —% (VJae + Vb)) (16)

where ¢ is the superconducting phase of the wire on the Jth
side of the junction (J € {L,R}), and the operators ..,
¢ € {a, b} satisfy the Majorana anticommutation relation

{’700'7 ’Yc’o”} = 2600’600' . (17)

Equations (14) and Eq. (16) imply Eq. (1).

Each copy of a topological superconductor has a single
MZM at its end point. Projecting to the low-energy subspace
takes

_i¢p . _i%R

e 2 1€ 2
——=  VLao, CRo — YRbo - (18)

2 2

Fixing ¢, = 0 and ¢ = ¢ and dropping the a/b label of the
Majorana operators, Eq. (2) becomes

CLo —




Hyy = % > [cos(6/2) (RelN] iv207m0 + ReN 720705 ) + sin(9/2) (I[N #9070 + oTmN] 720775 ) | -

o=t/

In the above, we have written & to indicate the oppo-
site choice of o for the subscripts, and o as a coeffi-
cient to correspond to + for T / 1. We recover Eq. (2)
by setting A = 0 for simplicity, denoting the real and
imaginary parts of A\ with subscripts e¢/o, and identifying

(YL 4> YL. 1 YRS YRL) = (VL VL YR VR)-

19)

(

Then, defining even-parity basis states so that |0) corresponds
to the vacuum state annihilated by ¢, ¢, f, f and

1) = cfe'jo) (24)
12) = f'¢f|0) (25)
Deriving H,
e 8) = £12'0) 6)
We now derive Eq. (5) in the main text. The Majorana op- 14) = flef 0) (27
erato.rs ip Egs. (2) and (4) can be written in terms of complex |5) = fT(;T |0) (28)
fermionic operators as + At
16) = £ £7|0) (29)
1 . 3
f1=350L—i%) (20) 7) = f1flelet|o) (30)
= 1 .~
f1'=5 (L= %) @1)
1
f=— j 22
© 73 (1 +i7r) 22) so that fTf = 1 (1—4v.9.) and c¢'c = 1 (1 —iy,yR) and
- 1 . imilarly for the time-reversed partners. In this basis, the full
1 23 similarly fo p ,
¢ 2 (o +7r) 23) Hamiltonian can be written in first-quantized form as
J
Ae 0 B cosa —g sin a gsina gcosa 0 0
0 —Ae Ssina gcosa —gcosa 5 sina 0 0
gcosa gsina £— Ao 0 0 0 Bsina —gcosa
_ —gsina Scosa 0 e+ Ao 0 0 S cosa gsinoz 31)
o Ssina —gcosa 0 0 €— Ao 0 —gcosa —gsina
5 cosa gsina 0 0 0 e+ Ao gsina —5cosa
0 0 gsina %cosa —%cosa gsina 2e + e 0
0 0 —gcosa 5 sina —Esina —gcosa 0 2e — Xe
[
where we have adopted the shorthand A, = 2\, cos (g) and and a.. Working to order £ 2, the two lowest energies are
Ao = 2, sin (Q> and suppressed the time-dependence of 2 t
° 2 PP P ¢ e12(t) = £2), (1 — 2@) cos (?) (32)
with corresponding instantaneous eigenstates
B B . B
[91(8)) = +11) = 5 Gina(®) [v-1.()[2) + v--@)[5)] — cosa(t) [v—-(O)I3) —v—+(O4)]) - { 57 ) (1) =16)). (B3
B : AY
[¥2(8)) = =10) + 5~ (cosa(t) [+ (1)12) + v+ (O)]5)] = sinat) - ()I3) — v OID]) + | 52 ) (0 +17) G4



We have defined v,y = 1 + (—pAc(t) +p'Ao(t)) /e with
p,p = *£1.

As described in the main text, when Bc(t) < 2, transi-
tions between the low and high-energy states are negligible.
Solutions to the Schrédinger equation for a state initialized in
the low-energy subspace take the form

[@(1)) = vi(O)][¢1(8)) + va(B)[92(t))- (35)
The coefficients satisfy the equation of motion
1040 = [Hinst(t) + Hg (t)] v = Heff(t)’l) 36)
where
2
Hing () = 2Xe (1 - 26€2> cos (ng)) o, 37)
& 32
Hy(t) = (1 (D)]0|v2()oy = 5 50y, (38)
recovering Eq. (5):
52
Hege(t) = 2, cos [p(t) /2] o, + &(t) =— (39)
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Note that all )\, dependence drops out at order £ 2.

Time evolution according to H(t)

Equation (5) has the general form H (t) = a(t)o. + b(t)oy,
with instantaneous eigenvalues and eigenstates

e (t) = £Q(t) = a(t)? + b(t)? (40)
| £ (1)) = FiB+|0) + B+[1) (41
where |0), |1) are the eigenstates of o, corresponding
to eigenvalues =£1, respectively, and we have defined
B+(t) = %i(f)(t) Consider the parameter
max, | (+(t) | Hetr(t)| — (1))]
A= 42
4ming Q(t')? “42)
max; [| — a(t)b(t) + b(t)a(t)] /Q(t)
= . 43

4ming Q(¢')?

The adiabatic theorem asserts that when A < 1, the system
initialized in an energy eigenstate remains in that eigenstate
throughout the time evolution [78, 79].

For Heg(t), A and €(¢) evaluate to

A Xel = coslo(®)/2)6(F) — 6(F) sin[(F)/210(F) /21/()

00
(44)

(45)

\/4)\’2 cos?[o

(£)/2] +0(t)2/4,

where £ is the time that maximizes the numerator and t the
time that minimizes the denominator. When 6(¢) = 0, A re-
duces to the inverse of the Landau-Zener parameter x:

e A’e?gt*> == (46)

Alternatively, for the quench considered in Fig. 2, é — 0 and

A becomes

N cos[p(t1)/2]6
40(1)?

(1) /9(t)

Aquench —

; (47)

where ¢ is the location of the quench. If
Omax < 2A, cos[¢(t1)/2], then the denominator reduces
to 62, and

6 1
0t i (48)
29r2nax 27 Omax

Aquench

Thus the transition probability approaches zero for
TOnax > 1/2. If instead Opa/2 and 2X, cos[¢(t1)/2]
are comparable (as is the case in Fig. 2), the adiabatic
criterion becomes 87Q(t1) > 1.

To analyze the time evolution according to Eq. (5) more
generally, we can consider the Schrodinger equation for a state

[Y(t)) = > ,_4 co(t)|o(t)). The coefficients c(t) satisfy
Z<ng§> — Q). + v(t)o,) (Zj%) (49)
where
_ _ a(t)b () b(t)a(t)
v(t) = (+0)[0] = () = 20(1)2 (50)
(¢ sin[¢/2)6/2 + cos[¢/2] 9)
(51)
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When |v(t)] < €(t), the coefficients evolve according to a
diagonal Hamiltonian and the system initialized in the instan-
taneous ground state will remain in the instantaneous ground
state at later times, resulting in the conventional 27-periodic
Josephson effect. (Note that max|v(¢)|/€2(t) corresponds to
A when t = £.) When |v(t)| > Q(t), the instantaneous en-
ergy states undergo Rabi oscillations, and the current-phase
relation will generally be aperiodic.

Aperiodicity from local mixing

Consider a junction described by Eq. (19). In the even par-
ity sector iy YR = 1yLYR, We can define Pauli matrices

* =1iyLYR = VLR (52)
oY =iyLYrR = —1YLVR (53)
0 =4yLYL = YRR (54



so that

HJ(Je)(t) = 24/A2 + X2 cos <¢)(2t)> <a—8ib aBib)

(55)

for a = A/\/AZ+ A2, b = A\./4/A2 4+ X2, When ¢ is not
equal to an odd multiple of 7, the junction eigenstates are

1 — b
1) = (“if ) . (56)

Note that |I_) is the instantaneous ground state of the junc-
tion for ¢ < , while |I) is the instantaneous ground state
for ¢ > m. Consider a thought experiment of a phase-biased
TRITOPS Josephson junction, undergoing the following pro-
tocol. Initialize the system at ¢ = 0 in the state |I ), then
evolve the phase ¢ such that at the kth time invariant point
one of the Majorana Kramers pairs accrues a local mixing an-
gle 0;. In the absence of any other noise sources, between the
k — 1th and kth time-reversal invariant points, the system is in
a superposition of junction eigenstates

o) = cos (255 ) 1) asin (255 ) 1) 50

with current expectation value

k
(I(¢)) = _%MCOS ZGj sin (g) . (58

j=1

thus the current expectation value is not 47 periodic. More
generally, (I(¢)) is aperiodic except for fine-tuned choices of
the (9]‘.

The phase-biased system is not necessarily the most ex-
perimentally accessible, as usually phase would be tuned by
a magnetic field, whose presence would break the time re-
versal symmetry of the junction. A more physically rele-
vant setup is for the junction to be voltage-biased, so that the
DC Josephson equation implies a constant phase sweep speed
q5 = 2¢V/h = w;. When the system undergoes a 47 periodic
fractional Josephson effect, the power spectrum of the current

P(w) = lim

C—o0

C C . 7
dt / dt' (I (t))e =8 (60)
0 0

exhibits a peak at w = +w;/2. An aperiodic current-phase
relation manifests as no peak in the power spectrum.

If the only source of noise is local mixing, then the proba-
bility ¢4+ of occupying junction eigenstates |I1) only changes
after passing through a time reversal invariant point. If
s = 1 — py is the probability of transitioning between junc-
tion eigenstates (i.e. py, is the probability of transitioning be-
tween instantaneous energy eigenstates) at the kth such point,
and ¢4 (tx) is the occupation probability of |I.) preceding
that point, then

When 6, # 2, ( ¢+ (ts1) ) _ ( L—sk sk ) ( g (tx) ) 61
q—(tk+1) sk 1—sk ) \a-(tk) )
k—1 k+1
cos Z 0; | # cos Z 0; 59)
J=1 J=1 Approximating s, = sin? (6}, /2) by its average value, 5
g+ (tkt1) ) 1 ok ok q+(to)
=—(|1+(1 -2 1+{1—-(1-2 . 62
() ) =3 a2 e 2o (0 ©
The matrix in Eq. (62) defines the propagator from ¢; to ¢;:
27k 1
U(t5)2([1+(12§)’“]11+[1(125)’“]%). (63)
J

Note that in the large & limit the system approaches the maximally mixed state at a rate w; In[1 — 23] /2.

Li(t) = i%\ug + A2sin (%t) : (64)

The current is

corresponding to correlator for ¢’ > ¢ [59]

(I{tYI(t)) = Z L)L (Ui (t' —t) = 21 sin (?) sin (w;t/> (1-— 25)”(5;_” (65)

ij=-=+

/
= 212 sin (”2‘”5> sin (‘f) (e* W1-28](t'~0) @ (1 — 25) ¢ 7w (T TZEIDE ) g (25 — 1)) (66)



for Ip = £/ A2 + A2, Therefore, the power spectrum is

P(w) = lim —/ dt/ dt' e t)sm(
C—o0

()

(e 72 In[1-23][t—t' \@(1 —25) + e'wTJ(tft/)e;—;{ln[2§71]|t7t/|@(2§ _ 1)) (67)
12 In[1 — 23] _ In[25 — 1] _
::%iJEZ 2 hm4ﬂ2®u42@+ 12 h@%ﬂQG@S*U -9
o= (E+§) +( 2 ) (E+ 2) +( 2 )

As5—=0(@m — 1, r > 1), the power spectrum has two
peaks at w = f+w;/2, corresponding to a fractional Joseph-
son effect. When s = 1 (p — 0, r < 1), the power spec-
trum peaks at w = 0, wy, corresponding to the standard 27-
periodic Josephson effect. As 5 — 1/2 from either side, P(w)
flattens- signaling an aperiodic current-phase relation.

T2 = +1 Josephson junctions

Consider the model for a topological superconductor sug-
gested by Refs. 68 and 69

H:/mw(_

where spin indices have been suppressed, h is a Zeeman term,
« is the spin-orbit coupling, and A is the superconduting gap.
This Hamiltonian is symmetric under 7 = K time-reversal-
symmetry [64, 65], which in this model is simply complex
conjugation. This symmetry is an artifact of the low-energy
Hamiltonian and can be broken by adding higher-order hop-
ping terms or interactions. Nonetheless, such terms are ex-
pected to be weak and for low energies the wire satisfies
T? = +1.

We now derive the Josephson junction Hamiltonian for the
setup shown in Fig. 3 when each Majorana nanowire indi-
vidually satisfies 7. Label the fermionic operators by c;;,
J € {L, R} labeling the left/right side of the junction, and
j € {1,2} labeling the top or bottom wire. The c;; trans-
form trivially under 7; thus the most general non-interacting
Hamiltonian describing the Josephson junction that is even
under T is

(69)

H(+1) Z A]]kc]]ch + Z (QAchL]ch + h. c)
J,j#k j.k
(70)

where all tunneling amplitudes are real: A i, Ajr € R.
Time reversal symmetry acts on the complex fermionic
ih /2
operators cjyj = u (Vlaj + WJbJ) as cj; —
SJ(¢J)€Z¢JC]j. Thus, we once again see that p = ¢ — o =

2
% — 1 —ho® —iac?0, )Y + A, + H.c.

(

nm are the time-reversal invariant points. Fixing ¢y = 0 and
¢r = ¢, the transformation on the Majorana operators is

YJaj = STVJajs VJbj —> —SJV.Jbj (71)

with signs sy, = 1, sg = (—1)" for ¢ = nx.
Projection to the low-energy subspace takes the same form
as Eq. (18)
i . i¢R

e 2 e 2

o VLaj CRj =~ VRbj: (72)

CLj —

From here on, we drop the a/b labels and write the zero mode
operators as ;. Under T,

Y7102 — —1YJ17.52 (73)
iYL YRE — SLSRIVLjYRE = (—1)" VL VRR- (74)

Equation (73) implies A; = 0 (and is precisely why in the
presence of 7 the quantum dot-based MZM parity measure-
ment proposed in Ref. 13 does not work). Therefore, we re-
cover Eq. (6)

, ¢
HJ(J+1) — Zj:z)\jk cos (2 YLiVRk- (75)
The model given in Eq. (31) is purely real and thus also sat-

isfies 72 = +1 symmetry. As such, the derivation of Eq. (5)
similarly holds for this system as well.

Multiwire topological Josephson junctions

We investigate the effect of local mixing on a Josephson
junction between two sets of m Majorana wires. Above we
argued that m = 2 reproduces the aperiodic behavior of a
TRITOPS junction. We now demonstrate that interactions re-
store 47 periodicity for m = 3, and 27 periodicity for m = 4.
Such Josephson junctions offer a testbed for probing the Zg
classification of Majorana nanowires theorized by Ref. 65.

We consider the low-energy Hamiltonian

H= ZEj cos <Z> YL VRj (76)
J



where j runs over each of the m wires and L and R signify the
wires to the left and right of the junction. After one evolution
YRr; — —7YR;. We can combine Majorana fermions into Dirac
fermions as ¢; = ~yr; +4yR;. After one evolution the occupa-
tion of this bound state switches. Notice that for m wires we
track 2 bound states, which for free fermions all intersect at
¢ = 7 (where all energies are 0).

e m = 1. The standard fractional Josephson is immune
to local mixing, as the two bound states differ by local
fermion parity. No local mixing terms are allowed that
mix the states at ¢ = 7.

e m = 2. The model posited in previous Appendices still
respects 72 = +1 symmetry. The four states in ques-
tion split into even and odd parity states. Unlike the
m = 1 wire, however, fermion parity in the junction
remains the same after a 27 evolution (as both bound
states switch occupation) and so we can restrict our-
selves to the even parity sector. The crossing at ¢ = 7
is protected by our symmetry, but that does not prevent
local mixing.

Interactions do not play an important role for m = 2.
The only acceptable interaction at ¢ = 7 reads

Hiy = wi(ivp1vr1) (17027R2), 77

which only splits the even and odd parity sectors and
does not affect the Josephson periodicity. We recover
local mixing, implying (for certain parameter regimes)
the loss of 47 periodicity.

e m = 3. While it may seem that m = 3 wires will
suffer from local mixing as well, interactions conspire
to restore 47 periodicity (in much the same way that
interactions stabilize an 8m-periodic fractional Joseph-
son effect in the absence of local mixing for a junction
of proximitized quantum spin Hall edges [75]). Notice
that after a 27 evolution, the local fermion parity in the
junction changes. We track 8 states, 4 with even parity
and 4 with odd parity, and these states all intersect at

¢ = .

However, adding interactions

Hine = w1 (ivp1vr1) (iYL27YR2)
+ w2 (iyr1vR1) (VL3 YR3) (78)

will shift the different bands up or down. Instead of
crossing at 7, many crossings are now shifted away,
and so symmetry-breaking perturbations may be added
that open up avoided crossings. Not all crossings are
avoided; recall that even parity states get mapped to odd
parity states and vice versa. Crossings between these
states are protected by fermion parity; we recover the
47 periodic Josephson effect.
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e m = 4. As predicted by Ref. 65, adding interactions to
a system with 8 Majoranas makes the system trivial; the
term

Hine = w1 (ivL1YR1) (47L27VR2)
+wa(ivL1YR1) (iYL3VR3)
+ w3 (ivL1YR1) (iYL4VR4)
+wy(iyL1vL2) (1vL3vLa)

completely removes any degeneracy at the crossing
while respecting time reversal. The Josephson effect
is 27 periodic.
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