Supporting Information

Potassium Difluorophosphate as an Electrolyte

Additive for Potassium Ion Batteries

Huan Yang,^a Chih-Yao Chen,^b Jinkwang Hwang,^a Keigo Kubota,^b Kazuhiko Matsumoto,^{a, b, c,*} Rika Hagiwara^{a, b, c}

^a Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

^b AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan

^c Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8510, Japan

*Corresponding author:

E-mail: k-matsumoto@energy.kyoto-u.ac.jp

Additives, EIS component		1 h	12 h	1 day	3 day	5 day
0 wt% KDFP	$R_{ m bulk}$ / Ω	9.49	36.65	41.96	63.24	114.9
	$R_{ m int}$ / Ω	6175	7331	8061	11853	13914
	<i>C.F.</i> / Hz	7.99	5.39	5.56	2.46	2.60
	Q / F s ^{α-1}	6.01×10^{-6}	6.04×10^{-6}	5.94×10^{-6}	6.01×10^{-6}	6.51×10 ⁻⁶
	α	0.899	0.907	0.909	0.910	0.899
	$R_{ m bulk}$ / Ω	10.48	36.52	44.55	82.40	102.2
	$R_{ m int}$ / Ω	2875	4062	5023	7585	8636
0.1 wt% KDFP	<i>C.F.</i> / Hz	18.38	11.83	11.83	5.69	5.69
	Q / F s ^{α-1}	5.10×10^{-6}	5.52×10^{-6}	5.43×10 ⁻⁶	5.24×10^{-6}	5.21×10 ⁻⁶
	α	0.840	0.881	0.883	0.886	0.886
	$R_{ m bulk}$ / Ω	6.707	22.31	32.38	67.00	103.79
	$R_{ m int}$ / Ω	1 794	3 077	3 128	4 831	5 424
0.2 wt% KDFP	<i>C.F.</i> / Hz	25.97	11.84	11.84	7.99	7.99
	Q / F s ^{α-1}	6.27×10^{-6}	7.445×10^{-6}	7.13×10^{-6}	7.976×10^{-6}	7.195×10 ⁻⁶
	α	0.904	0.881	0.887	0.861	0.881
	$R_{ m bulk}$ / Ω	23.63	36.21	82.34	107.96	145.64
0.3 wt% FEC	$R_{ m int}$ / Ω	17909	40580	77062	181307	203896
	<i>C.F.</i> / Hz	2.46	0.76	0.51	0.17	0.17
	Q / F s ^{α-1}	5.104×10^{-6}	5.242×10^{-6}	4.636×10^{-6}	4.581×10^{-6}	4.298×10^{-6}
	α	0.880	0.861	0.869	0.852	0.864
3 wt% FEC	$R_{ m bulk}$ / Ω	19.01	64.38	79.69	108.4	208.6
	$R_{ m int}$ / Ω	16246	40041	66 449	179735	223455
	<i>C.F.</i> / Hz	2.60	1.12	0.51	0.16	0.11
	Q / F s ^{α-1}	4.994×10 ⁻⁶	5.039×10^{-6}	4.722×10^{-6}	4.249×10^{-6}	4.028×10^{-6}
	α	0.893	0.842	0.883	0.840	0.852

Table S1. Fitting results of the EIS data for the K/K symmetric cells with 0.5 M KPF₆-EC/DEC electrolytes containing different amounts of KDFP or FEC.^a

^{*a*} C.F., Q, and α denote characteristic frequency, CPE parameter, and CPE exponent, respectively.

Table S2. The peak positions (unit: V) in the dQ/dV plots of the K/graphite cells in 0.5 M KPF ₆ -
EC/DEC with different additives during the first charge and discharge processes. See Figures 4 and
S10 for the dQ/dV plots.

	Charge]	Discharge		
Additive	SEI formation	Potassiation			De	Depotassiation		
		KC36	KC ₂₄	KC ₈	KC_8	KC ₂₄	KC36	
Additive-free	0.295	0.264	0.201	0.151	0.279	0.367	0.485	
0.1 wt% KDFP	0.351	0.263	0.228	0.172	0.265	0.352	0.464	
0.2 wt% KDFP	0.358	0.280	0.241	0.184	0.261	0.350	0.462	
0.3 wt% FEC	1.197	0.227	0.140	0.068	0.438	0.583	0.739	
3 wt% FEC	1.245	0.035	0.079	0.136	0.410	0.518	0.680	

		KDFP	F	FEC	
Cycle number	0 wt%	0.1 wt%	0.2 wt%	0.3 wt%	3 wt%
1st	84.5	86.1	86.9	79.2	65.3
2nd	95.9	98.2	99.8	96.0	88.7
3rd	96.9	99.1	99.8	99.2	92.8

Table S3. Coulombic efficiencies (%) of the K/graphite cells with 0.5 M KPF₆-EC/DEC electrolytes containing different amounts of KDFP or FEC. The charge-discharge rate is C/20.

	K2p	F1s	C1s	O1s	P2p		
Graphite	Graphite electrode						
0 wt% KDFP	295.2 (KF, 2p _{3/2}) 292.5 (KF, 2p _{1/2})	687.5 (CF _x , PF _x) 683.6 (KF)	289.5 (CO ₃ ^{2–}) 288.1 (C=O) 286.4 (C–O) 284.7 (C–C) 282.6 (K–C)	533.3 (C–O) 531.4 (C=O) 529.4 (K–O)	137.6 (K _x PF _y)		
0.2 wt% KDFP	295.4 (KF, 2p _{3/2}) 292.6 (KF, 2p _{1/2})	687.6 (CF _x , PF _x) 683.6 (KF)	289.5 (CO ₃ ^{2–}) 288.0 (C=O) 286.4 (C–O) 284.6 (C–C) 282.9 (K–C)	533.6 (C–O) 531.7 (C=O) 528.8 (K–O)	137.7 (K _x PF _y) 133.7 (PO _x , Phosphate)		
Pristine			290.9 (CF _x , PVDF) 287.2 (C=O) 286.1 (C–O) 285.3 (C, <i>sp</i> ³) 284.4 (C, <i>sp</i> ²)	533.6 (C–O) 532.1 (C=O)			
K metal							
0 wt% KDFP		687.5 (CF _x , PF _x)					
2 wt% KDFP		687.4 (CF _x , PF _x) 683.2 (KF)					

Table S4. Binding energy (eV) and assignments of the XPS data on the graphite and in 0.5 M KPF₆-EC/DEC electrolytes containing different amounts of KDFP.

Figure S1. X-ray diffraction pattern of the prepared KDFP. The reference pattern of K[PO₂F₂] created from the single crystal X-ray diffraction data[1] is also shown for comparison.

Figure S2. The voltage profile of K deposition/dissolution in 0.5 M KPF₆-EC/DEC on the Al working electrode (area: 0.25 cm^{-2}) with the Ag⁺/Ag reference electrode and Pt counter electrode in a three-electrode cell. The K⁺/K equilibrium potential in 0.5 M KPF₆-EC/DEC is determined to be -3.83 V vs. Ag⁺/Ag by an open circuit potential (OCP) measurement after galvanostatic K metal deposition at 0.1 mA cm⁻² in a three-electrode cell.

Figure S3. Cyclic voltammograms of (a) Pt (at anodic side) and (b) Al (at anodic and cathodic sides) plate electrodes in 0.5 M KPF₆-EC/DEC with 0.3 wt% KDFP, 0.3 wt% and 3 wt% FEC. Scan rate: 5 $mV s^{-1}$.

Figure S4. Voltage profiles during K deposition/dissolution in 0.5 M KPF₆-EC/DEC with (a) 0 wt% KDFP, (b) 0.1 wt% KDFP, (c) 0.2 wt% KDFP, (d) 0.3 wt% FEC, and (e) 3 wt% FEC at 25 °C. The working and counter electrodes were Cu and K metal plates, respectively. K metal (0.1 C cm⁻²) was pre-deposited on the Cu plate, followed by repeated dissolution and deposition at a capacity of 0.02 C cm⁻² until the electrode potential reached 0.5 V vs. K⁺/K during dissolution. The current density was \pm 0.1 mA cm⁻² for all the tests.

Figure S5. (a) Arrhenius plots of ionic conductivities and (b) densities of 0.5 M KPF₆-EC/DEC (1:1,

v:v) without and with KDFP or FEC additives in the temperature range between 0 and 90 °C.

Figure S6. Voltage profiles of the K/K symmetrical cells during galvanostatic K metal deposition/dissolution in 0.5 M KPF₆-EC/DEC with (a) 0.3 wt% and (b) 3 wt% FEC additives at 25 °C. The numbers shown in each panel denote current densities in μ A·cm⁻².

Figure S7. Nyquist plots and fitting lines of the K/K symmetric cells with 0.5 M KPF₆-EC/DEC with (a) 0.3 wt% and (c) 3 wt% FEC additives at 25 °C in the frequency range of 100 kHz–10 mHz. AC amplitude: 10 mV.

Figure S8. Cyclic voltammograms of graphite electrodes in 0.5 M KPF₆-EC/DEC with (a) 0 wt%, 0.1 wt%, and 0.2 wt% KFDP, (c) 0 wt% FEC, 0.3 wt% FEC and 3 wt% FEC additives at 25 °C. (b, d) Magnified figures of (a) and (c). Scan rate: 5 mV s⁻¹. Pt counter and Ag⁺/Ag reference electrodes were used. The potential was converted to that against the K⁺/K reference.

Figure S9. Photos of (a) as-prepared, (b) fully potassiated, and (c) fully depotassiated graphite electrodes obtained in 0.5 M KPF₆-EC/DEC by galvanostatic charge-discharge tests. C-rate: C/20 $(1C = 279 \text{ mA g}^{-1})$.

Figure. S10. Charge-discharge curves of the K/graphite cells in 0.5 M KPF₆-EC/DEC electrolytes with (a) 0.3 wt% and (b) 3 wt% FEC. C-rate: C/20 (1C = 279 mA g⁻¹). The corresponding differential capacity vs. voltage (dQ/dV) plots of the first two charge-discharge cycles are shown in (c) and (d).

Figure S11. Galvanostatic intermittent titration technique (GITT) curves of graphite electrodes in 0.5 M KPF₆-EC/DEC with (a) 0 wt% and (b) 0.2 wt% KDFP. (c) Quasi-equilibrium voltage variation depends on the time change during charge-discharge process. GITT was measured by applying a constant rate of C/20 for 30 min followed by voltage relaxation for 2 h.

Figure S12. (a) *Ex-situ* XRD patterns and (b) Raman spectra of graphite electrodes at the pristine (black), fully potassiated (red), and fully depotassiated (blue) states recovered from 0.5 M KPF₆-EC/DEC with 0.1 wt% KDFP.

Figure S13. Rate capability of the K/graphite cells with 0.5 M KPF₆-EC/DEC electrolytes containing different amounts of KDFP at 25 °C. Rate: C/20 to 2C. Cut-off voltages: 0.001–2.5 V

Figure S14. Charge-discharge curves of the K/graphite cells in 0.5 M KPF₆-EC/DEC with (a) 0 wt% and (b) 0.2 wt% KDFP during rate capability tests from C/20 to 2C at 25 °C. Cut-off voltages: 0.001–2.5 V.

Figure S15. SEM images of (a, b) the pristine graphite electrode and the graphite electrodes after cycling in (c, d) 0 wt% additive (neat) (400 cycles), (e, f) 0.2 wt% KDFP (400 cycles), and (g, h) 3 wt% FEC (3 cycles). C-rate: C/3. Cut-off voltage: 0.001–2.5 V.

Figure S16. X-ray photoelectron spectra of the pristine graphite electrode ((a) C 1s and (b) O 1s) and (c) K metal counter electrode (F 1s) after 400 cycles using 0.5 M KPF₆ EC/DEC with and without KDFP additive.

References

[1] R. Harrison, R. Thompson, and J. Trotter, The structure of potassium difluorophosphate. *J. Chem. Soc. A* **1966**, 1775-1780.