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Samples 

A unique collection of fresh and uncontaminated magmatic kimberlite samples from 18 occurrences in 

sub-Saharan Africa is investigated here. The samples are derived from East Africa (Tanzania), Central 

Africa (Angola), and southern Africa (Namibia, Botswana, South Africa, Lesotho). This continental 

shield region stretches over >3,000 km from the Atlantic Ocean in the west to the Indian Ocean in the 

east, and it predominantly comprises Precambrian basement bedrocks. The study region is commonly 

referred to as the Southern African Plateau given its generally high elevation >1,000 m, as recognizable 

in the ETOPO-1 digital elevation model for sub-Saharan Africa (Fig. S1). 

The investigated kimberlite occurrences span an age range from 1835 Ma to 0.012 Ma (Table S1)1-13, 

which is representative of the age record for global kimberlite magmatism2. On the basis of 

petrography and mineralogy the samples represent aphanitic to macrocrystic coherent magmatic 

Group-1 kimberlites, hereafter referred to simply as ‘kimberlites’. Although olivine macrocrysts and 

phenocrysts are commonly serpentinized, pristine olivine is present in most samples set in a fresh 

groundmass that typically consists of spinel, perovskite, rutile, ilmenite, phlogopite, apatite, calcite, 

monticellite, and primary serpentine (Fig. S2). Several southern African kimberlites have entrained 

diamonds with transition zone and lower mantle mineral inclusion assemblages14. Of the investigated 

kimberlite occurrences, at least five localities contain such ‘ultradeep’ diamonds originating from >400 

km depths (e.g., Cullinan/Premier15-17, Jagersfontein18, Karowe Orapa A/K619, Monastery20, Letseng16). 
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Figure S1. Sample sites for kimberlites analyzed during this tungsten-182 study. Magmatic Group-1 kimberlite sample 
localities in sub-Saharan Africa superimposed on the ETOPO-1 digital elevation model (Mollweide projection). The regions 
in red have elevations >1,000 m and the black outlines demarcate Archaean cratons sensu stricto (the map is modified after 
ref. 2). Detailed information about the 18 kimberlite occurrences investigated here can be found in Table S1. The tungsten 
isotopic compositions are displayed in Figure 9 of the main text and summarized in Tables S2 and S3. The ca. 91 Ma old 
Wesselton (‘W’) and Koffiefontein (‘K’) kimberlite pipes on the Kaapvaal craton in South Africa have been analyzed 
previously for their tungsten isotopic compositions21. 
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Figure S2. Photomicrographs of representative magmatic kimberlite samples from Africa. (A-B) Sample SAF17-11 
from a microporphyritic kimberlite dyke (‘Westhanlage Dyke’, 510 m below surface) within the ‘De Beers Pipe’ of the 
Kimberley kimberlite cluster in South Africa. (C-D) Sample BOT17-1 from a microporphyritic kimberlite plug within the 
‘Letlhakane D/K2 Pipe’ of the Orapa kimberlite field in Botswana. (E-F) Sample IH57 from a macrocrystic kimberlite lava 
flow of the Igwisi Hills kimberlite volcanoes in Tanzania. Note the flow-alignment of olivine and calcite crystals. 
Panels A-C-E represent images taken under plane polarized light, and Panels B-D-F are the respective counterpart images 
taken under crossed polarized light. Ol = olivine, Phl = phlogopite, Cal = calcite. 
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Geochemistry 

The major and trace element concentrations, as well as the Sr-Nd-Hf-C-O isotopic compositions of the 

magmatic kimberlite samples from the 18 sub-Saharan occurrences analyzed during this study are 

listed in Supplementary file B. The results for the tungsten isotope ratio measurements, as well as the 

Hf and W element abundance determinations by ID-MC-ICP-MS are listed in Table S2. Table S3 

provides a summary of the tungsten isotopic compositions of the 18 studied kimberlite occurrences. 

Table S4 lists the tungsten isotope results for the reference materials analyzed during this study. The 

complete dataset is provided for download from the online version (Supplementary file B), and all 

investigated kimberlite occurrences are displayed on the digital elevation map of sub-Saharan Africa in 

Fig. S1. 

 

Major and trace element compositions 

The fresh kimberlite samples selected for this tungsten isotope study have major element compositions 

that fall firmly within the compositional range defined by magmatic Group-1 kimberlites from 

worldwide occurrences (Fig. S3). The sample suite has been divided into Modern, Phanerozoic, and 

Proterozoic kimberlite subsets; however, the relatively small number of samples analyzed precludes an 

assessment of whether or not there exist systematic major element differences between the age groups. 

The kimberlite samples have variably high MgO (17.2-34.9 wt.%), Ni (245-1361 ppm), and Cr (171-

1656 ppm) concentrations. The SiO2 (20.7-34.8 wt.%), Al2O3 (1.5-4.0 wt.%), and Na2O (<0.05-0.18 

wt.%) contents are generally low. Concentrations of TiO2 (0.9-4.1 wt.%), K2O (<0.05-2.5 wt.%), and 

P2O5 (0.13-3.8 wt.%) are highly variable but fall within the range of global Group-1 kimberlites (Fig. 

S3). The CaO (3.7-21.7 wt.%) and CO2 (0.1-11.3 wt.%) contents vary widely, mainly as a function of 

the modal abundances of olivine crystal cargo and primary groundmass carbonate (i.e., variations along 

olivine and calcite control lines). The samples scatter around estimates of parental kimberlite melts 

from worldwide occurrences in terms of major element compositions (Fig. S3). Importantly, the 

Contamination Index22 (C.I. = [SiO2+Al2O3+Na2O] / [MgO+2*K2O]) for the studied kimberlites ranges 

from 0.83 to 1.39, with the majority of samples being close to unity (Fig. S3f). This observation 

suggests that interaction with and assimilation of granitic continental crust has been minimal or 

absent23,24, which is also supported by the high values for ln Si/Al and ln Mg/Yb24 (Supplementary file 

D). 
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Figure S3. Kimberlite major element variation diagrams. Variation diagrams of TiO2 (A), MgO (B), CaO (C), K2O (D), 

CO2 (E), and C.I. (F) versus SiO2 (wt.%) for the African kimberlite samples studied here for their tungsten isotopic 

compositions. The compilation of screened high-quality data for fresh magmatic kimberlites from worldwide occurrences is 

taken from ref. 25. The dark grey outlines mark the compositional space occupied by reconstructed parental kimberlite 

magmas from key cratons worldwide24. Contamination Index (C.I. = [SiO2+Al2O3+Na2O]/[MgO+2*K2O]) values of 1.0 

±0.5 indicate that kimberlite magmas were not, or only minimally, contaminated with crustal basement materials upon 

ascent22-24. 
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All sub-Saharan kimberlites investigated here are characterized by enriched incompatible trace element 

concentrations relative to primitive mantle. In general, the samples show similar primitive mantle 

normalized distributions to each other that are notably more fractionated (i.e., pronounced troughs and 

spikes) than the patterns of incompatible element enriched OIBs from the South Atlantic26 (Fig. S4). 

For most samples, the Ba, Th, U, Nb, Ta, La, and Ce concentrations exceed 100 times primitive mantle 

values, and relative depletions occur at K, Pb, Zr-Hf, and the HREE (Fig. S4). A peculiar feature of the 

recent Igwisi Hills kimberlite lavas from the Tanzania craton is the strong Cs-Rb depletion (Fig. S4a), 

which is coupled to extremely low K contents at around the 0.05 wt.% K2O detection limit of the XRF 

method. The kimberlite lavas from Dando Kwanza (ANG14-325) and Gibeon (NAM18-02) on the 

Angolan Shield and Kalahari craton, respectively, also show pronounced depletions in Cs-Rb-K (Fig. 

S4b). This geochemical signature reflects the original low modal abundance or absence of phlogopite 

in these particular extrusive kimberlites rather than large-ion lithophile element mobility due to 

alteration. The Gibeon kimberlite sample NAM18-02 is characterized by an exceptionally high 

tungsten content (21.8 ppm), which cannot be related readily to interaction with the regional 

metamorphic crust of the Rehoboth block in Namibia (see below). The magmatic kimberlite sample 

BOT17-05 from the Jwaneng kimberlite cluster on the western Kaapvaal craton exhibits subtle relative 

depletions in Nb-Ta, which is more typical for Group-2 kimberlites27,28. The subtle Group-2 kimberlite 

trace element signature of the Jwaneng kimberlite is also apparent from its elevated Th/Nb, Ba/Nb, and 

La/Nb ratios (Fig. S5), which are primarily a consequence of the Nb depletion. Furthermore, the low 

Ce/Pb ratio observed in Fig. S6 is also an indication of involvement of metasomatized cratonic mantle 

lithosphere in the genesis of the Jwaneng kimberlite magma, as typically envisaged for Group-2 

kimberlite magma formation27. Samples SAF18-58 and SAF18-59 from Zero pipe of the Proterozoic 

Kuruman kimberlite field at the western Kaapvaal craton margin show exceptionally high Th 

concentrations reaching 57.5 ppm, which results in very high Th/Nb ratios similar to Group-2 

kimberlites (Fig. S5a). However, this geochemical signature is not due to Nb depletion, as in the case 

of Group-2 kimberlites, but it merely reflects the strong Th and LREE enrichment of the Zero 

kimberlite (Figs. S5, S6). The majority of sub-Saharan kimberlite samples have similar Th/Nb, Ba/Nb, 

La/Nb, and Ce/Pb ratios falling within the compositional range known for archetypal Group-1 

kimberlites from South Africa23 (Figs. S5, S6). For these incompatible element concentration ratios 

there also exists significant overlap between African kimberlites and South Atlantic OIBs, as first noted 

by ref. 29. 
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Figure S4. Kimberlite trace element distribution patterns. Primitive mantle normalized incompatible element 
distributions for the African kimberlite samples. The dataset has been divided into (A) ‘Modern’ kimberlite represented by 
the Igwisi Hills occurrence on the Tanzania craton, (B) ‘Phanerozoic’ kimberlites ranging in age from 522 Ma to 70 Ma, 
and (C) ‘Proterozoic’ kimberlites ranging in age from 1835 Ma to 1083 Ma (see Table S1). The grey field displayed for 
comparison in all panels comprises incompatible element patterns for HIMU-type (St. Helena) and EM-type (Tristan and 
Gough) OIBs from the South Atlantic26. Primitive mantle element concentrations are from ref. 30. 
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Figure S5. Trace element ratio variation diagrams for African kimberlites. Incompatible element concentration ratio 
variation diagrams for the kimberlite samples from sub-Saharan Africa. (A) The Th/Nb versus La/Nb systematics show the 
general Group-1 kimberlite character of the samples, but it is noted that the two Kuruman kimberlite samples from Zero 
pipe (SAF18-58 and SAF18-59) show strong Th and La enrichment resulting in very high Th/Nb and La/Nb, which is more 
typical for Group-2 kimberlites, albeit due to relative depletions in Nb. Note further the slightly elevated Th/Nb and La/Nb 
ratios of the Jwaneng kimberlite sample BOT17-05 (caused by a relative Nb depletion), placing this material into the 
Group-2 kimberlite field. (B) The Ba/Nb versus La/Nb systematics confirm the Group-2 kimberlite incompatible trace 
element character of the Jwaneng sample BOT17-05. The pronounced data overlap between sub-Saharan kimberlites and 
South Atlantic OIBs, as observed in both Panel A and B, was originally described by ref. 29. Data field for South African 
Group-1 kimberlites is based on analyses by refs. 23,27. Data field for South African Group-2 kimberlites is based on 
analyses by refs. 27,28. Data for HIMU-type (St. Helena) and EM-type (Tristan and Gough) OIBs from the South Atlantic are 
shown as grey circles26. 



Page 9 of 22 

 
Figure S6. Ce/Pb and Ba/Nb variation diagram for African kimberlites. Incompatible element concentration ratio of 
Ce/Pb versus Ba/Nb for the kimberlite samples from sub-Saharan Africa. The majority of samples show a general Group-1 
kimberlite character, with the exceptions of samples from Zero pipe at Kuruman (SAF18-59) and from Jwaneng (BOT17-
05), which are relatively enriched in Ba or depleted in Nb, as is more typical for Group-2 kimberlites. Data field for South 
African Group-1 kimberlites is based on analyses by refs. 23,27. Data field for South African Group-2 kimberlites is shown 
for discussion purposes and based on analyses by refs. 27,28. Data for HIMU-type (St. Helena) and EM-type (Tristan and 
Gough) OIBs from the South Atlantic are shown as grey circles26. 
 

 

The sample suite of sub-Saharan kimberlites displays a wide range of tungsten concentrations between 

164 ppb and 8 ppm (NAM18-02 with 21.8 ppm W as an outlier; see below). The lower and middle 

parts of this range overlap with the tungsten concentrations of OIBs and continental mafic potassic 

lavas from worldwide occurrences (Fig. S7). The W/Th and W/U ratios of the kimberlite sample suite 

show weak positive correlations with the tungsten elemental abundances. These ratios of similarly 

incompatible elements in the bulk silicate Earth system fall largely within the modern mantle range31. 

However, a few kimberlite samples at the lower and upper end of the tungsten concentration range 

deviate slightly from W/Th and W/U mantle values (Fig. S7), which is best ascribed to local 

fractionation effects caused by accumulation and removal of accessory groundmass phases such as 

CaTiO3-perovskite and rutile. It must be noted, however, that the studied Proterozoic to recent sub-

Saharan kimberlites correspond much better to the W/Th and W/U compositions of the modern mantle 

than 3.5 Ga old komatiite lavas from the Kaapvaal craton in South Africa (Fig. S7). These komatiites 

have significantly elevated W/Th and W/U ratios32,33. 
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Figure S7. W/Th and W/U versus tungsten abundances of African kimberlites. Incompatible element concentration 
ratios of (A) W/Th and (B) W/U versus tungsten concentrations (ppm) for the kimberlite samples from sub-Saharan Africa. 
The kimberlite sample suite exhibits a tungsten concentration range over 2-orders of magnitude overlapping with mafic 
alkaline lavas from oceanic (e.g., OIBs) and continental (e.g., East African Rift) intraplate settings. The strong tungsten 
enrichment of sample NAM18-02 from the Gibeon kimberlite field in Namibia appears to be caused by a groundmass rutile 
nugget effect. The W/Th and W/U ratios of magmatic kimberlites from sub-Saharan Africa show more variability compared 
with primitive volcanic rocks from modern oceanic (MORB and OIB) and continental (convergent plate margin and rift) 
settings. However, the W/Th and W/U values for kimberlites are less extreme than those for Early Archaean komatiites 
from the Kaapvaal craton in South Africa. Data fields for MORB, OIB, and primitive arc plus continental rift volcanic rocks 
are based on analyses by refs. 26,31,34-36. Data fields for the ca. 3.5 Ga old komatiites from the Barberton (Komati Formation) 
and Schapenburg supracrustal belts on the Kaapvaal craton in South Africa are based on analyses by refs. 32,33. The 
compositional range for the modern Earth’s mantle is adopted from ref. 31. 
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Figure S8. Molybdenum and tungsten abundances of African kimberlites. (A-B) Molybdenum versus tungsten 
concentrations (ppm) for the kimberlite samples from sub-Saharan Africa. Panel A provides an overview of the entire 
concentration range observed during this study, and Panel B shows more detail of the element variations below 10 ppm. The 
high molybdenum and tungsten concentrations of Gibeon kimberlite sample NAM18-02 from Namibia are due to abundant 
groundmass rutile. 
 

 

The observed high tungsten concentrations for a few kimberlite samples are unlikely to be caused by 

contamination with steel equipment during rock processing, because sample exposure to steel tools was 

avoided (see Supplementary file A). Any potential sample contamination with steel can be excluded 

provided that elevated tungsten abundances >2 ppm do not correlate with molybdenum concentrations 

(Fig. S8). Molybdenum is an additional element typically used in steel manufacturing. Elevated 

tungsten concentrations at the lower ppm-level are expected for low-degree mantle-derived melts such 

as kimberlites (Fig. S9), given its highly incompatible nature in silicate systems similar to that of 

thorium and uranium31. An origin of tungsten in our kimberlite samples from crustal fluids can be ruled 

out based on mantle-like W/Th and W/U values (Fig. S7), and the fact that Archaean cratonic crust 
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(host to kimberlite intrusions) is predominately composed of granitoid plutons and ultramafic 

supracrustal rocks that typically have anomalous 182W/184W (e.g., refs. 37,38), which is not observed for 

the African kimberlites studied here (see main text; average µ182W value of 0.0 ± 3.9 for 18 

occurrences). 

 

 

Figure S9. Melting model of peridotite to constrain the tungsten abundances of African kimberlites. The evolution of 
tungsten abundances (ppb) during changing degrees of batch partial melting (F) of garnet-bearing peridotite in the presence 
of CO2 under upper mantle conditions (equivalent to ~200-300 km depths) is shown by the blue and red curves. The 
tungsten content of a fertile peridotite source was set at 16 ppb, which is equivalent to the primitive mantle value30. The 
tungsten concentration range of pristine magmatic kimberlites analyzed during this study (excluding NAM18-02) is shown 
as grey field. The bulk peridotite / kimberlite-carbonatite melt partition coefficients KD for tungsten are those determined for 
uranium (as a proxy) in the high-pressure experimental studies of ref. 39 (0.04) and ref. 40 (0.001). Using uranium as a proxy 
for tungsten is justified on the basis of the identical incompatibility of these two elements in metal-free silicate-dominated 
systems31. The results demonstrate that lower ppm-level tungsten enrichment is readily achieved during near-solidus partial 
melting (0.1-3%) of volatile-fluxed ambient upper mantle beneath cratons. 
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Sr-Nd-Hf isotopic compositions 

The sub-Saharan kimberlite samples fall firmly within the Sr-Nd (Fig. S10) and Nd-Hf (Fig. S11) 

isotope mantle arrays defined by modern MORB and OIB, with the exception of the Jwaneng sample 

BOT17-05, which shows Sr-Nd-Hf isotopic enrichment (see below). The initial 87Sr/86Sr ratios of most 

kimberlite samples range from 0.70313 to 0.70535. The initial 143Nd/144Nd ratios are superchondritic, 

with a narrow range of εNd(i) values between +0.3 and +4.3. In contrast, the initial 176Hf/177Hf ratios 

show a much wider range, with εHf(i) values between -7.2 and +9.3. These moderately depleted to 

slightly enriched Sr-Nd-Hf isotopic compositions are characteristic for magmatic Group-1 kimberlites 

from southern Africa and worldwide occurrences (Figs. S10, S11). By comparison, the Jwaneng 

sample BOT17-05 has notably more enriched isotopic compositions (87Sr/86Sri = 0.70784; εNd(i) = -6.1; 

εHf(i) = -2.0), similar to Group-2 kimberlites from the Kaapvaal craton in South Africa (Figs. S10, S11). 

 

Although the majority of sub-Saharan kimberlites analyzed here fall within the Nd-Hf isotope mantle 

array (defined by ΔεHf values between -5 and +5; where initial ΔεHf = εHf(i) – [1.59* εNd(i) + 1.28]), most 

samples plot below the terrestrial Nd-Hf isotope regression line41 and have by definition negative initial 

ΔεHf values, with the most extreme ΔεHf value of -11.8 for the Venetia kimberlite sample SAF17-15 

(Fig. S11). This observation is in good agreement with a previous combined Nd-Hf isotope study of 

southern African Group-1 kimberlites42, and several subsequent studies on kimberlites from 

Greenland25,43,44, North America45-47, Asia48,49, and Antarctica50 established that decoupled Nd-Hf 

isotope systematics are a common feature of magmatic kimberlites worldwide. 
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Figure S10. Neodymium and strontium isotopic compositions of African kimberlites. Initial εNd versus 87Sr/86Sr(i) 
compositions of the African kimberlite samples studied here. Uncertainties are smaller than or similar to symbol size except 
in cases where error bars are displayed, the lengths of which entail a full propagation of uncertainties (see Methods). The 
compilation of Sr-Nd isotope data for global magmatic Group-1 kimberlites comprises both bulk rock and groundmass 
perovskite analyses25. Data field for Southern African Group-1 kimberlites is shown separately and based mainly on 
analyses by refs. 7,42,51,52. Data field for Southern African Group-2 kimberlites is shown for discussion purposes28,42. The 
compilation of data for modern OIBs was retrieved from http://georoc.mpch-mainz.gwdg.de/georoc. 
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Figure S11. Hafnium and neodymium isotopic compositions of African kimberlites. Initial εHf versus εNd(i) 
compositions of the African kimberlite samples studied here. The displayed error bars entail a full propagation of 
uncertainties (see Methods). The data compilation of Nd-Hf isotopic compositions for global magmatic Group-1 kimberlites 
is taken from ref. 25. The terrestrial array (regression line of ΔεHf = 0) is adopted from ref. 41. 
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