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Abstract 

Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. 
A longstanding design approach uses genetic fusion to join protein homo-oligomer subunits via α-
helical linkers to form more complex symmetric assemblies, but this method is hampered by 
linker flexibility and a dearth of geometric solutions. Here, we describe a general computational 
method that performs rigid three-body fusion of homo-oligomer and spacer building blocks to 
generate user-defined architectures, while at the same time significantly increasing the number of 
geometric solutions over typical symmetric fusion. The fusion junctions are then optimized using 
Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric 
protein assemblies from a set of designed homo-dimers and repeat protein building blocks. 
Experimental validation  by native mass spectrometry, small angle X-ray scattering, and negative-
stain single-particle electron microscopy confirms the assembly states for 11 designs.  Most of 
these assemblies are constructed from DARPins (designed ankyrin repeat proteins), anchored on 
one end by α-helical fusion and on the other by a designed homo-dimer interface, and we 
explored their use for cryo-EM structure determination by incorporating DARPin variants selected 
to bind targets of interest. Although the target resolution was limited by preferred orientation 
effects, small scaffold size, and the low-order symmetry of these dihedral scaffolds, we found that 
the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to 
the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to 
cryo-EM structure determination of small proteins.  

 
Introduction 
 
There has been considerable interest in designing novel protein assemblies, for example to 

develop cryo-electron microscopy (cryo-EM) scaffolds to aid in structure determination1,2 and 

protein nanoparticles with antigen display capabilities as vaccine candidates3,4. The symmetric 

assembly design paradigm uses symmetry and either genetic fusion or a designed interface to fix 

the orientation of symmetric homo-oligomeric building blocks within the overall assembly. The 
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genetic fusion approach was originally demonstrated with the creation of a tetrahedral protein 

nanocage and fiber5 and has since been used to generate two-dimensional layers6, a porous 

cube7, additional tetrahedra8,9, octahedra10, and icosahedra11,12. The fusion procedure is relatively 

straightforward, not inherently destabilizing, and has perfect specificity as the interaction partners 

are fused. Despite its success and relative simplicity, several aspects of the genetic fusion 

approach have limited its utility compared to methods that employ non-covalent protein-protein 

interface design4,13-17,. Interface design produces vastly more geometric solutions than genetic 

fusion, because the available alignment geometries for fusion at helical termini are spatially 

discrete and finite in number. This reduces the number of possible structures accessible by fusion 

and increases the difficulty of building into an assembly any particular building block of interest for 

a given application. In contrast, the adjustable degrees of freedom (rotation and translation) 

accessible through noncovalent interface design have continuous ranges18, so the set of valid 

geometric solutions is technically unlimited. Other issues with the fusion approach are that the 

termini must be accessible and that flexibility is often introduced at the point of fusion, even with 

α-helical linkers and certainly with disordered linkers. In the best cases, model-deviations are 

subtle8,19, however varying levels of unintended assembly products are also commonly observed.  

Genetic fusion has been applied to the creation of cryo-EM scaffolds1,2,20-22: if a small 

target protein can be immobilized and rigidly bound onto a larger symmetric assembly, EM 

particle images can be more readily aligned and classified than those of the target protein alone. 

Structures that would normally be too small to analyze would then become amenable to structure 

determination. Yeates and colleagues demonstrated the potential of this approach by fusing a 

DARPin23,24 to the outside of a previously designed protein nanocage1; the bound GFP target was 

resolved at 3.8 Å resolution with only a single α-helical fusion anchoring the DARPin. 

 
Results: 
 
A computational method for rigid three-body / multi-domain symmetric fusion 
 
We set out to develop a computational method for generating symmetric assemblies by gene fusion 

that explores vastly more combinations than previous methods and enforces rigid connections 
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between the building blocks. Previous genetic fusion studies have focused on fusing symmetric 

oligomeric building blocks together at their N and C termini. Furthermore, it has been shown that 

the rigidity of DARPin fusions depends on the connecting helix being shared, i.e. being part of both 

domains being connected25,26. We reasoned that a much larger set of possible configurations could 

be generated by (1) incorporating a variable length rigid monomeric protein spacer between the 

two oligomers, and (2) allowing fusions at internal residues (not just the termini). The number of 

accessible configurations increases from on the order of N(oligomer1) * N(oligomer2) for direct 

fusion at building block termini, to N(oligomer1) * N(oligomer2) * N(spacer) with the addition of 

spacer domains, to on the order of N(oligomer1) * N(fusion sites per oligomer1) * N(oligomer2) * 

N(fusion sites per oligomer2) * N(spacer) * N(fusion sites per spacer) * N(fusion sites per spacer) 

when internal fusion sites are allowed, a very considerable increase. To ensure rigid structurally 

coherent junctions between the building blocks, we only allow fusion via alignment and 

superposition of shared helices from both building blocks being fused and disallow α-helical 

extension. Most globular proteins are destabilized by truncation in the midst of secondary structure 

elements; to maintain stability, we use idealized repeat protein building block spacers (and 

oligomers, when possible), where every repeat unit is identical - such proteins are amenable to 

truncation or fragmentation without undermining folding and stability27-30.  

Geometric matches to the desired symmetry are identified for each (oligomer1, spacer, 

oligomer2) tuple by the following procedure, which is illustrated schematically in Figure 1. First, all 

rigid body transforms (T1) on oligomer1 are enumerated that superimpose one of its helical 

segments onto one from the spacer. Rigid body transforms T2 (applied to oligomer2) are calculated 

identically, to identify possible fusions between oligomer2 and the spacer. Second, for each (T1, T2) 

instance combination, the transforms are applied to both oligomers and the arrangement of the 

axes of the two oligomers are tested for compatibility with the target architecture. For D2 symmetry, 

they must intersect at 90 degrees or for D3, 60 degrees. Next, the symmetry is idealized by rotating 

each homo-oligomer about its corresponding shared-helix-segment center-of-mass so that the 

axes meet perfectly at the required angle. In cases where the applied rotation (a measure of non-
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ideality) is less than the configured error tolerance, 3D models of the resulting assemblies are built 

by superposition of the repositioned structures. Models are discarded in which the fusions truncate 

homo-oligomer interface residues, as are models with backbone clashes; sidechain clashes are 

acceptable, since redesign can eliminate them. 

In selecting helical segment pairs for fusion in the first step of the above procedure, we use 

several criteria to try to ensure fusion rigidity.  First, we require superpositions with a low backbone 

R.M.S.D. (default 0.5 Å) over multiple residues (default 8 minimum) to ensure the shared helix 

geometry is consistent with both building blocks. The stringency is controlled by user-configurable 

backbone R.M.S.D. and overlap-length parameters. Unlike traditional symmetric fusion with α-

helical linkers, overlapping fusion preserves proximity and sidechain packing of the fusion region 

with remaining secondary structures from the original building blocks, which reinforces the 

structure. For the sake of efficiency, the R.M.S.D. and overlap-length thresholding occurs early in 

the procedure during geometric-match identification, when alignments are initially computed. 

Second, we rank fusions according to a rigidity metric, which counts the number of putative 

sidechain contacts between secondary structures of previously separate building blocks. This 

ensures that significant cross-building-block contacts can be made to buttress the interactions 

along the shared helix. This step also occurs prior to sidechain redesign, so Cα-Cβ vectors are 

used in place of contact counts as a measure of designability. Third, we redesign with Rosetta the 

regions adjacent to the new building block junctions to eliminate steric clashes and improve packing 

between newly joined regions. Fusion-related truncation often exposes hydrophobic residues that 

were previously buried, so these regions must be redesigned as well.  

 
Design and characterization of D2 and D3 symmetric oligomers 
 
As a proof of concept, we applied the rigid three-body fusion method to design dihedral symmetric 

assemblies from de novo designed repeat protein monomers and oligomers. Two different 

designed C2 dimers were fused as described above with a repeat protein monomeric spacer such 

that the C2 axes intersect at 90 degrees for D2 structures or 60 degrees for D3 structures (Figure 

2). Two different design rounds were performed targeting D2 and D3 symmetries. Even in the 
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second design round, where fewer building blocks and additional selection criteria were imposed, 

millions of tripartite alignment combinations were scanned per symmetry, nearly ten thousand 

fusions matched the target geometry within the angular error tolerance (5 degrees), and several 

hundred passed junction rigidity metrics. The sequences at the junction regions in these assemblies 

were then optimized using Rosetta, as described in the Methods. In brief, the full symmetric 

assemblies were generated from the single-chain asymmetric unit and a single round of sidechain 

redesign with the beta_nov16 score-function was performed on the junction residues, while 

disallowing the introduction of cysteines, prolines, or methionines. 

In a first design round,  28 D2 and 9 D3 assemblies which matched the geometric selection 

criteria and had low energy junctions were selected for experimental characterization and 

recombinantly produced in E. coli. Of these 37 designs, seven (three D2 and four D3) were both 

soluble and eluted as single monodisperse peaks by size exclusion chromatography (SEC) (Figure 

S1). Scattering profiles and radius of gyration (Rg) determined from solution X-ray scattering 

(SAXS) data were consistent with design models for the three D2 designs and for two of the four 

D3 designs (Figure 2 and S2). Of these designs, native mass spectrometry (native-MS) verified the 

expected oligomeric states for all of the assemblies. Despite the limited dataset, clear trends 

emerged: for example, all five designs corroborated by SAXS data incorporated a C-terminal 

ankyrin homo-dimer, which was present in only 60% of the tested designs. In addition, four of five 

SAXS and native-MS corroborated designs incorporated the same N-terminal three-helix homo-

dimer “rop20”, despite rop20 only being present in ~40% of tested designs. The set of 12 designs 

that combined both an N-terminal rop20 and C-terminal ankyrin dimer contained four of the five 

successes. Meanwhile, no designs using hairpin helical bundle dimers were successful. 

A second round of design was performed with the same procedure, this time using mostly 

the rop20 helical bundle at the N terminus and any of the three similar ankyrin dimers at the C-

terminus that had been successful in the first round. We also introduced two additional design 

constraints with the aim of improving the designs’ suitability as cryo-EM DARPin scaffolds, whose 

use is discussed in the next sections. First, structures with fewer total secondary structures (helix 
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count) were selected, anticipating that they would be more rigid. Although the design method 

reinforces the point of fusion, the de-novo helical repeat (DHR) spacers and ankyrin dimer building 

blocks have small cross-sectional areas, so each additional repeat likely adds flexibility. Second, 

we selected designs with the ankyrin binding groove facing away from the assembly center (Figure 

S6), to reduce the chance of steric hindrance in multivalent target binding. 31 D2 and 24 D3 designs 

were ordered, of which 15 and 12, respectively, had high levels of soluble expression and single 

major peaks by SEC. SAXS and native-MS agreed with the design models of four D2 designs and 

four D3 designs (designs D2-21.29 and D2-21.30 have 85% sequence identity and were not 

considered independent successes; only D2-21.29 was fully characterized) (Figure 2).  

With the exception of design D2-21.22 and D3-1.5A2 (Figure S3), which may exhibit lower 

stability, negative-stain EM 2D class averages and 3D reconstructions recapitulated the expected 

shape for all designs that passed both native-MS and SAXS screening. Most designs have a 

pronounced central cavity that makes their top views readily identifiable in micrographs. An unusual 

structural aspect of our D3 designs is their subunit connectivity; in natural D3 architectures, subunits 

related through C3 rotations normally make direct contact. In almost all of our designs, they do not 

- the C3 axis is an emergent property of the assembly. Another notable feature of our designs is 

that they were produced in large part from building blocks without crystal structures. Of the ten 

successful and sequence-independent designs, two use not a single crystal-verified building block 

(D2-1.4H and D3-19.24) and another seven use only one crystal-verified building block (Table S2). 

 
Cryo-EM of coassembled DARPin and GFP 
 
In prior studies, imaging scaffolds have been constructed through fusion of a DARPin onto existing 

symmetric protein assemblies via a shared helix or α-helical extension1,2. Our constructs differ in 

that they incorporate a designed ankyrin homo-dimer in addition to fusion, so the ankyrin (or 

DARPin post interface-grafting) is held in place by two separate mechanisms (back-to-back 

dimerization and lateral fusion) that should both contribute to rigid placement. To test our scaffolds, 

we grafted the surface binding residues from a GFP-binding DARPin24 into six constructs: D2-1.1D, 

D2-1.4H, D3-1.5C, D2-21.8, D2-21.29, and D3-19.20, taking care not to alter the ankyrin homo-
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dimerization interface in the base construct (Figure S2). As ankyrins are repeat proteins, the 

DARPin alignment can be shifted up or down by adding or removing one or more consensus 

repeats, which we did to create variants. After SEC purification and cryo-EM of GFP-scaffold co-

complexes, a majority of constructs exhibited high levels of preferred orientation or outright 

aggregation (Table S3), but D2-1.4H and D2-21.8 derivatives were promising. D2-1.4H.GFP.v1 is 

derived from the first round design scaffold D2-1.4H and was reconstructed at 4.3 Å resolution for 

the full complex and GFP target separately (Figure 4) - just as well as the core scaffold (Figure 

S7A). Second-round design derivative D2-21.8.GFP.v2 was resolved at lower resolution of only 

6.0-7.0 Å overall for the co-complex with the GFP target (Figure S7B).  

 
Cryo-EM of coassembled DARPin-scaffold with Human Serum Albumin (HSA) 
 
All cryo-EM scaffolding studies based on the GFP-binding DARPin had the benefit of an available 

co-complex crystal structure, but in the general use case co-complex structural information will be 

absent (the purpose of the scaffold being to facilitate structure determination) and we sought to 

assess the feasibility of integrating DARPins in such a scenario. Towards this aim we incorporated 

an unpublished DARPin sequence targeting human serum albumin (anti-HSA DARPin “C9” ) into 

second-round scaffolds D2-21.8 and D2-21.29. As before, the DARPin sequence was aligned and 

grafted onto the assembly scaffold, taking care to only graft surface residues and not to mutate the 

ankyrin homo-dimer interface. DARPin residues in the hydrophobic core that differed from those in 

the scaffold were not grafted to avoid disrupting the homo-dimer interface. Four sequence-grafted 

designs were expressed (2 scaffolds x 2 variants where the grafted surface residues are shifted by 

a repeating unit of the ankyrin). One design based on the D2-21.8 base scaffold and the second 

repeat-unit-shifted variant proved more soluble than the others (D2-21.8.HSA-C9.v2) and SEC with 

SDS-PAGE confirmed binding to HSA (which appeared to be sub-stoichiometric based on SDS-

PAGE of column fractions). 

The HSA complex was successfully reconstructed by cryo-EM to 5.5 Å resolution (Figure 

5). In line with observations on stoichiometry, the HSA-binding mode sterically precludes full 

binding site occupancy and each face of the dihedral ring has one HSA instead of two. This results 
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in two predominant species where two of four binding sites are occupied, either across from one 

another or along the diagonal - image classification and refinement focused on the former. The 

core scaffold map density is greater than that of the HSA density, so for the cutoff level shown, 

each HSA model can be fit fully within the map, but the scaffold core density appears overly large; 

this effect is exacerbated by preferred orientation. Still, the placement and DARPin binding site is 

clear. Aromatic residues on the DARPin overlap a hydrophobic patch in domain II of HSA, away 

from the site where HSA binds to FcRn, whose binding enables HSA escape from endosomal 

degradation and long serum half-life. This non-interference indicates that the HSA DARPin “C9” 

may serve as a fusion domain for half-life extension. The process also demonstrates the feasibility 

of integrating DARPins for determining interaction sites with the target, even with the added 

complexity of maintaining the original homo-dimer interface.  

 
 
Discussion  
 
The new multi-fusion method introduced here specifically remedies two of the long-standing 

drawbacks to fusion-based assembly construction: the low number of geometric solutions and 

linker flexibility. Our results demonstrate the feasibility of performing multiple fusions, ranking, and 

redesign in a single pass to produce intended architectures with low levels of off-pathway 

assembly. It remains to be seen how well the method performs for more complex and multi-

component assembly architectures. The role of rigidity is also an open question: the cryo-EM 

application would clearly benefit from a more rigid overall structure, but the design method may 

require a measure of component flexibility to compensate for design inaccuracies around the 

redesigned fusion. It is notable that all successful designs in the present work incorporated at 

least one, usually two, and occasionally even all three design models lacking high resolution 

structural validation (SAXS validation only); it is possible that using x-ray crystal structures of the 

building blocks rather than computational design models might lead to greater success. On the 

other hand, the success using design models bodes well for future applications of this approach 
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as far more plausible building block structures can be designed than can be solved by x-ray 

crystallography. 

We had hypothesized that DARPins would be more rigidly embedded in our new 

designed assemblies than in the previous designs by Liu et al. 1,22, as in the present work they 

form structural components of the assembly and are tethered by either a fusion or designed 

interface at either end. However, the resolution we achieved was half an Ångström lower. In the 

previous study, the core scaffold was resolved to 2.9 Å and the GFP target was resolved to 3.8 Å, 

which indicates some flexibility of the DARPin position relative to the core scaffold. In the present 

study, the GFP target was resolved at 4.3 Å resolution, just as well as the core scaffold. Hence, 

the secondary stabilization provided by the homo-dimer interface appears to have been effective 

in rigidifying the DARPin placement with respect to the rest of the scaffold, but this was 

counteracted by some combination of inherent flexibility in the core dihedral scaffold and 

preferred orientation in cryo-EM, which limited the achieved resolution. We expected that the 

shorter closure path selected for in the second round designs would improve rigidity and produce 

better scaffolds than those from the first round of design. Instead, the second round designs 

showed a greater tendency toward aggregation and preferred orientation in cryo-EM (Table S3), 

which may be rooted in our selection criteria; while the shorter closure paths may indeed increase 

rigidity, it also biased toward smaller designs that are likely more sensitive to destabilization when 

grafting in the hydrophobic DARPin interface. In line with this hypothesis, D2-1.4H.GFP.v1 

yielded the best results and also contains the largest (in terms of cross-section width and total 

mass) DHR building block among designs tested by cryo-EM. While the scaffolds here fall short 

of recapitulating or improving upon the 3.8 Å GFP resolution achieved by Liu et al., the use of 

secondary stabilization through interface design could still yield improved results for cryo-EM if 

used in conjunction with bulkier building blocks and higher order symmetry. Beyond scaffolds for 

cryo-EM structure determination, the rigid three-body fusion method demonstrated here provides 

a general strategy for producing arbitrary geometries and facilitates exploration of the protein 

nanomaterial design space. 
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Materials and Methods: 
 
Computational design 
 
A custom software library was built with the .NET Framework, which includes functionality for 

PDB parsing, alignment, symmetry/patterning, clash and contact checking, structure editing, and 

running the multi-domain fusion algorithm. The several parameters that control fusion were 

assigned based only on manual curation of outputs during testing in-silico and are likely not 

optimal for all scenarios. In particular, an 8-residue minimum overlap-length was selected 

because the idealized ankyrins used in this study have short helices compared to those of DHRs 

and helical bundles, but longer overlaps might be desirable with other starting components. 

Likewise, a lower angular-error tolerance might increase the success rate of tested designs, but it 

was kept at a moderately high 5 degrees, because the lack of crystal structures for so many 

designs introduced uncertainty about the initial model accuracy, so a tight angle tolerance would 

have been somewhat arbitrary. 

 As the method creates a much larger solution space than direct fusion, optimizations 

were necessary to keep runtimes reasonable while still exhaustively enumerating geometries. 

The most impactful optimization eliminates redundant alignments by greedily expanding the 

alignment windows of any valid 8-residue alignment until the R.M.S.D. threshold is exceeded or 

either secondary structure element ends - all shorter alignment windows contained within the 

expanded alignment need not be examined. The result is that fewer alignment combinations are 

considered than if every 8-residue window were examined and nearly identical outputs are largely 

avoided. The protocol could be run on all de-novo building-block combinations for a target 

geometry in less than 24 hours on a quad-core laptop; higher parallelism would produce a 

speedup accordingly. 

The fusion output models were redesigned by Rosetta with a simple RosettaScripts 

protocol (Text File S1), involving only two Movers (operators that modify a design model): 

SetupForSymmetry and SymPackRotamersMover. These Movers respectively recreate the full 

symmetric assembly from the input single-chain asymmetric unit and redesign those residue side 
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chains that were identified by output files in the Resfile format. After the initial sidechain redesign 

pass, models deemed promising by a combination of total score and manual inspection were 

subjected to one or more additional redesign passes with the same protocol, but with user-

generated Resfiles, to eliminate exposed hydrophobic residues, revert residues to their original 

wildtype identity, or mutate Rosetta-designed glycines to alanines within helices to improve 

helical propensity. The beta_nov16 score function was used throughout. 

The input structure set consisted of 20 homo-dimer and 42 DHR spacer proteins already 

verified within the lab, with 5 homo-dimers and 15 DHRs having been previously published with 

solved crystal structures available in the Protein Data Bank18,31,32, (Table S4). Two designed 

crystal structures were unintentionally omitted from the input set (2L4HC2_4 and 3L6HC2_2 from 

Boyken et al). Two-helix dimers were removed from the scaffold set in the second round of 

design, because better results were obtained from three-helix dimers. The third helix leads to a 

larger hydrophobic core than exists in the two-helix dimers, which we expect leads to a higher 

degree of degree of order even in the monomeric form and might help to avoid aggregation and 

misassembly. The other type of successfully incorporated dimer was based on ankyrins. Although 

very similar, the minor binding orientation differences between the three ankyrin homo-dimers 

was sufficient to make all three useful in finding distinct geometric solutions. 

 
Cryo-EM of coassembled DARPin and GFP 
 
Electron microscopy grids were prepared at 4°C at 100% humidity using vitrobot (FEI). In brief, 3 

µl of purified sample at 1.0 mg/ml was applied to glow-discharged Quantifoil 200 mesh R1.2/1.3 

grid, and was manually blotted with a filter paper (Whatman No. 4) for approximately 3 seconds 

before plunging into liquid ethane. The grids were screened on a Talos Arctica 200 kV with K3 

direct electron detector for ice thickness and sample distribution. Micrographs of the screened 

grid were collected on a Titan Krios microscope (FEI) operating at 300 kV with energy filter 

(Gatan) and equipped with K2 Summit direct electron detector (Gatan), using data collection 

program SerialEM33. A nominal magnification of 165,000x was used for data collection, 

corresponding to a pixel size of 0.865Å at specimen level, with the defocus ranging from -1.0 μm 
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to -3.0 μm. Movies were recorded in superresolution mode, with a total dose of -60 e-/Å2 and 

dose rate of 8.4 electron per pixel per second and fractionated into 40 frames. Movies were 

decompressed and gain-normalized using the program Clip in IMOD. Raw movies were corrected 

for beam-induced motion and binned by two using MotionCor234, and exposure-filtered in 

accordance with relevant radiation damage curves35. The CTF estimation was performed with 

GCTF36 on non-dose weighted micrographs. Micrographs with high CTF Figure of Merit scores 

and promising maximum resolution (better than 3.9 Å) were selected for further processing (total 

1532 micrographs). Several rounds of autopicking using combinations of different references and 

manual picking were analyzed to determine optimal settings, and yielded similar results. These 

particles were subjected to iterative rounds of 2D classification, subset selection of high-quality 

classes, and re-extraction, yielding 138,348 particles from 1023 micrographs, all in RELION 3.037. 

The initial model was de novo generated and subsequent 3D heterogenous refinement was 

performed using cryoSPARC38. Particles from the best quality 3D class were selected for further 

processing. The UCSF PyEM package39 was used to convert the cryoSPARC coordinates into 

RELION. The resulting particles were analyzed by 3D refinement, Bayesian Particle Polishing 

and CTF Refinement in RELION with C1 or D2 symmetry. All the reconstructions were analyzed 

using UCSF Chimera40. The coordinate model was built by breaking the initial design model into 

domains and rigidly docking these individual protein structures into the EM map using Chimera. 

Once the orientation was identified, the model was then fit and adjusted manually in Chimera and 

Coot41. The local resolution and final Fourier shell correlation were calculated using Resmap42 

and cryoSPARC. The core resolution was calculated using the validation function in cryoSPARC.  

 
Cryo-EM of coassembled DARPin and HSA 
 
Co-complex of 21.8.HSA-C9.v2 with recombinant human albumin (AlbumedixTM Veltis®) was 

purified by SEC. 3 μL of 1 mg/ml of co-complex was loaded onto a freshly glow-discharged (30 s 

at 20 mA) 1.2/1.3 UltraFoil grid (300 mesh) prior to plunge freezing using a vitrobot Mark IV 

(ThermoFisher Scientific) using a blot force of 0 and 6 second blot time at 100% humidity and 

25°C. Data were acquired using the an FEI Titan Krios transmission electron microscope 
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operated at 300 kV and equipped with a Gatan K2 Summit direct detector and Gatan Quantum 

GIF energy filter, operated in zero-loss mode with a slit width of 20 eV. Automated data collection 

was carried out using Leginon at a nominal magnification of 130,000x with a pixel size of 0.525Å. 

The dose rate was adjusted to 8 counts/pixel/s, and each movie was acquired in super-resolution 

mode fractionated in 50 frames of 200 ms. 1,011 micrographs were collected with a defocus 

range between -1.0 and -3.5 μm. Movie frame alignment, estimation of the microscope contrast-

transfer function parameters, particle picking, and extraction were carried out using Warp43. 

Particle images were extracted with a box size of 800 binned to 400 yielding a pixel size of 1.05 

Å. Two rounds of reference-free 2D classification were performed using CryoSPARC to select 

well-defined particle images. The selected particles were subsequently subjected to ab initio 3D 

reconstructions and 3D refinement using CryoSPARC. CTF refinement was used to refine per-

particle defocus values. Particle images were subjected to the Bayesian polishing procedure 

implemented in RELION 3.0. 3D refinements were carried out using non-uniform refinement 

along with per-particle defocus refinement in CryoSPARC. 

 
Native mass spectrometry 
 
Sample purity and oligomeric state was analyzed by online buffer exchange MS44 using a 

Vanquish UHPLC coupled to a Q Exactive Ultra-High Mass Range (UHMR) mass spectrometer 

(Thermo Fisher Scientific) 45,46 modified to allow for surface-induced dissociation (SID) similar to 

that previously described47. With the exception of D3-19.14 (50 μM), 1 μL of 25 μM protein in 25 

mM Tris and 150 mM NaCl were injected and online buffer exchanged into 200 mM ammonium 

acetate, pH 6.8 by a self-packed buffer exchange column (P6 polyacrylamide gel, Bio-Rad 

Laboratories) at a flow rate of 100 μL per min. A heated electrospray ionization (HESI) source 

with a spray voltage of 4 kV was used for ionization. Mass spectra were recorded for 1000 – 

20000 m/z at 3125 resolution as defined at 400 m/z. The injection time was set to 200 ms. 

Voltages applied to the transfer optics were optimized to allow for ion transmission while 

minimizing unintentional ion activation, and a higher-energy collisional dissociation (HCD) of 5 V 

was applied. Mass spectra were deconvoluted using UniDec V4.2.248. Deconvolution settings 
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included mass sampling every 10 Da, smooth charge states distributions, automatic peak width 

tool, point smooth width of 1 or 10, and beta of 50 (artifact suppression). 

 
Protein expression and purification 
 
DNA sequences encoding proteins with 6xHis tags were codon-optimized by Genscript and 

cloned into pET28b+ or pET29b+ vector under the control of a T7 promoter. Plasmids were 

transformed into BL21(DE3) E. coli and plated on LB agar plates. On different occasions, either 

50 ml or 500 ml expression cultures were used. 50 ml expression cultures were directly 

inoculated from plate colonies and grown for 24 hours in Studier’s autoinduction media49 with 

shaking. Alternatively, 5 ml starter cultures in TB were inoculated and grown for 9-12 hours 

before transfer to 500 ml autoinduction media for 16-18 hours. All growth media was prepared 

with 100 μM kanamycin as a selection antibiotic. 

Expression cultures were spun down for 10 minutes at 4,000 rcf, resuspended in 40 ml 

TBS (150 mM NaCl, 25 mM Tris) with Pierce protease inhibitor (Product No. A32963), and lysed 

by sonication. Lysates were centrifuged at 25,000 rcf for 40 minutes to separate the insoluble 

fraction. The soluble fraction was purified by affinity chromatography over Ni-NTA Agarose 

(Qiagen) gravity columns. Eluates were concentrated and fractionated by SEC on a Superdex 

200 Increase 10/300 GL. 

 
Negative-stain EM 
 
PELCO 300 mesh Copper grids with Carbon film (Product 01843-F) were glow-discharged and 

3μL of sample in TBS was applied to the grid and blotted immediately. 3 μL 2% uranyl formate 

stain was applied and blotted immediately, twice, and then allowed to dry. Approximately 50 

micrographs per construct were recorded on a Thermo Scientific Talos transmission electron 

microscope operating at 200kV. The known symmetry (D2 or D3) was applied during 

reconstruction, except for designs D3-19.14 and D3-19.19, for which C1 symmetry was applied 

(although the design model is D3). 3D reconstructions were generated in either RELION or 

cisTEM50. 
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SAXS analysis 
 
SAXS data were collected at the SYBILS Beamline (Advanced Light Source in Berkeley, CA) via 

their Mail-In SAXS program. KNO3 was added to buffer solutions in the range of 2 to 5 mM to 

minimize radiation-damage induced aggregation. Samples were concentrated in Amicon Ultra 

0.5ml centrifugal filters and flow-through was used as the background subtraction buffer. For 

each sample, the average scattering profile was computed, excluding data in the Guinier region 

for timepoints after radiation damage became observable. The Scatter software was used for 

analysis; model and experimental Rg values were determined from their respective Guinier region 

data. Combined datasets (model-vs-experiment) were generated with the FOXS web server51,52 

for plotting. 
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Figures and Tables 
 
Figure 1. 

 
 

Illustration of the tripartite design strategy for the D3 architecture. The final structure is composed 
of (A) two homo-oligomers (dimers, top and bottom; the partner subunit is shown as a surface in 
grey) and a de-novo helical repeat protein (middle). All possible non-clashing backbone 
alignments are geometrically analyzed and filtered to generate (B) a three-component fusion, 
which is idealized to the target geometry by small rigid-body rotations and redesigned to improve 
core packing and remove exposed hydrophobics. The result (C) is a D3 assembly, with symmetric 
C2 axes (black) that correspond to those of the original homo-dimers and a new C3 axis 
orthogonal and through the center. 
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Figure 2. 
 

 
Characterization of first round designs.  EM, native-MS, and SAXS experiments are consistent 
with the formation of intended architectures for four designs: (A) three D2 designs and (B) one D3 
design. Negative-stain 3D reconstructions are overlaid by design models, whose asymmetric unit 
is colored according to its constituent building blocks (N and C-terminal oligomers, green; DHR, 
blue; shared alignment, yellow). Native-MS deconvolutions show the relative abundance of the 
determined masses and the peaks are labeled with their assigned oligomeric states. SAXS plots 
compare the theoretical (cyan) and experimental (black) scattering intensities (log scale) as a 
function of q, as well as radius of gyration (Rg), in Ångströms. 
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Figure 3.  
 

 
Characterization of second round designs. EM, native-MS, and SAXS experiments are consistent 
with the formation of intended architectures for six designs. Negative-stain 3D reconstructions are 
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overlaid by design models, whose asymmetric unit is colored according to its constituent building 
blocks (N and C-terminal oligomers, green; DHR, blue; shared alignment, yellow). Native-MS 
deconvolutions show the relative abundance of the determined masses and the peaks are 
labeled with their assigned oligomeric states.  SAXS plots compare the theoretical (cyan) and 
experimental (black) scattering intensities (log scale) as a function of q, as well as radius of 
gyration (Rg). Native-MS for D3-19.24 shows a small amount of 12-mer, likely formed through 
association of two designed hexamers.  
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Figure 4. 
 

 
 
Cryo-EM characterization of DARPin-grafted scaffold with GFP. (A) Surface residues of the GFP-
binding DARPin “3G124nc” 24 are grafted onto the assembly subunit of D2-1.4H, while preserving 
core residues and homo-oligomer interfaces, to form a hybrid (D2-1.4H.GFP.v1)that retains self-
assembly and also binds GFP. (B) Cryo-EM density of the co-assembled complex is inlaid with 
cartoon models. The corrected Fourier shell correlation (FSC) curves are calculated by the 
program cryoSPARC, shown in blue. Using the standard FSC=0.143 criterion, the nominal 
resolution is 4.33 Å. (C) GFP density with the core scaffold masked. The GFP portion has 
nominal resolution 4.34 Å. 
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Figure 5. 

 
Characterization of anti-HSA DARPin assembly in complex with HSA. A) Cryo-EM of scaffold 
21.8.HSA-C9.v2 and HSA co-complex with embedded scaffold design model and HSA crystal 
structure (PDB 1BJ5). A single HSA-binding DARPin (of four total and two that bind per co-
complex) is highlighted in yellow. B) A model of the relative HSA-binding positions of the DARPin 
and FcRn built by superposition of this cryo-EM structure (DARPin scaffold + HSA) and an 
existing crystal structure (HSA + FcRn, PDB 4K71). The HSA surface representation is colored 
within 10 Å of the DARPin. 
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