
Appendix A: Additional Descriptive Statistics

I collected the tweets analyzed in my project over a two-month time span, from May 27, 2015 to

August 24, 2015. To obtain this data, I use a series of python scripts that continuously interacted

with the Twitter API, using regular expressions to archive any tweet that contained one of the

following issue words: gay marriage, gay marriages, same-sex marriage, same-sex marriages,

same sex marriage, same sex marriages, same-sex union, same-sex unions, same sex union,

same sex unions, marriage equality, equal marriage. During this time, I collected a total of

5,996,741 tweets. After filtering for location in the process described in the Gathering Twitter

Data section above, I end up with 1,028,151 total tweets. In Figure A1, I plot the number of tweets

I collected each day. The top half of Figure A1 plots the raw frequency of daily tweets, and it is

immediately apparent that a very large number of tweets were sent on June 26, 2015, the day the

Supreme Court announced their decision. This drops off quickly, although I collect a large number

of tweets until early July. The bottom half of Figure A1 plots the logged frequencies in order to

better visualize the entire time series.

Each state is represented in my dataset, with the number of tweets sent from each state enu-

merated in Table A1. One can also get a general sense of the distribution of users by looking at the

heat map in Figure A2, which maps the number of tweets sent per capita using state populations

recorded in the 2010 census.

29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/345073997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure A1: Frequencies: May 27, 2015 to July 31, 2015

0

100,000

200,000

300,000

Jun 01 Jun 15 Jul 01 Jul 15 Aug 01

Date

F
re

qu
en

ce
y

(a) Raw Frequency

3.5

4.0

4.5

5.0

5.5

Jun 01 Jun 15 Jul 01 Jul 15 Aug 01

Date

Lo
g 

F
re

qu
en

ce
y

(b) Log Frequency

Figure A2: Frequency of Tweets by State per Capita

0.002

0.003

0.004

Tweets per Capita

30



Table A1: Number of Tweets from each State

State Number of Tweets
California 136,340
Texas 109,485
New York 98,792
Florida 56,932
Illinois 42,874
Ohio 36,222
Pennsylvania 32,802
Georgia 31,259
Washington D.C. 29,888
Michigan 27,755
Washington 25,295
Massachusetts 23,978
North Carolina 23,539
Tennessee 21,697
New Jersey 20,122
Arizona 19,372
Louisiana 18,852
Virginia 18,602
Colorado 16,936
Missouri 15,949
Indiana 154,66
Maryland 14,605
Wisconsin 14,391
Alabama 14,104
Oregon 14,008
Minnesota 13,389

State Number of Users
Kentucky 12,133
Nevada 11,425
South Carolina 11,425
Oklahoma 9,184
Kansas 86,25
Arkansas 7,658
Utah 7,315
Connecticut 7,005
Iowa 6,730
Mississippi 6,239
Nebraska 6,203
West Virginia 5,857
New Mexico 4,041
Maine 4,006
Hawaii 3,758
Idaho 3,443
Rhode Island 3,235
Delaware 3,189
New Hampshire 2,909
Alaska 2,428
Vermont 2,001
Montana 1,887
South Dakota 1,851
North Dakota 1,592
Wyoming 1,351

31



Appendix B: Preprocessing Text Data

Before running supervised training methods to estimate sentiment, I use several preprocessing

scripts to manipulate and simplify the Twitter text data. First, I remove all textual information that

does not inform the substance of the message, including punctuation, all forms of capitalization,

and words that fail to contribute towards a sentence’s meaning (such as “the, of, or”).

Next, I tokenize the text, a process that splits “a string into its desired constituent parts” (Potts,

2011). My tokenizing strategy utilizes white-space to break apart a sentence into separate words.

This transfers the content of a tweet into a list of individual words, ignoring the original order

these words appear in the sentence. While the order of words in a sentence can absolutely con-

tribute to the content of a message, treating each document as coming from a “bag-of-words” is a

common (though at times contentious) assumption that is necessary to apply many machine learn-

ing methodologies (Grimmer & Stewart, 2013). In many situations, enough information can be

gleaned from the choice of unique words to justify this assumption.

Finally, the entire dataset is transformed into a document-frequency matrix (DFM). A DFM is

an N × J matrix, where N is the number of documents (in this case, tweets) and J is the number

of unique features (in this case, individual words) found across all documents. Thus, if tweet n

contains two instances of word j, the njth entry of the DFM is 2. With Twitter data, this represents

a very sparse matrix, as the entire set of unique words J across the entire dataset can be quite large,

although an individual tweet being capped at 140-characters contains a small number of individual

words (while Twitter eventually increased this cap to 280-characters, this occurred after my data

collection period) Thus, rather than utilizing each of the J unique features in the entire dataset, I

analyze a subset of features based on how frequently the feature appears. This parameter can be

tuned, but for the baseline analysis I kept a feature if it appeared at least three times throughout

the dataset. In order to implement the preprocessing steps described above, this project utilized

the quanteda R package (Benoit & Nulty, 2016). The quanteda package provides tools to

organize and analyze string data in order to implement sentiment analysis methodologies.

32



Appendix C: Validating the Supervised Scoring Method

In order to train a supervised classifier, I create a set of hand-annotated tweets using Mechanical

Turk. In order to label the largest number of messages in the shortest amount of time, the set of

annotated tweets corresponds with the top-4,000 most repeated messages in the dataset. In total,

these 4,000 tweets represent 1,895,554 total messages, and thus consists of 31.60% of all collected

tweets. After stripping these 4,000 messages of usernames, hyperlinks, and punctuation, there

were 3,934 unique messages in the validation set.

In order to build this hand-annotated validation set, I utilized Amazon Mechanical Turk, a

crowdsourcing platform that allows a researcher to pay individuals to complete small tasks. I

created a set of tasks that required Mechanical Turk users to score the sentiment of ten tweets in

my validation set. I present a screen shot of the task in Figure A3.

Figure A3: Sample Mechanical Turk Task

Each task was performed by three separate Mechanical Turk users in order to get a sentiment

score as close to the ground truth as possible. To create a final score for each of the 3,934 unique

messages, I took the majority score across the three annotations. In total, the Mechanical Turkers

labeled 626 messages negative, 1,778 positive, and 1,333 neutral. Only 197 messages did not have

33



a majority category. In the body of the paper, I focus on using the 626 negative and 1,778 positive

messages to train a binary classifier. In Appendix E, I use the neutral messages to build a three-way

classifier.

In order to train a classifier, I split 10% of the training data to use a test set. This test set of

tweets is not used to train the final model, and thus allows me to evaluate the performance of the

model on new data.

I start by testing a number of different classifiers, including Support Vector Machines, logit-

boost, neural networks, and random forest.1 For each model, I run a 10-cross fold validation to

train the classifier before evaluating performance on the left out set. The accuracy (compared with

a no-information red in red) and kappa coefficient of the best performing models in each category

are found in Figure A4. I find that random forest leads to the highest accuracy without sacrificing

inter-rater reliability.

Figure A4: Comparing Classifiers

(a) Accuracy

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

LogitBoost Neural network Random forest SVM
model

A
cc

ur
ac

y

/

(b) Cohen’s Kappa

●

●

●
●

0.0

0.1

0.2

0.3

0.4

0.5

LogitBoost Neural network Random forest SVM
model

K
ap

pa

On choosing an overall model classification, I tune the hyper-parameters of the random forest

model. Repeating 10-cross fold validation 10 times per hyper-parameter, I test which minimum

1I train and evaluate all classifiers with the caret package (Kuhn, 2008)

34



node size leads to the best cross validation accuracy.

For the test set, my final model accurately predicts 81.74% of the data, with 97.78% Sensitivity

and 34.43% Specificity.

To better diagnose the model, I present the receiver operating characteristic (ROC) curve (with

area under curve reported) in Figure A5, and the test-set confusion matrix in Table A2.

Figure A5: ROC curve

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC: 0.822

Table A2: Error Matrix:
Test Set Predictions

Predicted Predicted Total
Negative Positive

True Negative
21 4

25

True Positive
40 176

216

Total 61 180

The error matrix reveals that one issue my classifier exhibits is over-predicting the positive

class. While part of this issue may stem from the fact I have an unbalanced training set, visually

35



inspecting may of the false-positive tweets reveals that many misclassified messages are highly

sarcastic in tone. While this is easy for a human reader to recognize, sarcasm is very difficult

to detect in sentiment scoring algorithms.2 Overall, this reveals that my classifier is more likely

to falsely classify a negative tweet as positive, biasing all my scores upwards. Thus, as my core

finding is finding a more negative reaction in states with a law change, this upward bias is likely

attenuating my findings. Thus, this bias should not hurt the causal interpretation of my core results.

Appendix D: Neutral Tweets

An issue potentially biasing my results is the presence of a third sentiment category: neutral mes-

sages. While theoretically possible to build a third training set of neutral tweets and training a

three-way classifier, binary classifiers tend to lead to more accurate labels. However, in a robust-

ness check, I retrain the classifier using the neutral labels collected on Mechanical Turk. In total,

this training set consists of 626 negative, 1,778 positive, and 1,333 neutral tweets.

I train this model with the same procedure described in an earlier section: leaving out 10% of

the data as a test set, and doing 10-fold validation across the training set to tune over the hyper-

parameters in the random forest model. The confusion matrix for the best performing model on

the left out test set is found in Table A3. In total, the model has an accuracy of 61.23% against a

47.06% no information rate, and Cohen’s kappa coefficient 0.35.

Applying this three-way classifier to my analysis, I rerun my main model specification includ-

ing with neutral labels. I score neutral messages as 0.5, in addition to scoring negative messages 0

and positive messages 1. I present the results of this robustness check in Table A4

In Table A4, I note that, across each model specification, the Treated×After coefficient re-

mains negative and statistically significant. In fact, the model including neutral labels more ro-

bustly demonstrates my core results, finding a small level of near statistical significance in model

five (a null result in the binary model). This seems to provide additional evidence that the inclusion

of neutral tweets biases my core results upwards, allowing me to better interpret the core results in
2See (Maynard & Greenwood, 2014) as an example of one attempt to address sarcasm detection in tweets.

36



Table A3: Multiclass Model Error Matrix:
Test Set Predictions

Predicted Predicted Predicted Total
Negative Neutral Positive

True Negative
15 6 2

23

True Neutral
31 89 49

169

True Positive
18 39 125

182

Total 61 134 176

Table A4: Difference-in-Difference Results: Three-Way Classifier

Dependent variable:

Positive Sentiment

(1) (2) (3) (4) (5)

After 0.064∗∗∗ 0.016∗∗∗ 0.055∗∗∗ 0.030∗∗∗ 0.023∗∗∗

(0.001) (0.001) (0.002) (0.002) (0.003)

Treated 0.001 0.002 −0.0004 0.007∗ 0.0002
(0.002) (0.002) (0.003) (0.004) (0.006)

Treated*After −0.019∗∗∗ −0.026∗∗∗ −0.018∗∗∗ −0.016∗∗∗ −0.010∗
(0.002) (0.002) (0.003) (0.004) (0.006)

GOP −0.164∗∗∗ −0.155∗∗∗
(0.001) (0.002)

Constant 0.649∗∗∗ 0.648∗∗∗ 0.669∗∗∗ 0.643∗∗∗ 0.646∗∗∗

(0.001) (0.001) (0.002) (0.002) (0.003)

Drop June 26? No Yes No No No
Race and Gender No No Yes No Yes

N 1,076,512 673,792 506,274 191,980 93,681
R2 0.004 0.001 0.011 0.062 0.060

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

37



a causal manner.

Appendix E: Border State Analysis

As the parallel trend assumption in the difference-in-difference estimator posits that the untreated

group is a good counter-factual to the treatment group, a potential criticism of my work is that I do

not restrict the group of untreated states. That is, I analyze data from all fifty states, when perhaps

states like California and New York do not make good counterfactuals to the states in the treatment

group.

While a matching methodology represents the most rigorous way to find valid counterfactuals

for users in my treated set, I do not have a rich enough set of independent variables to allow for

an accurate matching procedure. However, it is possible to use the geography of the treated states

to find a set of users that might represent a more valid counterfactual. Thus, I re-run my analysis

with a smaller set of untreated states, restricting the untreated group to only those states that share

a border with one or more treated states.3 By restricting the untreated states in this way, I am

more likely to select states with similar demographic characteristics, allowing me to further test

and validate my results. The result of this robustness check is found in Table A5, which replicates

the model specifications in the body of the paper.

In models one and two, the baseline models, I find a negative and statistically significant

Treated×After coefficient. Thus, even when restricting the untreated group to smaller set of states

more likely to share characteristics with the treated set, I continue to find evidence of a causal im-

pact. I also find this impact in model three, where I include demographic information. In models

four and five, where I include the partisan labels, I find a null result. This is partially due to the

upward bias of the binary classifier described in the previous appendix; with a higher probability

in coding neutral messages as positive, the results are biased upwards, away from my hypothesis.

To test the impact of neutral messages on the border states, I rerun the analysis with the three-

3The bordering states include: Oklahoma, Kansas, New Mexico, Colorado, Wyoming, Montana, Minnesota, Iowa,
Wisconsin, Illinois, Indiana, Alabama, Florida, South Carolina, North Carolina, Virginia, West Virginia, Pennsylvania.

38



Table A5: Border States with Binary Classifier

Dependent variable:

Positive Sentiment

(1) (2) (3) (4) (5)

After 0.015∗∗∗ −0.053∗∗∗ 0.023∗∗∗ −0.033∗∗∗ −0.037∗∗∗
(0.002) (0.003) (0.003) (0.005) (0.007)

Treated 0.007∗∗ 0.008∗∗ 0.015∗∗∗ −0.009 0.0004
(0.003) (0.003) (0.004) (0.007) (0.010)

Treated*After −0.013∗∗∗ −0.015∗∗∗ −0.022∗∗∗ 0.00001 0.005
(0.003) (0.004) (0.005) (0.007) (0.011)

GOP −0.212∗∗∗ −0.205∗∗∗
(0.003) (0.004)

Constant 0.800∗∗∗ 0.797∗∗∗ 0.813∗∗∗ 0.833∗∗∗ 0.807∗∗∗

(0.002) (0.002) (0.003) (0.005) (0.007)

Drop June 26? No Yes No No No
Race and Gender No No Yes No Yes

N 580,896 362,785 272,415 102,474 49,974
R2 0.0001 0.003 0.005 0.055 0.052

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

39



way classifier described in Appendix D: Neutral Tweets. In this model, I code the dependent

variable as 0 for negative tweets, 0.5 for neutral tweets, and 1 for positive tweets. I present the

results in Table A6.18

Table A6: Border States with Three-Way Classifier

Dependent variable:

Positive Sentiment

(1) (2) (3) (4) (5)

After 0.065∗∗∗ 0.015∗∗∗ 0.066∗∗∗ 0.026∗∗∗ 0.031∗∗∗

(0.002) (0.002) (0.003) (0.003) (0.005)

Treated 0.014∗∗∗ 0.015∗∗∗ 0.024∗∗∗ 0.008 0.024∗∗∗

(0.002) (0.003) (0.003) (0.005) (0.006)

Treated*After −0.021∗∗∗ −0.025∗∗∗ −0.028∗∗∗ −0.011∗∗ −0.019∗∗∗
(0.003) (0.003) (0.004) (0.005) (0.007)

Republican −0.175∗∗∗ −0.160∗∗∗
(0.002) (0.003)

Constant 0.637∗∗∗ 0.635∗∗∗ 0.647∗∗∗ 0.647∗∗∗ 0.621∗∗∗

(0.002) (0.002) (0.003) (0.003) (0.005)

Drop June 26? No Yes No No No
Race and Gender No No Yes No Yes

N 607,695 378,437 286,118 106,761 52,115
R2 0.003 0.0003 0.012 0.072 0.064

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Here, I find that all the results are extremely similar to Table A5, but with a negative and

significant Treated×After coefficient in models 4 and 5. This robustness check helps confirm the

results in the main section of my paper.

40



Appendix F: Checking for Bot Accounts

Detecting ‘bot’ accounts is the subject of many machine learning papers, with researchers focusing

on different techniques to determine whether messages are sent by humans or automated programs

(e.g. Wang, 2010; Jajodia et al., 2012; Ferrara, Varol, Davis, Menczer, & Flammini, 2016). Given

the discussions in the wake of the 2016 U.S. election regarding automated systems disseminating

“fake news” on social media platforms, it is important to consider whether or not my dataset is

filled with ‘bot’ accounts biasing my results.

To get a sense of how many likely bot accounts are present in my dataset, I pull a sample of

30,000 random users. To figure out how likely these 30,000 users are ‘bot’ accounts, I utilize

the Botometer publicly available API.4 The Botometer API interacts with the Twitter API,

pulling over one thousand features from the user’s Twitter profile to compare against a collection of

15,000 manually verified bot accounts and 16,000 verified human accounts (Varol, Ferrara, Davis,

Menczer, & Flammini, 2017). The classifier then runs an ensemble method using random forests,

AdaBoost, logistic regression, and decision trees to determine the likelihood a given user is human

or a ‘bot.’ The classifier outputs a likelihood from zero to one; the closer the bot score is to one, the

more likely the account is run by an automated program. I present the distribution of classification

scores from 30,000 randomly selected users in Figure A6.

Figure A6 demonstrates that the majority of users are likely human, with a mean bot score of

0.29 with a standard deviation of 0.14 across the sample. Only a small number of users are likely

bots, with only 9.2% of users with a bot score greater than 0.5 and 1.3% of users with a bot score

greater than 0.75. While important to note Botometer represents only one approach to detecting

bots, this preliminary analysis shows little evidence that bots drive my results.

4https://botometer.iuni.iu.edu

41



Figure A6: Histogram of Twitter Bot Likelihood

0

1000

2000

3000

0.00 0.25 0.50 0.75 1.00

Bot Score

C
ou

nt

42



References

Benoit, K., & Nulty, P. (2016). quanteda: Quantitative analysis of textual data [Computer software

manual]. Retrieved from http://github.com/kbenoit/quanteda (R package

version 0.9.1-11)

Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots.

Communications of the ACM, 59(7), 96–104.

Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content

analysis methods for political texts. Political Analysis, 21, 267-297.

Jajodia, S., Wang, H., Gianvecchio, S., & Chu, Z. (2012, 11). Detecting automation of twitter

accounts: Are you a human, bot, or cyborg? IEEE Transactions on Dependable and Secure

Computing, 9, 811-824.

Kuhn, M. (2008). Building predictive models in r using the caret pack-

age. Journal of Statistical Software, Articles, 28(5), 1–26. Retrieved from

https://www.jstatsoft.org/v028/i05 doi: 10.18637/jss.v028.i05

Maynard, D., & Greenwood, M. (2014, 01). Who cares about sarcastic tweets? investigating the

impact of sarcasm on sentiment analysis. Proceedings of LREC, 4238-4243.

Potts, C. (2011). Sentiment symposium tutorial [Computer software manual]. Retrieved from

http://sentiment.christopherpotts.net/index.html

Varol, O., Ferrara, E., Davis, C. A., Menczer, F., & Flammini, A. (2017). Online human-bot

interactions: Detection, estimation, and characterization. arXiv:1703.03107.

Wang, A. H. (2010). Detecting spam bots in online social networking sites: A machine learning

approach. In Ifip annual conference on data and applications security and privacy (pp.

335–342).

4


