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An inherently infinite-dimensional quantum
correlation
Andrea Coladangelo 1✉ & Jalex Stark1

Bell’s theorem, a landmark result in the foundations of physics, establishes that quantum

mechanics is a non-local theory. It asserts, in particular, that two spatially separated, but

entangled, quantum systems can be correlated in a way that cannot be mimicked by classical

systems. A direct operational consequence of Bell’s theorem is the existence of statistical

tests which can detect the presence of entanglement. Remarkably, certain correlations not

only witness entanglement, but they give quantitative bounds on the minimum dimension of

quantum systems attaining them. In this work, we show that there exists a correlation which

is not attainable by quantum systems of any arbitrary finite dimension, but is attained

exclusively by infinite-dimensional quantum systems (such as infinite-level systems arising

from quantum harmonic oscillators). This answers the long-standing open question about the

existence of a finite correlation witnessing infinite entanglement.
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Consider two spatially isolated quantum systems. For the
sake of exposition, imagine that the first system is held by
“Alice”, and the second by “Bob”. Consider a scenario in

which an experimentalist is testing the two systems by choosing
measurement settings and recording measurement outcomes. We
will think of the experimentalist as a “referee” who sends classical
questions to Alice and Bob, and receives answers from each of
them. The behaviour of Alice and Bob is captured by the joint
distribution of their answers as a function of their questions. We
refer to this data as a bipartite correlation. It is natural to ask what
can be learnt from a correlation, without assuming anything other
than the spatial separation of Alice and Bob. Some correlations
can be realized by classical parties (i.e. without any quantum
entanglement, but possibly using a shared classical resource such
as identical uniformly distributed strings). However, Bell’s theo-
rem shows that there exist correlations which require entangle-
ment to be realized1. The most well-studied example of this
phenomenon is the CHSH game2. In the CHSH game, the referee
asks questions x, y ∈ {0, 1} to Alice and Bob respectively, who
reply with answers a, b ∈ {0, 1}. They win if a ⊕ b= xy. It is easy
to see that, if the questions are sampled uniformly at random, the
optimal winning probability without entanglement is 3/4. How-
ever, by sharing a maximally entangled pair of qubits and per-
forming the appropriate measurements they can win with
probability cos2 π

8 � 0:85. From an operational perspective, such a
game gives a statistical test that can detect the presence of
entanglement: any pair of systems which can win the CHSH game
with probability >3/4 must possess entanglement. It is natural to
wonder if anything stronger can be inferred solely from the
correlation of two systems. Remarkably, certain correlations not
only witness the presence of entanglement, but they provide
quantitative bounds on the minimum dimension of quantum
systems that attain them. Such correlations are referred to as
dimension witnesses3, and have important applications in
quantum cryptography, where they are used to certify that
potentially untrusted quantum systems possess high-dimensional
entanglement4–8. In this work, we push even further the inves-
tigation of what can be learnt from a correlation by addressing the
question of whether there exists a correlation which witnesses
infinite-dimensional entanglement. If it existed, one could view
such correlation as a finite classical fingerprint of an infinite-
dimensional quantum state.

Beyond potential applications to dimension certification, this
question has fundamental importance within the theory of
entanglement. From a foundational perspective, one of the most
natural questions one can ask about a correlation is “in which
models of physics can the correlation be realized?” The example
of the CHSH game shows that while certain correlations can be
realized in classical physics, others require quantum resources.
Taking this a step further, different models of quantum
mechanics allow Alice and Bob to achieve different sets of cor-
relations, and characterizing the relationship between these sets is
a long-standing problem, with implications on the way we model
entanglement, and quantum mechanical resources more gen-
erally, and with potential repercussions on practical experiments
(see the “Discussion” section).

We say that a correlation is in the set of quantum correlations
Cq if there is a state ψj i 2 HA �HB, where HA and HB are finite-
dimensional Hilbert spaces, and projective measurements

Aa
x

� �
; Bb

y

n o
on HA and HB respectively, so that

pða; bjx; yÞ ¼ ψjAa
x � Bb

y jψ
D E

; ð1Þ
where p(a, b∣x, y) is the probability that Alice answers a and Bob
answers b, given that Alice was asked question x and Bob was
asked question y. We will refer collectively to the joint state of

Alice and Bob and their measurements as their quantum strategy.
In quantum computing, this is the typical way of modeling spa-
tially separated quantum systems: as finite-dimensional Hilbert
spaces in tensor product. If one allows the quantum systems to be
infinite-dimensional (one can think for example of two infinite-
level systems arising from quantum harmonic oscillators), the
resulting set is denoted as Cqs. Notice that, of course, Cq�Cqs. The
question of whether this inclusion is strict, i.e., whether the two
sets are equal or not, was first posed by Tsirelson in 19939

(amongst other open questions), and has been unresolved
since then.

In this work, we settle this long-standing open question by
asserting that Cq ≠ Cqs. In particular, we describe an explicit
correlation on five questions per party and three answers per
party, which can be attained exactly in infinite dimensions, and
we show that it cannot be attained in finite dimensions. In other
words, we provide an example of an inherently infinite-
dimensional quantum correlation. What is particularly striking
about this correlation is that the corresponding Bell scenario is
finite (it involves a finite number of measurement settings and
outcomes), but nonetheless the correlation is exclusively achieved
by infinite-dimensional quantum systems. Our correlation exhi-
bits, on slightly larger question and answer sets, a behaviour that
was conjectured by Pál and Vértesi10 to be possessed by the I3322
Bell inequality11. While Pál and Vértesi gave strong numerical
evidence for this behaviour10, an analytical proof has remained
elusive.

In a related line of work, Slofstra12, and the subsequent13–16,
provide non-local games which require arbitrarily high-
dimensional strategies to attain arbitrarily close to optimal win-
ning probabilities. However, for each of these games, any
sequence of ideal strategies approaching the optimal winning
probability does not have a well-defined limit, and the optimal
correlation cannot be attained exactly (not even in infinite
dimensions). Hence, the optimal correlations for such games
separate Cqs from its closure, known as Cqa, but do not shed any
light on the relationship between Cq and Cqs.

Results
An overview of the proof of separation. We start with an
overview of the structure of the proof of our main result. To
explain the argument, we start by giving an idealized version that
runs against a barrier, and then talk about how to avoid the
barrier.

Inspired by techniques from the field of device-independent
self-testing (in particular refs. 17,18), which studies the certifica-
tion of quantum states and measurements based solely on the
observed correlations (see for example19 for a recent review on
the topic), we will design a correlation p* which guarantees the
following two structural properties on the state attaining it: there
is a local unitary Φ=ΦA ⊗ ΦB and an auxiliary state auxj i such
that

Φð ψj iÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ð 00j i þ α 11j iÞ � auxj i: ð2Þ

Intuitively, the existence of such a local unitary says that the
quantum system shared by Alice and Bob can be decomposed, up
to local changes of basis, into a pair of entangled qubits (i.e. two-
level systems) tensored with a (potentially entangled) state on an
auxiliary system (of a priori unknown dimension). Second, there
is a local unitary Φ0 and an auxiliary state aux0j i such that

Φ0ð ψj iÞ ¼ ϕj i � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ð 00j i þ α 11j iÞ � aux0j i; ð3Þ
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where ⊕ denotes a direct sum (and is meant to emphasize that
the two summands have orthogonal supports).

Now, imagine we knew that the state ϕj i was separable, i.e., has
Schmidt rank 1. Then, suppose towards a contradiction that ψj i
were finite-dimensional. Since Schmidt coefficients are preserved
under local unitaries, from the first condition we see that the
Schmidt rank of the state is even, while from the second condition
we see that the Schmidt rank of the state is odd; contradiction.

In the above, the “magic” happens when we assume that ϕj i is
separable. In general, any correlation that is attained using a
separable ϕj i could also be attained by tensoring with extra
entanglement and not making use of it in the measurements, so
we will not be able to assume that ϕj i is separable. A different way
of arguing about the set of Schmidt coefficients of ψj i is required.
In our main argument, our correlation p* will still guarantee that
ψj i decomposes into two ways as in Eqs. (2) and (3), except that
ϕj i is not necessarily separable. In place of the odd/even
constraints, we perform a more fine-grained analysis of the self-
testing guarantees enforced by our correlation p*. This allows us
to obtain a stricter characterization of the set of Schmidt
coefficients of the state ψj i, and of how the coefficients in Eqs.
(2) and (3) relate to each other. In particular, we show that the
decompositions Eqs. (2) and (3) partition the set of Schmidt
coefficients of ψj i into two different ways so that the set of
nonzero Schmidt coefficients is in 1-to-1 correspondence with a
proper subset of itself. Of course, this can only happen if the set of
Schmidt coefficients is infinite.

Correlations and basic self-tests. Given sets X ;Y, A, B, a
(bipartite) correlation is a collection fpða; bjx; yÞ : a 2 A; b 2
Bgðx;yÞ2 X ´Y, where each p( ⋅ , ⋅ ∣x, y) is a probability distibution
over A ´B. We interpret the correlation as describing the out-
comes of a measurement scenario with two parties, say Alice and
Bob. p(a, b∣x, y) is the probability that Alice outputs a and Bob
outputs b, given that Alice used measurement setting x and Bob
used setting y. X and Y are referred to as the question sets, while
A and B are referred to as as the answer sets.

Given question sets and answer sets X , Y, A, B, a quantum
strategy is specified by Hilbert spaces HA and HB, a pure state
ψj i 2 HA �HB, and projective measurements fΠa

Ax
g
a
on HA,

fΠb
By
g
b

on HB, for x 2 X ; y 2 Y. We say that it induces

correlation p if, for all a 2 A; b 2 B; x 2 X ; y 2 Y.
pða; bjx; yÞ ¼ ψjΠa

Ax
� Πb

By
jψ

D E
ð4Þ

Certain correlations have the special property that they are
attained by a unique quantum strategy, up to local isometries. In
this case, we say that the correlation “self-tests” the quantum
strategy.

We introduce the tilted CHSH inequality20, a building block
for the separating correlation that appears in this work. First, we
recall the more well-known CHSH inequality2. It states that for
binary observables A0, A1 on Hilbert space HA and binary
observables B0, B1 on Hilbert space HB together with a product
state ϕj i ¼ ϕA

�� �� ϕB
�� �

, we have

hϕjA0B0 þ A0B1 þ A1B0 � A1B1jϕi≤ 2; ð5Þ
where the maximum is achieved (for example setting all
observables to identity). However, if instead of the product state
ϕj i we allow an entangled state ψj i, then the right-hand side of
the inequality increases to 2

ffiffiffi
2

p
. This maximum requires a

maximally entangled pair of qubits (EPR pair) to attain. In other
words, a correlation attaining the maximum self tests an EPR
pair. In this work, we would like to use an inequality that self tests
a nonmaximally entangled state to attain the maximum; this is

the tilted CHSH inequality. Given a real parameter β ∈ [0, 2], for
a product state ϕj i ¼ ϕA

�� �� ϕB
�� �

,

hϕjβA0 þ A0B0 þ A0B1 þ A1B0 � A1B1jϕi≤ 2þ β: ð6Þ
For entangled ψj i, we have instead that

hψjβA0 þ A0B0 þ A0B1 þ A1B0 � A1B1jψi≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 2β2

q
: ð7Þ

It is known21,22 that the RHS of Eq. (7) is attained by a unique
strategy, up to local isometries, in which Alice and Bob share the
tilted EPR pair cos θð 00j i þ α 11j iÞ, where α ¼ tan θ and

sin 2θ ¼
ffiffiffiffiffiffiffiffiffi
4� β2

4þ β2

q
.

Since in the present work we are primarily concerned with the
ratio of the coefficients of the ideal state, we refer to the
correlation attaining the RHS of Eq. (7) as the ideal tilted CHSH
correlation for ratio α.

A convenient way to describe correlations is through correla-
tion tables. A correlation p on X , Y, A, B is completely specified
by correlation tables Txy for x 2 X ; y 2 Y, with entries
Txy(a, b) = p(a, b∣x, y). See Table 1.

As mentioned earlier, we will make use of the ideal tilted
CHSH correlation as a building block for our separating
correlation. For x, y ∈ {0, 1} and α ∈ (0, 1), we denote by
CHSHα

x;y the correlation table on question x, y for the ideal tilted
CHSH correlation for ratio α.

The separating correlation. In this section, we describe the
correlation p* that separates Cq and Cqs. The correlation is on
question sets X ¼ f0; 1; 2; 3g and Y ¼ f0; 1; 2; 3; 4g and answer
sets A ¼ B ¼ f0; 1; 2g. In this section, we introduce p* by
describing the ideal infinite-dimensional strategy that attains it.
Our description here is at a high level, and we refer the reader to
Supplementary Note 3 for the full detail. In the following section,
we will prove that no finite-dimensional strategy attains p*.

Alice and Bob start with the infinite-dimensional bipartite
entangled state

Ψj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p X1
i¼0

αi iij i ; ð8Þ

which may be thought of as an entangled state of two infinite-
level systems.

They measure their half of Ψj i as follows:
(i) For questions x, y ∈ {0, 1}, they each decompose their

register into a direct sum of 2 × 2 blocks and perform the
ideal tilted CHSH measurements for ratio α on each block.

(ii) For x, y ∈ {2, 3}, they do the same, but with a block
structure which is shifted forward by one standard basis
element. To be more explicit, in (i) the 2 × 2 blocks are
spanned by pairs of basis elements of the form
ð 2mj i; 2mþ 1j iÞ, while here they are spanned by pairs of
the form ð 2mþ 1j i; 2mþ 2j iÞ. Notice that this is possible
because the ratio between any two consecutive coefficients
is α.

(iii) In addition, Bob has a fifth question (y= 4) on which he
performs the same measurement as Alice performs on
question x= 0.

Table 1 The correlation table on question (x, y) of a
correlation on answer sets A ¼ B ¼ f0; 1g.

a\b 0 1

0 p(0, 0∣x, y) p(0, 1∣x, y)
1 p(1, 0∣x, y) p(1, 1∣x, y)
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Now, consider a state ψj i and some measurements that
reproduce the correlations above. Intuitively, (i) forces ψj i to be
(up to a local isometry) of the form

ψj i � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ð 00j i þ α 11j iÞ � auxj i; ð9Þ

while (ii) forces ψj i to be of the form

ψj i � ϕj i � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ð 00j i þ α 11j iÞ � aux0j i; ð10Þ

for some state ϕj i. The correlations in (iii) serve the purpose of
relating the two decompositions Eqs. (9) and (10). This allows us,
for example, to argue that the set of Schmidt coefficients from the
term α 11j i � auxj i in Eq. (9) is exactly equal to the set of Schmidt
coefficients from the term 00j i � aux0j i in Eq. (10).

The ideal state and measurements defining p* specify
correlation tables Txy for all pairs of questions x ∈ {0, 1, 2, 3},
y ∈ {0, 1, 2, 3, 4}. We explicitly report some of them, as we will
later make use of the relations that these impose on the
measurement projectors. For ease of notation let C ¼ 1

1�α2 in
the tables below (note C > 1).

Formally, our main result is the following.

Theorem 1. The correlation p* described above is not attained by
any finite-dimensional strategy.

Since, by definition, p* is attained by the infinite-dimensional
strategy above, this implies:

Corollary 1. Cq ≠ Cqs.
The next section illustrates the main ideas in the proof of

Theorem 1. We will first infer necessary properties of any state
and measurements which attain the ideal correlation p*. Then, we
characterize the set of Schmidt coefficients of such a state, and
conclude that the set must be countably infinite.

Forcing infinitely many Schmidt coefficients. For the rest of
this section, let ð ψj i 2 HA �HB; fΠa

Ax
g; fΠb

By
gÞ be a strategy

attaining the ideal correlation p* from section “The
separating correlation”. As we have mentioned earlier, the
structure of the ideal correlation p* imposes a very special form
on the state ψj i.

More precisely, the (weighted) ideal tilted CHSH correlations
contained in Tables 2 and 3 imply, by the self-testing properties of
the tilted CHSH inequality combined with a technical lemma
about direct sums of correlations (we refer to Supplementary
Note 4 for full details), that there exist local isometries Φ, Φ0 and
(normalized) auxiliary states auxj i; aux0j i; aux00j i such that

ðiÞ ΦðjψiÞ � ðj00i þ αj11iÞ � jauxi
ðiiÞ Φ0ðjψiÞ � j22i � jaux00i
� ηðj11i þ αj00iÞ � jaux0i

where C ¼ 1
1 � α2 and η ¼

ffiffiffiffiffiffiffiffiffi
C � 1

pffiffiffiffiffiffiffiffiffiffi
1 þ α2

p .

As we have argued in the overview of section “An overview of
the proof of separation”, the two decompositions (i) and (ii) are
not enough to carry out an argument based solely on the parity of
the set of Schmidt coefficients in (i) and (ii). This is because
aux00j i need not be a separable state.
We overcome this difficulty through Bob’s fifth question (y=

4). The correlation Tables 4 and 5, involving Bob’s fifth question,
allow us to relate the Schmidt coefficients of (i) and (ii). More
precisely, let Φ, Φ0 and auxj i, aux0j i, aux00j i be as in (i) and (ii).
Recall that the set of Schmidt coefficients of a state is preserved
under local isometries. What we obtain is that the Schmidt
coefficients from the even and odd terms respectively in (i) and
(ii) must match up: the multiset of Schmidt coefficients from the
00j i � auxj i term in (i) (call this S0) equals the union of the
multisets of Schmidt coefficients from the terms 22j i � aux00j i
(call this S2) and ηα 00j i � aux0j i (which is hence S0⧹S2) in (ii);
the multiset of Schmidt coefficients from the α 11j i � auxj i term
in (i) (call this S1) equals the multiset from the term η 11j i �
aux0j i in (ii) (which is hence also S1). For a detailed proof of such
relations we refer to Lemma 10 in Supplementary Note 4.

The proof that the set of Schmidt coefficients of ψj i is
countably infinite is completed by the following observations.

First notice that the set S0 is in bijection with S1, where the
bijection is f: S0 → S1 such that f(λ) = αλ. Second, we also have
that S1 is in bijection with S0⧹S2 where the bijection is
g: S1 → S0⧹S2 such that g(λ)= αλ. Finally, composing the maps
f and g yields a bijection between S0 and S0⧹S2. Since S2 is
nonempty, this implies that S0 must be infinite.

Discussion
Understanding the relationship between known models of
entanglement is a goal of fundamental theoretical importance,
with potential repercussions on practical experiments.

Recent work has seen important advances in this direction,
with a sequence of two breakthrough works by Slofstra23,24

showing first that the tensor product model (commonly adopted
in quantum information) and the commuting-operator model
(commonly adopted in algebraic quantum field theory) give rise
to different sets of correlations, and later refining this to show
that the set of correlations in the tensor product model is not
equal to its closure.

Table 2 Txy for x, y ∈ {0, 1}.

a\b 0 1 2

0 CHSHα
x;y 0

1 0
2 0 0 0

The top-left 2 × 2 block contains ideal tilted CHSH correlations for questions x, y.

Table 3 Txy for x, y ∈ {2, 3}.

a\b 1 0 2

1 C�1
C � CHSHα

x;y 0
0 0
2 0 0 1

C

Let �x;�y be x, y modulo 2. The top-left 2 × 2 block contains the ideal tilted CHSH correlation table
for questions �x;�y, weighted by C�1

C (notice that we have flipped the 0 and 1 labels in the rows and
columns).

Table 4 Txy for x= 0, y= 4.

a\b 0 1 2

0 1
C � 1

1 � α4 0 0
1 0 1

C � α2

1 � α4 0
2 0 0 0
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Such works have also shown that answering foundational ques-
tions about the theory of entanglement is not only of theoretical
significance, but brings forward important insights that result in
potential applications in quantum information protocols, for
example in the certification of high-dimensional entanglement16,25,26

or high-dimensional states and measurements27.
The work of Slofstra has left two main open questions. The first

asks whether the commuting-operator model is stricly more
powerful than the closure of the tensor product model. This
question is known to be equivalent to Connes’ embedding con-
jecture28, a major-open problem in the mathematical field of
operator algebras. The second asks whether infinite-dimensional
quantum correlations in the tensor product model are strictly
more powerful than their finite-dimensional counterpart. In this
work, we answer the latter question in the affirmative, by giving
the first example of an inherently infinite-dimensional quantum
correlation. This is a correlation on just five questions per party,
and three answers per party, which is only attained exactly by
infinite-dimensional systems.

At first sight it appears that our correlation provides a test that
can tell apart an infinite-dimensional system from a finite-
dimensional one, and hence, in principle, a test that can assert
whether nature allows the existence of systems with infinitely many
degrees of freedom. However, this is not the case: although our
correlation can only be exactly attained by two-entangled infinite-
dimensional systems, for example two-entangled systems with
infinite energy levels, it can be approximated arbitrarily well by
systems of high enough, but finite, dimension, or in other words, by
projecting onto subspaces of bounded energy. Thus, no experiment
(which can only estimate statistics to a finite precision) can tell the
two cases apart. This is not a shortcoming of our separating cor-
relation, but rather a fundamental limitation that stems from the
fact that the sets Cq and Cqs possess the same closure29. It is striking
that we observe such a fundamental theoretical difference between
finite and infinite-dimensional models of entanglement, yet we are
inherently limited in our ability to distinguish the two models by
the finiteness of the data we can gather.

A natural direction for future work is to investigate what are
the smallest question and answer set sizes that witness such
separation. The (3, 3, 2, 2) scenario is the simplest one that is
suspected to separate Cq and Cqs. Numerical evidence about the
I3322 inequality10 suggests that the infinite-dimensional ideal
measurements achieving the conjectured maximal violation
have a block-diagonal form, with similarities to the form of our
ideal measurements. This suggests that the study of this
inequality is potentially amenable to ideas and techniques from
our work.

Received: 23 November 2019; Accepted: 8 June 2020;
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Table 5 Txy for x= 2, y= 4.

a\b 0 1 2

0 1
C � ð 1

1 � α4 � 1Þ 0 0
1 0 1

C � α2

1 � α4 0
2 1

C 0 0
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