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ABSTRACT

We infer the number of planets-per-star as a function of orbital period and planet size using Kepler

archival data products with updated stellar properties from theGaiaData Release 2. Using hierarchical

Bayesian modeling and Hamiltonian Monte Carlo, we incorporate planet radius uncertainties into an

inhomogeneous Poisson point process model. We demonstrate that this model captures the general

features of the outcome of the planet formation process around GK stars, and provides an infrastructure

to use the Kepler results to constrain analytic planet distribution models. We report an increased

mean and variance in the marginal posterior distributions for the number of planets per GK star

when including planet radius measurement uncertainties. We estimate the number of planets-per-GK

star between 0.75 and 2.5 R⊕ and 50 to 300 day orbital periods to have a 68% credible interval of

0.49 to 0.77 and a posterior mean of 0.63. This posterior has a smaller mean and a larger variance

than the occurrence rate calculated in this work and in Burke et al. (2015) for the same parameter

space using the Q1 −Q16 (previous Kepler planet candidate and stellar catalog), and a larger mean

and variance than when using the DR25 (latest Kepler planet candidate and stellar catalog). We

find that the accuracy and precision of our hierarchical Bayesian model posterior distributions are less

sensitive to the total number of planets in the sample, and more so on the characteristics of the catalog

completeness and reliability and the span of the planet parameter space.
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1. INTRODUCTION
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NASA’s Kepler Mission was designed to yield an en-

semble of planetary systems amenable to statistical anal-

ysis (Borucki et al. 2010; Koch et al. 2010; Jenkins

et al. 2010). During its primary phase, Kepler stared

nearly continuously at a single field for 4 years, monitor-

ing approximately 190,000 stars that are mostly on the

main-sequence (Batalha et al. 2010; Brown et al. 2011).

Kepler’s goal was to look for signs of transiting exoplan-

ets and ultimately determine the frequency of temper-

ate, Earth-size planets around Sun-like stars. This pro-

cess led to a survey catalog of planet candidates with

well-characterized completeness and reliability (Chris-

tiansen 2017; Burke & Catanzarite 2017; Coughlin 2017;

Mullally 2017; Bryson & Morton 2017). Furthermore,

Burke et al. (2015) investigated systematics in the de-

rived occurrence rates caused by assumptions about the

pipeline sensitivity, characterized by Christiansen et al.

(2015). The characterization of the Kepler pipeline sen-

sitivity is critical to robust occurrence rate studies, and

future work that utilizes the results from Kepler.

With approximately 2327 confirmed planets and 2244

planet candidates from the Kepler Mission (Borucki

et al. 2011a,b; Batalha et al. 2013; Batalha 2014; Burke

et al. 2014; Rowe et al. 2015; Mullally et al. 2015;

Borucki 2016), scientists are working to incorporate

planet formation theories that can explain both the con-

figuration of our solar system and planetary systems

that can be very different from our own. For example,

systems with dwarf stars and bright giants (Dressing

& Charbonneau 2015; Silva Aguirre et al. 2017), single

and binary host stars (Doyle et al. 2011; Welsh et al.

2012; Orosz et al. 2012a,b; Welsh et al. 2015), the num-

ber of planets in a system (Lissauer et al. 2014; Fab-

rycky et al. 2014), planet mass and size (Weiss & Marcy

2014; Rogers 2015; Wolfgang et al. 2016; Carrera et al.

2018), and orbital characteristics Van Eylen & Albrecht

(2015); Shabram et al. (2016). However, large uncertain-

ties in stellar properties translate into large uncertain-

ties in individual planet properties (Huber et al. 2014;

Berger et al. 2018; Fulton & Petigura 2018), and can

limit studies attempting to characterize the exoplanet

population. Despite the large uncertainties, we are able

to develop generative models (i.e., the statistical pro-

cess that describes how the data are generated) that

handle large measurement uncertainty and highly corre-

lated uncertainty of some planet candidate parameters.

Additionally, sources of bias can be naturally incorpo-

rated into statistically robust occurrence rate analyses

(Youdin 2011; Foreman-Mackey et al. 2014; Burke et al.

2015; Hsu et al. 2018, 2019). These population analyses

are becoming more tractable, enabling a better under-

standing of the physical and orbital properties of exo-

planet systems on a broad scale.

Standard occurrence rate studies have largely ignored

the radius uncertainty contribution from the planet’s

host star (Catanzarite & Shao 2011; Howard et al. 2012;

Dong & Zhu 2013; Petigura et al. 2013b,a; Farr et al.

2014; Dressing & Charbonneau 2013; Silburt et al. 2015;

Dressing & Charbonneau 2015; Mulders et al. 2015; Farr

et al. 2015; Fulton et al. 2017; Van Eylen et al. 2018;

Mulders et al. 2018, 2019). The Gaia data release 2 has

now provided more precise stellar measurement uncer-

tainties (Gaia Collaboration et al. 2018; Berger et al.

2018). Updates to the stellar properties in the Kepler

sample now enable more robust hierarchical Bayesian

occurrence rate posterior distributions. The contribu-

tion to occurrence rate estimates from uncertainty in

planet radius can be included in occurrence rate esti-

mates by using the uncertainty in the measured planet-

to-star radius ratio from transit light curve modeling.

To get the planet radius, the planet-to-star radius ra-

tio is simply multiplied by the assumed host star radius

point estimate. This has been done in Hsu et al. (2018),

an approximate Bayesian computation occurrence rate

analysis for GK stars. Foreman-Mackey et al. (2014)

consider the contribution to the planet radius uncertain-

ties from the measured planet-to-star radius ratio and

stellar radius uncertainties in their occurrence rate anal-

ysis for GK stars. However, they use a non-parametric

Bayesian method that makes it difficult to interpret pop-

ulation level parameters for planet formation theories.

Hsu et al. (2019) use approximate Bayesian computa-

tion to include the host star radius uncertainties and

planet-to-star radius ratio uncertainties by incorporat-

ing additional Kepler data products to accurately char-

acterize the the efficiency of planets being recognized as

a ‘threshold crossing events’ (TCE).

Furthermore, Mulders et al. (2018) and Mulders et al.

(2019) use a forward model with the latest Kepler data

products to characterize planetary systems around stars

(in addition to the number of planets per stellar type),

and do not include planet radii measurement uncertain-

ties. Burke et al. (2015) characterize terrestrial planet

occurrence rates for the Kepler GK dwarf sample, also

without the inclusion of planet radii measurement un-

certainties. Fulton & Petigura (2018) have investigated

the stellar mass dependence of the planet radius gap us-

ing Gaia updated stellar mass, stellar radius and planet

sizes for the Kepler sample. However, Fulton & Pe-

tigura (2018) do not include the impact of planet radius

uncertainties, accounting for survey completeness in an

inverse detection efficiency method, a method shown to
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bias occurrence rates towards smaller values in Foreman-

Mackey et al. (2014); Hsu et al. (2018).

Including measurement uncertainties in the occur-

rence rate calculations is impactful for many reasons.

When using the Kepler catalog of planet candidates to

constrain hierarchical Bayesian models, we are able to

marginalize over noise when reporting posteriors of the

number of planets-per-star. Including the measurement

uncertainty is necessary to avoid a bias due to only using

a histogram of mean values to infer population distribu-

tions. Furthermore, the inclusion of measurement uncer-

tainties can allow better exploration of population level

parameters that describe planet formation relations.

In this work, we use Hamiltonian Monte Carlo (HMC)

(Neal 2012; Carpenter et al. 2017) to perform hierar-

chical Bayesian model calculations. The Hamiltonian

Monte Carlo method is the state-of-the-art for sampling

hierarchical Bayesian models. HMC uses a kinetic en-

ergy term, taking advantage of the gradient of the target

density to efficiently sample from high dimensional pos-

teriors. For example, HMC can handle the inclusion of

measurement uncertainties and many population-level

parameters, for likelihood-based continuous distribution

models. Furthermore, HMC provides advanced diag-

nostics to look for sources of numerical bias and other

model pathologies characteristic to using MCMC meth-

ods to perform hierarchical Bayesian model calculations.

Thus, Hamiltonian Monte Carlo is a powerful sampling

method and very applicable for this work.

Here, we employ a hierarchical Bayesian model in con-

junction with a Hamiltonian Monte Carlo sampler to

infer planet occurrence rates while including the contri-

bution from the planet host star radius uncertainty into

the uncertainties in planet size. We demonstrate the use

of standard and advanced diagnostics to assess the appli-

cation of Hamiltonian Monte Carlo for performing our

hierarchical Bayesian model calculations. We use this

statistical framework to demonstrate the impact of sub-

tle differences in host star categorization and small dif-

ferences in selected planet radii and orbital period across

varied completeness and reliability parameter spaces.

In §2, we describe the observations and parameter

space used in our investigations. In §3 we explain the

statistical framework for this work. In §4 we explore the

sensitivity of our occurrence rate methodology to small

changes in the selected stars, reliability and complete-

ness, the number of planets, and uncertainties in planets

size. In §5 we discuss our experimental design and fu-

ture research. In §6 we summarize the conclusions of

this work.

2. OBSERVATIONS

Table 1. Summary of GK Star Classifications

stars (GK cuts) ↑ stars (GK cuts) ↓

Teff : 4200− 6100K Teff : 3900− 6000K

R∗ < 1.15 R∗ < 1.35

log g > 4.0 log g < 3.8

Note—“GK cuts ↑” are similar to the stellar
parameter cuts used in the occurrence rate
studies for the Q1−Q16 Kepler planet can-
didate catalog release (Mullally et al. 2016).
“GK cuts ↓” are similar to the stellar pa-
rameter selection used in the SAG 13 analysis
to compare occurrence rates across different
teams.

In §2.1 through §2.3, we describe the various stellar

cuts, planet parameter cuts, and the detection model

used in this work. We use the cuts described below

to explore the sensitivity of posterior estimates of oc-

currence rates from our statistical framework to subtle

changes in the selected stars, selected planet parame-

ters, the inclusion of radius measurement uncertainties,

and updated stellar properties from Gaia.

2.1. Stars

We apply our model to three stellar catalogs with two

sets of stellar cuts. A summary of the stellar cuts can

be found in Table 1 and a summary of the catalogs used

can be found in Table 2. The first set of stellar cuts

(labeled “GK cuts ↑”) describes stellar cuts similar to

those used in Burke et al. (2015) and Hsu et al. (2018)

using the Q1−Q16 catalog release (Mullally et al. 2016).

The up arrow indicates that this selection of GK stars

has more stars compared to our second definition of GK

stars, which we label “GK cuts ↓”. This second case

contains less stars, and is similar to the cuts used in the

NASA Exoplanet Program’s Study Analysis Group 131

(see Table 2). We choose these two selections to inves-

tigate how sensitive our results are to relatively small

differences in the definition of the stellar category of in-

terest, and to explore how much power the data has to

explore trends in stellar properties while using the state-

of-the-art Kepler planet and star catalogs.

Before selecting the GK stars to be analyzed with

the updated Gaia stellar properties, we start with a

selection of FGK stars from the Gaia Data Release

2 (van Leeuwen et al. 2018; Gaia Collaboration et al.

1 https://exoplanets.nasa.gov/system/
internal resources/details/original/680 SAG13 closeout 8.3.17.pdf

https://exoplanets.nasa.gov/system/internal_resources/details/original/680_SAG13_closeout_8.3.17.pdf
https://exoplanets.nasa.gov/system/internal_resources/details/original/680_SAG13_closeout_8.3.17.pdf
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2018) cross-matched to the Kepler DR25 stellar cata-

logs (Mathur et al. 2017). Initially, the cross-match be-

tween the Kepler and Gaia catalogs is based on position

alone. For some Kepler targets, there are multiple Gaia

targets that match positionally. To uniquely identify the

source, we computed a delta magnitude and looked at

its distribution. We use various quality cuts that fur-

ther reduce our crossmatched sample. The motivation

for these cuts is to choose a sample of stars where we are

reasonably confident that each is near the FGK main

sequence and is less likely to be impacted by sources of

dilution. Both a maximum parallax uncertainty (10%)

and the GAIA data quality flags are chosen so as to

provide a cleaner sample. For instance, binary stellar

companions can contribute to excess scatter about the

astrometric model. We note that no extinction correc-

tions were applied. This results in a set of 78,005 Kepler

target stars2. These selection criteria are applied in the

following order:

• First, we remove all duplicate Gaia source ID rows

(these duplicates also share Kepler IDs).

• We make a cut where the difference for all cross-

matched targets between the Gaia G mean magni-

tude and the Kepler magnitude (with bandpasses

that have similar overall shape, range, and me-

dian) is within 1.5-sigma of the median. We chose

this threshold for (Gaia G)-(Kepler Mag) that

prevents matching more than one Gaia target to

our Kepler targets, thus preventing us from using

stellar properties associated with a background or

foreground star rather than the intended Kepler

target. We address the slight difference between

the Gaia G and Kepler by using the median of

the differences.

• Following Evans (2018) we select on Astromet-

ric Goodness of Fit in the Along-Scan direction

(GOF AL) of less than 20, and on Astrometric

Excess Noise of less than 5, to exclude potential

poorly-resolved binaries or other problematic tar-

gets.

• We include parallax quality cuts using the pro-

cessing flag outputs of the module that calculates

astrophysical parameters for the Gaia target stars.

2 A table listing the 78,005 targets with their KIC and Gaia
ID’s, parameters and parameter uncertainties can be found at:
github.com/mshabram/PyStan Kepler
Exoplanet Populations/blob/master/Sensitivity-Analyses-
of-Exoplanet-Occurrence-Rates-from-Kepler-and-
Gaia/Data/q1q17 dr25 gaia fgk.csv.

We selected only targets for which the Priam pro-

cessing flags (A and B) are zero. This selects

strictly positive parallax values, colors close to the

standard locus, and parallax error less than 0.05

mas (Lindegren et al. 2018; Andrae et al. 2018).

We note that the sky position of the target stars

does not change much over the full Kepler field.

We assume that occurrence rates don’t depend on

a star’s position in the galaxy, so the dependence

of parallax error on sky position does not introduce

significant bias. This would become important for

assessing occurrence rates between disk and halo

stars.

• Sources with Kepler magnitude less than 16 are

removed, and we apply a magnitude cut of 0.5 <

Gbp − Grp < 1.7 (Lindegren et al. 2018). This

color cut is more precise than using the temper-

ature from the Kepler Input Catalog and more

uniform than using temperatures from the DR25

stellar catalog, for selecting FGK stars.

• Furthermore, we use a six iteration quadratic fit of

the color-luminosity relation for the main sequence

with log10(1.75) width to select FGK targets.

We summarize the stellar catalog versions investigated

in this work in Table 2, and report the number of se-

lected stars for each case. Here, “Q1 − Q16” refers to

the version of the Kepler star and planet catalogs release

that precedes the “DR25” catalog release. We evaluate

occurrence rates for the DR25 and “DR25 + Gaia” (a

version that uses Gaia updated stellar properties) cat-

alogs with the “GK cuts ↓” selections that were des-

ignated during the The NASA Exoplanet Exploration

Program Analysis Group (ExoPAG) Study Analysis

Group 13 (SAG 13) working group meeting. In this

work, we analyze the Q1 − Q16 planet candidate cat-

alogs to benchmark our methods and results against

the previous work of Burke et al. (2015) and Hsu et al.

(2018). Therefore, we only consider the “GK cuts ↑”
case (Teff : 4200− 6100K, R∗ < 1.15, and log g > 4.0)

with the Q1−Q16 planet and star catalog. By compar-

ing the Q1 − Q16 planet candidate catalog occurrence

rates to occurrence rates using the DR25 planet candi-

date catalog, we can see the impact on occurrence rates

when many of the instrumental false positives at longer

orbital periods have been removed from the DR25 cata-

log. The vetting process and reliability characterization

can be found in (Thompson et al. 2018).

In §4.6 we compare occurrence rate posteriors using

the catalogs described here to the catalog provided in

Berger et al. (2018). The Berger et al. (2018) cata-

log updates host star radius values using values that

https://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/blob/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/Data/q1q17_dr25_gaia_fgk.csv
https://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/blob/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/Data/q1q17_dr25_gaia_fgk.csv
https://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/blob/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/Data/q1q17_dr25_gaia_fgk.csv
https://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/blob/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/Data/q1q17_dr25_gaia_fgk.csv
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were spectroscopically derived in the California-Kepler

Survey (CKS) (Fulton et al. 2017; Petigura et al. 2017;

Johnson et al. 2017). However, the full population of

stars searched by Kepler has not been updated with

spectroscopic followup at this time.

2.2. Planets

We choose two different cuts in planet parameters.

First, we consider planets with sizes that range from 1 to

2 R⊕ and orbital periods that range from 50 to 200 days,

referred to as the “planets ↓” case in Table 3 and here

after. These cuts span a parameter space for GK stars

that has a slightly higher average detection complete-

ness than the second case we investigate. The second

case we refer to as “planets ↑”, which includes planets

with sizes between 0.75 to 2.5 R⊕ and orbital periods

between 50 to 300 days. This case now contains less

reliable planet candidates and has a larger variance in

completeness values across the planet parameter space.

In this case, the top left corner of the completeness grid

near Porb = 50 days and Rp = 2.5 R⊕ has a higher reli-

ability and completeness while the opposite corner near

Porb = 300 days and at Rp = 0.75 R⊕ has a lower reli-

ability and completeness. The planets “planets ↓” case

is contained within the “planets ↑” case and has overall

less variance than the “planets ↑” case. The detection

completeness model is discussed further in §2.3. These

cuts were chosen to compare to previous work and to

assess how subtle differences in the completeness and

reliability and in the ranges in planet parameter space

can influence occurrence rate posteriors.

2.3. Detection Model

We employ the analytic pipeline completeness model

described in §2 of Burke et al. (2015) to compare our re-
sults against previous catalogs and for sensitivity anal-

ysis. We precompute the completeness over a 61 × 57

(planet radius × orbital period) grid. We approximate

the completeness as constant within each bin using the

value calculated for each bin center after dividing the

planet radius range by 61 and the orbital period range

by 57. For the gamma CDF coefficients (shape a, scale,

and size) that describes the average detection efficiency

of selected GK stars for our DR25 and DR25 + Gaia

catalog analysis, we use a = 30.87, size = 0, and

scale = 0.271, with a plateau factor of 0.94 (Thomp-

son et al. 2018; Christiansen 2017). These coefficients

are derived using a gamma CDF that is fit to a detec-

tion efficiency model that includes vetting completeness.

For our Q1 − Q16 analysis, we use a = 4.65, size = 0,

and scale = 0.98 (Burke et al. 2015). We calculate

transit durations assuming a circular orbit, and use the

mean stellar radii estimates. Figure 2 of Burke et al.

(2015) shows the absolute difference between the ana-

lytic model used in this study, and the higher fidelity

completeness model available as part of the DR25 oc-

currence rate data product release. Since differences are

largest (a relative fraction of approximately 0.06) to-

wards longer orbital periods, we focus our analysis on

the parameter space of Porb<300 days for GK stars.

This allows us to investigate a region of parameter space

with relatively high reliability and completeness. We

have not included a model for reliability in our analy-

ses, however, we have restricted our analyses to shorter

orbital periods where reliability is higher based on esti-

mates from Thompson et al. (2018). Furthermore, pre-

liminary results show that occurrence rate posteriors are

not significantly influenced by reliability when planet or-

bital periods are less than 300 days. A discussion of the

impact of the latest DR25 pipeline completeness and

reliability products will be available in Burke et. al.

(2019) in prep. Future studies will explore more vig-

orous treatments of including vetting efficiency and nu-

merical pipeline completeness models. We discuss this

further in §5.2.

3. STATISTICAL FRAMEWORK

We calculate occurrence rates using the inhomoge-

neous Poisson point process method with a parametric

rate intensity as implemented in Burke et al. (2015);

Youdin (2011); Gregory & Loredo (1992), now using

Hamiltonian Monte Carlo (Neal 2012; Carpenter et al.

2017) and including planet radius measurement uncer-

tainties3.

3.1. The Hierarchical Bayesian Model

For this study, we parameterize the rate intensity func-

tion of an inhomogeneous Poisson point process as a

power law scaling of the planet radius and the orbital

period. The inhomogeneous Poisson point process is a

natural choice of the likelihood function for the occur-

rence of exoplanets per star, where each planet occur-

rence that is counted is very nearly independent of each

other planet occurrence that is counted (ignoring multi-

ple planet systems).

The likelihood for our model is adopted from Burke

et al. (2015) and Youdin (2011), now with the addition

of Gaussian noise in planet size:

L =

[
Nl∏
l=1

fl

]
exp(−Nexp), (1)

3 Code can be found at:
github.com/mshabram/PyStan Kepler Exoplanet Populations.

https://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations
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Table 2. Summary of Selected Stars from Various Stellar Catalogs

Catalog # stars (GK cuts) ↑ # stars (GK cuts) ↓

a. Q1−Q16 91, 446 N/A

b. DR25 88, 807 81, 882

c. DR25 +Gaia N/A 44, 597

Note—We can compare results across disparate stellar catalogs
using hierarchical Bayesian analysis.

Table 3. Summary of Planet Size and Orbital Period Ranges

Rp min −Rp max [R⊕] Porb min − Porb max [Days]

planets ↓ 1.00− 2.00 50− 200

planets ↑ 0.75− 2.50 50− 300

Note—We select these fairly complete orbital period and planet
size ranges to facilitate comparison between catalogs and previ-
ous work, and assess the sensitivity of occurrence rate posteriors
to the choice of planet parameters when using our parametric
hierarchical Bayesian model.

Table 4. Summary of Selected Stars and Planets

Catalog # planets ↓ /stars # planets ↑ /stars

a. Q1−Q16 (GK cuts) stars ↑ N/A 106/91, 446 (0.0012)

b. DR25 (GK cuts) stars ↑ 54/88, 807 (0.0006) 118/88, 807 (0.0013)

b. DR25 (GK cuts) stars ↓ 58/81, 882 (0.0007) 124/81, 882 (0.0015)

c. DR25 +Gaia (GK cuts) stars ↓ N/A 85/44, 597 (0.0019)

Note—Subtle changes in stellar parameter selections can result in datasets with
less stars having more planets. This effect is seen in occurrence rate posteriors
suggesting that our method may be sensitive to probing relations with stellar
parameters, even when using simple planet formation distribution models. The
differences in the number of selected stars has a negligible contribution to the
expected number of planets-per-star due to the contribution from the completeness
model used in the hierarchical Bayesian statistical framework. However, subtle
differences in the number of selected planets could in part be due to unaccounted
for reliability.

where Nl is the number of selected planets after the cuts

in stellar parameters, planet radius, and orbital period

have been applied. Nexp is the number of expected de-

tections in all bins, defined as:

Nexp = F0

Pmax∫
Pmin

Rmax∫
Rmin

[
N∗∑
j=1

nj(Porb, Rp)

]

×

(
Porb
P0

)β(
Rp
R0

)α
dPorbdRp

(2)
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where nj is the survey completeness (see §2.3 and ref-

erences therein), which is a function of the planet ra-

dius Rp, orbital period Porb, and stellar properties. The

survey completeness is precomputed outside of our hi-

erarchical Bayesian model as was done in Burke et al.

(2015), and also depends on the stellar mass, stellar ra-

dius, and semi major axis. The hyperparameters in this

hierarchical Bayesian model are α (the power law in-

dex for the planet radius distribution), β (the power

law index for the orbital period distribution), and F0

(the integrated number of planets per star). fl is the

number density from the power-law scaling of the planet

occurrence rate evaluated over the list of detected plan-

ets. As we numerically simulate this likelihood function

using Hamiltonian Monte Carlo (see §3.2), each planet

can take on values normally distributed around the true

planet size Rp(l) (with Nl latent variables corresponding

to the number of planets in the sample) and reported

standard deviation σR
p(l)

of the observed planet radius

RP obs(l) :

RP obs(l) ∼ Normal(Rp(l) , σRp(l)
) :

T [Rp min
, Rp max

]
(3)

The convolution of the true planet sizes with their mea-

surement uncertainties are truncated, T [Rp min , Rp max ],

so that draws that are outside the selected planet range

(either planets ↑ or planets ↓) are not considered when

numerically simulating the integral of the likelihood.

The truncation allows the data to be described as re-

sulting from a data generating process that only pro-

duces values within an interval. In this case values that

are drawn below and or above the specified interval are

treated as not observed. This allows us to investigate

how the choices in cuts impact the resultant occurrence

rate distributions. Creating a model that allows for

planets with mean radius values outside the selected pa-

rameter space to enter into the calculation of the pos-

terior distribution for the selected range is beyond the

scope of this paper. In this work, by definition, if the

planet?s true value exists inside the selected range, it

does not exists outside the selected range.

This hierarchical Bayesian model also ignores the con-

stant multiplicative factors resulting in the survey com-

pleteness only entering the equations in the number of

expected detections for all bins (Youdin 2011). We note

that the uncertainties in planet size mean that when

using our hierarchical Bayesian analysis, there is a non-

zero amount of planets that have a non-zero chance of

occurring outside of the selected range while sampling

from our likelihood function. This effect will need to be

explored in the future by allowing the number of plan-

ets in the sample Nl to have flexibility, and to exclude

planets where draws do not land inside the given range.

Currently, our method assumes that all the planets se-

lected have true values within the planet radius ranges

specified. We reason that this effect would be important

when stitching together occurrence rate analysis for dif-

ferent planet radius ranges with our current parametric

method.

3.2. Hamiltonian Monte Carlo

We use the Stan Bayesian statistical modeling soft-

ware (Carpenter et al. 2017) to perform numerical cal-

culations. We utilize the extensive Stan diagnostics to

assess of the convergence of our HMC simulations. We

use uniform priors ranging from −5 to 5 for our hyper-

parameters α, β and ln F0. We advance 4 chains for

1500 warm-up iterations followed by 1500 sampling it-

erations.

The treedepth is a configuration parameter of the

No-U-Turn-Sampler used by Stan that can impact ef-

ficiency4. We set the maximum tree depth to 10. We

increase the maximum to 11, which roughly doubles the

compute time. Each chain has an energy Bayesian frac-

tion of missing information (E-BFMI) of approximately

0.8. A low E-BFMI (< 0.02) for a given chain im-

plies a problem with the adaptation phase, and those

chains likely did not explore the posterior distribution

efficiently (Betancourt 2016).

We obtain Gelman-Rubin statistics R̂ of 1.0 for all pa-

rameters, and zero divergent transitions. Gelman-Rubin

statistics are used to evaluate the variance within and

between Markov chains. Large Gelman-Rubin statistics

indicate possible non-convergence. A Gelman-Rubin

value close to 1 indicates no sign of non-convergence

from this particular statistical test. Divergent transi-

tions are an indication that your posterior estimates are

biased from numerical error. We obtain effective sam-

ples sizes (ESS) of approximately 4,600 for α, 6,000 for

β, approximately 4,300 for ln F0, and 6,000 for all the la-

tent variables Rp(l) . The ESS is a measure of how many

draws from the Markov chain are effectively independent

after the burn-in phase.

4. RESULTS

In order to investigate the sensitivity of occurrence

rate posteriors from Kepler data to small changes in the

selected stars, reliability and completeness, the number

of planets, and uncertainties in planets size, we perform

fits over both the Rp and Porb ranges (“planets ↑” and

“planets ↓”, described in Table 3). The posterior dis-

4 A brief guide to Stan’s warnings can be found at http://mc-
stan.org/misc/warnings.html
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tribution for all model parameters including the power-

law parameter estimates that describe the general fea-

tures of the outcome of planet formation can be found

on the github repo for this project5. We assess the oc-

currence rate posteriors when making subtle changes to

the definition of GK stars (described in Table 1). Figure

1 shows kernel density estimates of marginal posterior

distributions for the occurrence rate (i.e., the number

of planets per GK star, F0). The key labels read from

top to bottom corresponding to curves going from the

left to right. The stars ↑ (stars ↓) label means more

(fewer) stars, the planets ↑ (planets ↓) means more

(fewer) planets, and the σ ↑ (σ ↓) means with (without)

measurement uncertainty in planet size. The dashed

lines help indicate the occurrence rates calculated us-

ing the slightly warmer set of stars, GK cuts ↑ (i.e.,

stars ↑), described in Table 1. The thicker lines help

indicate the inclusion of planet radius measurement un-

certainties (i.e., σ ↑). We will refer to this figure in

§4.2 through §4.5. Summary Statistics for the occur-

rence rate posterior distributions can be found in Table

5 and two sample Kolmogorov-Smirnov (K-S) statistics

for pairs of these occurrence rate posterior distributions

can be found in Appendix A.

4.1. Sensitivity to selections in planet radius and

orbital period

We investigate the sensitivity of occurrence rate pos-

teriors to the range of planet radii and orbital periods

by comparing across the two ranges in planet radius and

orbital periods described in Table 3. Our “planets ↓”
case contains approximately half the number of selected

planets as our “planets ↑” case, and lies in a slightly

higher average completeness space for GK stars of inter-

est. The top panel of Figure 1 shows the marginal poste-
rior for the number of planets per GK star for which the

selected number of planets follows from the “planets ↓”
case. The middle and bottom panels of Figure 1 shows

occurrence rate posteriors for the number of planets per

GK star when using the “planets ↑” case (that includes

the planets from the “planets ↓” case).

When comparing these two clusters of marginal pos-

teriors, we see that the “planets ↓” curves have less

variance than the marginal posteriors for the cluster of

the “planets ↑” cases, even though the “planets ↓” case

contains approximately half the number of selected plan-

ets. This could be in part due to the completeness and

reliability varying more across the “planets ↑” case (the

5 github.com/mshabram/PyStan Kepler Exoplanet Populations/
tree/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-
Rates-from-Kepler-and-Gaia/posterior-distributions

larger planet parameter space box). For example, when

comparing the completeness between the “planets ↑”
case and the “planets ↓” case, parts of the larger box

(“planets ↑”) are in a more complete and higher relia-

bility space (i.e., at Porb = 50 days and at Rp = 2.5 R⊕)

while another section is in a lower reliability and lower

completeness space (i.e., at Porb = 300 days and at Rp
= 0.75 R⊕). Therefore, we attribute the larger variance

for occurrence rate posteriors for the “planets ↑” cases

in part to (a) the larger variance in the detection effi-

ciency across this parameter space and (b) to the larger

span in parameter space covered by the power law rate

intensity parameterization. Furthermore, although we

expect the “planets ↑” cases to have larger occurrence

rates than the planets ↓ cases (because we are probing a

larger domain) the “planets ↑” occurrence rate posteri-

ors could be over estimated due to the low, unaccounted

for, reliability in the corner near 0.75 R⊕ and 300 days.

4.2. Sensitivity to Selected Stars

Subtle differences in stellar cuts can impact the

number of planets selected, where more (fewer) stars

results in a smaller (larger) planet occurrence rate

posterior mean. Table 4 shows that the “DR25

GK cuts (stars) ↓” case has approximately 8% fewer

selected stars than the “DR25 GK cuts (stars) ↑” case.

For these two selections of GK star cuts used in this

study, see Table 1. We compare occurrence rates across

these subtle differences in selected stars to first assess

how sensitive our occurrence rate posteriors are to the

choice of target stars. The difference in occurrence rates

across subtle changes in stellar parameter cuts can be

assessed by comparing the dashed-green/black and the

dashed-blue/purple curve pairs in the top panel of Fig-

ure 1 and the dashed-orange/pink and dashed-red/cyan

curve pairs in the middle panel of Figure 1. In these

comparisons, the selected star parameters are varied

while holding both the planet radius measurement un-

certainty and the ranges in selected planet parameters

fixed.

The “planets ↓” case has a larger difference (8%) in

the number of selected planets that make it through

the two different GK stellar cut designations than the

“planets ↑”, yet this has a smaller influence on the dif-

ference in occurrence rate modes between these stellar

cut designations. The “planets ↑” case has a smaller

difference (5%) in selected planets than the “planets ↓”
case, and a larger difference in occurrence rate between

occurrence rates calculated using these two stellar cut

designations. The smaller difference in occurrence rate

modes for the “planets ↓” cases is likely in part due

to the smaller area in parameter space, which must be

https://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/tree/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/posterior-distributions
https://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/tree/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/posterior-distributions
https://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/tree/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/posterior-distributions
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Figure 1. Kernel density estimates of marginal posterior distributions for the number of planets per GK star.
The key labels read from top to bottom corresponding to curves going from the left to right. stars ↑ (stars ↓) means more
(fewer) stars. planets ↑ (planets ↓) means more (fewer) planets. σ ↑ (σ ↓) means with (without) measurement uncertainty in
planet size. The dashed lines help indicate the occurrence rates calculated using the slightly warmer set of stars, GK cuts ↑
(i.e., stars ↑), described in Table 1. The thicker lines help indicate the inclusion of planet radius measurement uncertainties
(i.e., σ ↑). Excluding planet size (Rp) measurement uncertainty biases occurrence rates towards smaller values: compare dashed-
green/dashed-blue and black/purple pairs in the top panel, and dashed-orange/dashed-red and pink/cyan curve pairs in the
middle panel. These correspond to fixed planet and star cuts with no measurement uncertainty/with measurement uncertainty
(σRp ↓ /σRp ↑), respectively. A previous lower reliability Kepler planet candidate catalog (Q1 − Q16 catalog) included more
false positives, inflating the occurrence rate for this parameter space (dashed-grey curve in middle panel). Subtle differences in
stellar cuts can impact the number of planets selected, where more stars result in less planets (compare dashed-green/black and
dashed-blue/purple curves in the top panel, and dashed-orange/pink and dashed-red/cyan curves in the middle panel). The
occurrence rate variance is lower for planets in a slightly more complete part of parameter space (planets ↓ in top panel) than
in a slightly less complete part of parameter space (planets ↑ in middle and bottom panels), even when there are less planets
present in the planets ↓ case. Although we expect the “planets ↑” cases to have larger occurrence rates than the planets ↓
cases (because we are probing a larger domain) the “planets ↑” occurrence rate posteriors could be over estimated due to the
low, unaccounted for, reliability in the corner near 0.75 R⊕ and 300 days. Comparing the pink and brown curves in the bottom
panel shows the impact on occurrence rate posteriors in the planets ↑ and stars ↓ parameter space when using updated stellar
radii from Gaia in the completeness model and updating planet sizes (and excluding measurement uncertainty). Propagating
the stellar uncertainties from Gaia into the planet size (Rp) uncertainties while simultaneously updating stellar radii in the
completeness model removes the bias towards smaller values and increases the variance of the occurrence rate (light-green curve
in bottom panel).
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described by the power law rate intensity parameteri-

zation. Furthermore, differences in the occurrence rate

posteriors between the two selections of GK stars may

be from differences in the signal to noise regime (e.g., the

GK cuts ↓ regime containing slightly larger maximum

stellar radii and slightly cooler stars may let through

more false positives in the “planets ↑” case). It’s also

possible that coolerGK stars host more planets, because

we see the slight increase in occurrence rate posterior

means in both selections of planet parameters. Mul-

ders et al. (2015) find that the occurrence of Earth to

Neptune-sized planets is successively higher toward later

spectral types at all orbital periods probed by Kepler.

4.3. Sensitivity to planet radius measurement

uncertainties

Our analysis shows that when the planet-to-star ra-

dius ratio uncertainties are included, there is an upward

shift in the occurrence rate posterior mean relative to

when the planet-to-star radius ratio uncertainties are

not included. In Figure 1, we can compare cases with

fixed selected stars and planets for the DR25 catalogs,

including measurement uncertainties in planet size (in-

dicated by “σRp ↑”) and not including them (indicated

by “σRp ↓”). The “σRp ↓”/“σRp ↑” pairs of marginal

posteriors for the number of planets per GK star are

shown as dashed-green/dashed-blue and black/purple

curve pairs in the top panel of Figure 1, and the dashed-

orange/dashed-red and pink/cyan curve pairs in the

middle panel of Figure 1, respectively.

The upward shift in the occurrence rate posterior

mean can largely be attributed to (a) the wide range in

uncertainty values across the planet radius sample. For

planets that have well constrained radius uncertainty,

the location in completeness space stays relatively un-

changed, whereas planets with large fractional radius

uncertainties are more likely to have a large uncertainty

in their detection completeness. (b) The detection prob-

ability is a sharp function of planet size near the de-

tection threshold, with small planets more likely to be

missed. For those small detected planets in the selected

planets sample that have larger planet radius measure-

ment uncertainties, their observed radius will be more

biased relative to their true radius. Both of those effects

cause the model that ignores uncertainties to be biased

towards a lower occurrence rate for more selected plan-

ets with radii near the threshold of detection.

4.4. Distribution Comparison to Burke+2015

We use a joint power law rate intensity function in

planet radius and orbital period for our inhomogeneous

Poisson point process likelihood. This generative model

is specified to capture broad features of the results of

planet formation over small ranges in the planet param-

eter space. This likelihood and parameterization for Ke-

pler exoplanet occurrence rates was put forth in Youdin

(2011) and later applied by Burke et al. (2015), but nei-

ther of these studies included measurement uncertain-

ties in a hierarchical Bayesian statistical framework. We

recreate the conditions of Burke et al. (2015) to bench-

mark our methods and to evaluate how occurrence rates

have changed when using the latestKepler planet candi-

date catalog (the DR25 planet candidate catalog). Our

result for this occurrence rate is indicated as the dashed-

grey curve in the middle panel of Figure 1 and labeled

“Q1 −Q16 GK cuts ↑” for the “planets ↑” case, with-

out measurement uncertainties (“σRp
↓”), in the figure

legend. In this case, we find an occurrence rate posterior

mean of 0.85 with a 68% credible interval of 0.72 to 0.99,

and an allowed range of 0.48 to 1.58. For the same set

of stellar and planet parameter cuts, Burke et al. (2015)

report an occurrence rate posterior mean of 0.77 with

an allowed range of 0.3 to 1.9. We attribute the smaller

posterior width and larger posterior mean calculated in

this study to be from a combination of unaccounted for

differences in the custom catalog used in Burke et al.

(2015) and the Q1−Q16 catalog available at the NASA

Exoplanet Archive, and potentially due to differences in

the MCMC methods and diagnostics used.

4.5. Stars from Gaia

Using our statistical framework, we can compare dis-

parate stellar catalogs. With the Gaia updated stellar

properties, the assumed stellar radii became larger on

average (Berger et al. 2018). Additionally, the sample

now has fewer evolved stars for which Kepler has re-

duced planet detection efficiency due to their larger size.

We first assess the impact of updated stellar radii from

Gaia on the mean and variance of occurrence rate poste-

riors in this region of parameter space. Updating stellar

radii with GaiaDR2 parameter estimates will change

both the precomputed completeness functions and the

resulting planet sizes. In this first case, we exclude the

measurement uncertainties in planet size that come from

both the uncertainty in Rp/R∗ measurements and from

stellar radius measurements. Thus, we simply multiply

the planet-to-star-radius ratios in the Kepler DR25 cat-

alog by the new stellar radii estimates from Gaia DR2,

and change the stellar radius estimates used in the com-

pleteness model. The resultant occurrence rate poste-

rior is shown in the bottom panel of Figure 1 as the

brown curve labeled “DR25 +Gaia (GK cuts ↓)” with

“planets ↑” cuts. Comparing this occurrence rate pos-

terior to the pink curve in the middle and bottom pan-
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els of Figure 1 (“DR25 GK cuts ↓” with “planets ↑”
cuts) demonstrates the increase in the mean and vari-

ance of the occurrence rate posterior for the Gaia up-

dated planet radius point estimates and completeness in-

puts. The large difference in these two occurrence rates

can be attributed to planets moving out of the planet

radius range of interest, to changes in the precomputed

completeness (due to shifting stellar radii values), and to

planets and stars being removed from the sample when

using more aggressive stellar cuts (described in §2.1).

Next, we propagate the stellar radii uncertainties from

Gaia DR2 into the planet size (Rp) uncertainties (and

are now included along with the contribution to the

planet radius uncertainty from Rp/R∗ measurements)

while updating stellar radii in the precomputed com-

pleteness model. The resulting occurrence rate posterior

is shown as the light-green curve in the bottom panel of

Figure 1, exhibiting a much wider posterior (larger vari-

ance) than previous posteriors that did not include the

contribution to the planet radius uncertainty due to the

host star radii uncertainties. This marginal posterior

has a 68% credible interval of 0.49 to 0.77 and a mean

of 0.63. This occurrence rate posterior has a larger vari-

ance and a smaller posterior mean than the posterior for

this parameter space using the Q1−Q16 planet candi-

date catalog, which has a 68% credible interval of 0.72

to 0.99 and a posterior mean of 0.85, and larger than the

occurrence rate posterior when using the DR25 planet

candidate catalog alone, which has a 68% credible inter-

val of 0.41 to 0.59 and a posterior mean of 0.50. This

shows that previous studies have overestimated the oc-

currence rate in this region of parameter space, likely be-

cause previous lower reliability Kepler planet candidate

catalogs, such as the Q1 − Q16 catalog, likely included

more false positives. However, selecting a cleaned stellar

catalog partially compensates for this change.

4.6. Results using Berger+2018 Catalog

The Berger et al. (2018) study has provided a cata-

log of revised planet and star radius measurements us-

ing Kepler DR25 stars crossmatched with stars from

Gaia DR2. Berger et al. (2018) use quality cuts similar

to those described in §2.1 and also incorporate the stel-

lar host star spectroscopic followup from the California-

Kepler Survey (CKS) (Fulton et al. 2017; Petigura et al.

2017; Johnson et al. 2017). Furthermore, the results

from Berger et al. (2018) account for the impact of red-

dening. The orange curve in Figure 2 shows the marginal

posteriors for the number of planets-per-GK star, over

the stars ↓ and planets ↑ parameter space, using the

Berger et al. (2018) catalog. For this case, we find a 68%

credible interval of 0.45 to 0.64 and a posterior mean
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Figure 2. Kernel density estimates of marginal pos-
terior distributions for the number of planets per
GK star. The posteriors shown here are for planets with
radii between 0.75R⊕ and 2.5R⊕ and orbital periods between
50 and 300 days. The (1.) brown curve corresponds to the
occurrence rate posterior calculated using the DR25 Kepler
star and planet catalogs with stellar radii updated by cross-
matching with Gaia DR2 data, and does not include mea-
surement uncertainty in planet size. The (2.) green curve is
this same case, but now includes planet radius measurements
uncertainties from the Rp/R∗ measurements and from the
uncertainties in stellar radii measurements when using Gaia
data. The (3.) orange curve is the occurrence rate posterior
when using the Berger et al. (2018) catalog that includes
stellar parameters updated using spectroscopic followup for
host stars only. The stellar sample in full is updated us-
ing Gaia DR2. The orange curve demonstrates that using
heterogeneous stellar parameters introduces a large bias in
occurrence rates.

of 0.55. This result is close to the result for the occur-

rence rate posterior distribution using the DR25 + Gaia

crossmatch (without updates using CKS) described in

§2.1, when measurement uncertainties are not included

(shown as the brown curve in Figures 1 and 2). The re-

sults when measurement uncertainties are included for

the DR25 + Gaia catalogs (without spectroscopic host

star followup) is shown as the green curve in Figures 1

and 2, for reference. Systematic differences in measure-

ment uncertainties for stars with and without detected

planets are not included in our statistical model. The

orange curve shown in Figure 2 demonstrates that using

the Berger et al. (2018) catalog that includes heteroge-

neous stellar parameters introduces a large bias in the

occurrence rate. We note that we have not included the

impact of reddening in our catalog, which could impart

differences in the base occurrence rate calculated before

planet radii uncertainties are included. However, this

would not account for the large bias we see between the



12 Shabram et al.

orange and green curves were planet radius uncertainties

are included in the model.

5. DISCUSSION

The application of hierarchical Bayesian inference to

infer planet occurrence rates handles a relatively small

number of detected planets by pooling and mustering

the strength of each constituent while learning about the

population. By using Hamiltonian Monte Carlo to sam-

ple from our posterior, we can apply a high-dimensional

hierarchical Bayesian model that has more parameters

than measurements. By assessing how the occurrence

rates behave in response to subtle difference in the in-

puts, we can see the positive impact of the Kepler sci-

ence team’s efforts to provide high quality occurrence

rate data products, and we can evaluate the opportuni-

ties for advancing the depth of the science questions we

are asking regarding exoplanetary systems.

Current analysis from Gaia data has provided stel-

lar radii with average uncertainties of 8% (Berger et al.

2018). Our selected Gaia crossmatched stellar popula-

tion has uncertainties of approximately 5% on average.

This allows us to incorporate quality stellar data into

the current occurrence rate framework we are using, pa-

rameterized by planet orbital period and planet radius.

Hierarchical parametric Bayesian exoplanet occur-

rence rate studies provide the foundation for constrain-

ing more complex exoplanet population distributions

using Kepler data. As the data quality improves with

complementary observations such as stellar follow-up,

and with reprocessing of the current Kepler data using

emerging statistical methods, scientists can begin to

answer more in-depth questions in order to characterize

planetary systems. In the following section we discuss

occurrence rates from several angles: the population

model, the data quality, the computational methods

used to constrain hierarchical Bayesian models, and the

science questions at hand.

5.1. Generative model and precomputing the survey

completeness

The likelihood we use in this study assumes a rate in-

tensity that is correlated between bins, similar to Burke

et al. (2015) and Foreman-Mackey et al. (2014). This is

important to consider when including planet radius mea-

surement uncertainty in occurrence rate studies, since

each planet’s size can now take on a variety of values.

In this case, the data generating process would be the

outcome of planet formation, whereas a non-parametric

Bayesian method such as a Gaussian Cox Process would

be agnostic to any planet formation relations.

In this initial study, we use a precomputed complete-

ness grid over planet radius and orbital period described

in §2.3. When assessing the impact on occurrence rates

from planet radius measurement uncertainties, our pre-

computed completeness grid eases the computation. In

order to include the contribution from the host star ra-

dius into the planet radius uncertainty, we need to in-

clude the host star uncertainty into the calculation of

the probability of detection, the geometric transit prob-

ability, and any functions in the completeness model

that depend on stellar properties. In §4.5, we probe

how occurrence rate posteriors change when using stel-

lar properties from Gaia to update the stellar radius

point estimates for each observed star, the means of the

planet candidate radii measurement uncertainties, and

the means of the host star radii measurement uncertain-

ties. In this case we assess the impact of the contribu-

tion to the planet radius uncertainty from the host star

radius uncertainty by approximating the completeness

function as constant within each bin in planet radius an

orbital period. We find occurrence rate marginal poste-

rior distributions are not changed when increasing the

resolution of our completeness grid.

5.2. Future work

Future studies to include the stellar radii uncertain-

ties into the completeness model and therefore include

the stellar radii as latent variables in our hierarchical

Bayesian model, may require the calculation of the com-

pleteness model in each iteration when sampling from

the likelihood. This would replace the precomputed

completeness we use in this study, which is used as input

in our statistical framework. The analytic completeness

models described in Burke et al. (2015) and used in this

work, take significantly less computational time than

the numerical completeness functions available as part of

the DR25 Kepler occurrence rate data products. Mov-

ing away from a precomputed completeness and using

the latest numerical completeness models may require

more advanced computing resources and techniques to

constrain occurrence rate statistical frameworks that in-

clude stellar parameter measurement uncertainties.

Measurement uncertainties for orbital periods are neg-

ligible, but when re-parameterizing in terms of insola-

tion flux, uncertainties in stellar effective temperature,

stellar multiplicity, stellar mass and stellar radius could

contribute significantly to the uncertainties in occur-

rence rates as a function of insolation flux. Updates to

stellar effective temperatures from analysis of Gaia data

will allow future studies to properly parameterize the oc-

currence rate in terms insolation flux, as orbital distance

is calculated from the stellar mass and orbital period,

and the orbital distance estimate is used in the detection

efficiency calculations. By including the completeness
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Table 5. Summary Statistics for Occurrence Rate Posterior Distributions

distribution mean var std mode 68% Credible Interval

planets ↓ DR25 | σRp ↓ | stars ↑ 0.154 0.001 0.029 0.145 [0.126, 0.182]

DR25 | σRp ↓ | stars ↓ 0.168 0.001 0.03 0.157 [0.139, 0.198]

DR25 | σRp ↑ | stars ↑ 0.188 0.002 0.04 0.174 [0.149, 0.226]

DR25 | σRp ↑ | stars ↓ 0.199 0.002 0.04 0.179 [0.16, 0.239]

planets ↑ DR25 | σRp ↓ | stars ↑ 0.35 0.003 0.055 0.322 [0.297, 0.405]

DR25 | σRp ↓ | stars ↓ 0.407 0.004 0.062 0.385 [0.348, 0.467]

DR25 | σRp ↑ | stars ↑ 0.442 0.007 0.085 0.4 [0.361, 0.523]

DR25 | σRp ↑ | stars ↓ 0.497 0.008 0.089 0.452 [0.411, 0.585]

Q1−Q16 | σRp ↓ | stars ↑ 0.854 0.017 0.131 0.812 [0.724, 0.985]

DR25 +Gaia | σRp ↓ | Gaia stars ↓ 0.519 0.01 0.098 0.483 [0.424, 0.613]

DR25 +Gaia | σRpw/? ↑ | Gaia stars ↓ 0.63 0.02 0.141 0.606 [0.492, 0.767]

Note—We summarize the occurrence rate posterior distributions from Figures 1 and 2 via the mean, variance, standard
deviation, mode, and the 68.3% credible interval. The credible intervals are calculated such that the left and right
hand regions of the posterior distribution outside the credible interval are equal in area.

functions directly into the hierarchical Bayesian model’s

data generating process (instead of a precomputed com-

pleteness) in addition to a functional form for the planet

formation model, it will be possible to marginalize over

uncertainties in stellar parameters. This will ultimately

lead to constraining occurrence rates as a function of in-

solation flux (and other stellar parameters) in addition

to planet parameters.

By using Gaia data to better constrain planet ra-

dius uncertainties and provide accurate fractional un-

certainties for insolation flux, we can assess the impact

of excluding measurement uncertainty in the occurrence

rate parameterizations that go beyond the impact of the

planet radii uncertainties investigated here. This will

improve previous occurrence rates calculated in terms

of insolation flux that are biased by the inverse detec-

tion efficiency method (e.g., Fulton & Petigura (2018)).

The large disparity in the number of selected stars for

the different catalogs used to investigate changes in oc-

currence rate posteriors motivates including stellar pa-

rameter dependence directly into occurrence rate studies

in the future.

When crossmatching the DR25 Kepler stellar catalog

with the Gaia DR2 stellar parameters, we remove stars

that have indications they may be poorly-resolved bi-

naries. This provides results that are less contaminated

with dilution from binarity than previous studies. Cia-

rdi et al. (2015); Hirsch et al. (2017); Furlan et al. (2017);

Furlan & Howell (2017); Furlan et al. (2018) have mea-

sured a non-negligible planet radius correction factor to

account for stellar multiplicity. Furthermore, Bouma

et al. (2018) show that for terrestrial-sized planets, stel-

lar multiplicity can contribute uncertainties in occur-

rence rates of approximately 50%. Stellar multiplicity is

an important consideration for occurrence rates beyond

the dilution of the planet radius by over estimating the

size of its host star, as it can also impact the measured

semi-major axis. In future studies, including a model of

the impact of stellar binarity directly into the genera-

tive model used in this analysis will allow the impact of

stellar binarity on occurrence rates to be measured.

Preliminary occurrence rate estimates of potentially

habitable planets are lower with the new reliability esti-

mates from the DR25 9.3 Kepler occurrence rate data

products. This suggests that a vigorous treatment of the

catalog reliability for occurrence rate studies will be nec-

essary for learning about the population of potentially
habitable planets.

By including planet radius measurement uncertain-

ties into a parametric hierarchical Bayesian occurrence

rate calculation, we have provided the foundation for re-

searchers to use the Kepler dataset to constrain param-

eters in analytic planet distribution models. This can be

done by investigating these relations in place of the sim-

plistic power law intensity parameterization described

in this work. Furthermore, Zink et al. (2019) show that

the Kepler dichotomy can be filled in by accounting for

the effects of multiplicity on the detection efficiency, and

provide improved estimates of the multiplicity distribu-

tion. Future studies can include this updated detection

efficiency while also incorporating radius measurement

uncertainties into the likelihood function.

6. CONCLUSION
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When using our parametric hierarchical Bayesian

model in conjunction with Gaia data to (i) remove

stars that have indications they may be poorly-resolved

binaries; (ii) update the uncertainties in planet radii and

in turn include the contribution of the host star radii

into the uncertainty in planet radii; and (iii) update the

stellar parameters in the completeness model,

• we estimate the GK star planet occurrence rate

between 0.75 and 2.5 R⊕ and 50 to 300 days to

have a 68% credible interval of 0.49 to 0.77 and a

mean of 0.63.

When using the Berger et al. (2018) catalog that in-

cludes spectroscopic followup of host stars only, Gaia

updated stellar radii, and reddening,

• we find that a large bias is introduced into the

occurrence rate posterior distributions when us-

ing heterogeneous stellar radii measurement un-

certainties.

By performing a hierarchical Bayesian occurrence rate

analysis in a particular part of planet parameter space

with differences in reliability and completeness,

• we find an upward shift in the occurrence rate pos-

terior mean and a larger posterior variance when

including measurement uncertainty in planet ra-

dius.

When evaluating the sensitivity of planet occurrence

rates to subtle changes in the selected stars,

• our results suggest that our hierarchical Bayesian

models (Bayesian models that include measure-

ment uncertainties) are less sensitive to subtle dif-

ferences in stellar properties, and more so to the

the selected ranges in planet parameters.

By evaluating a set of slightly cooler stars and a set of

slightly warmer stars across a two sets of selected plan-

ets with different completeness and reliability character-

istics

• we show that the choice of stellar cuts can influ-

ence the number of planet candidates selected over

the planet radius and orbital period grid of inter-

est.

• we find that the cooler star sample has a slightly

higher occurrence rate posterior for both sets of

selected planets.

This difference could in part be from (a) the slightly

cooler selected stars letting through more false positives,

and (b) the slightly cooler set of GK stars could host

more planets. Work by Dressing & Charbonneau (2013,

2015) found cooler M Dwarfs stars have larger occur-

rence rates. This motivates the inclusion of a more vig-

orous treatment of the catalog reliability in future oc-

currence rate studies. Furthermore, the inclusion of stel-

lar population level parameters in hierarchical Bayesian

occurrence rate studies will allow the characterization

of the stellar dependence of exoplanet occurrence rates.

It may be important to include the stellar dependence

in statistically robust occurrence rate studies before we

can select targets of opportunity for some exoplanet re-

search.

We also evaluate the impact of selecting planets in a

slightly higher average completeness space, compared to

a part of parameter space with slightly less average and

larger variance in completeness.

• We find that the selection of planets over the

slightly more complete part of parameter space re-

sults in occurrence rate marginal posteriors with

less variance than the space evaluated over a

slightly less complete part of parameter space with

more variance in completeness.

This is interesting because the “planets ↓ ” case (slightly

more complete space) contains approximately 50% less

planets than the “planets ↑” case.

• This suggests that the precision (variance) in the

occurrence rate posteriors when using the statis-

tical framework in this work is less sensitive to

the number of planets that make it through the

planet cuts, and more so on the (a) span that the

rate intensity parameterization is providing cov-

erage over and (b) the effective number of stars

searched. The effective number of stars searched

(i.e., how efficient Kepler is at detecting planets in

a given part of parameter space) depends on the

characteristics of the completeness and reliability

space, and the signal-to-noise regime.
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APPENDIX

A. TWO SAMPLE KOLMOGOROV-SMIRNOV STATISTICS FOR OCCURRENCE RATE POSTERIOR

DISTRIBUTION COMPARISONS

We use the “two sample Kolmogorov-Smirnov (K-S) statistic” to asses the distance between pairs of occurrence

rate posterior distributions. A K-S statistic close to 0 means the distributions are likely both drawn from the same

underlying population and a K-S statistic of 1 means it is less likely the distributions come from the same underlying

distribution. The label colors correspond to the distribution plot color in Figures 1 and 2.
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