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We describe a two-player non-local game, with a fixed small number of
questions and answers, such that an ε-close to optimal strategy requires an
entangled state of dimension 2Ω(ε−1/8). Our non-local game is inspired by the
three-player non-local game of Ji, Leung and Vidick [JLV18]. It reduces the
number of players from three to two, as well as the question and answer set
sizes. Moreover, it provides an (arguably) elementary proof of the non-closure
of the set of quantum correlations, based on embezzlement and self-testing.
In contrast, previous proofs [Slo19, DPP17, MR18] involved representation
theoretic machinery for finitely-presented groups and C∗-algebras.

1 Introduction

A non-local game consists of a one-round interaction between a trusted referee, or ver-
ifier, (who asks questions) and two or more spatially isolated players, or provers (who
provide answers). The players are cooperating to win the game, but spatial isolation pre-
vents them from communicating. Bell’s theorem [Bel64], a landmark result in physics,
asserts that there exist games for which players who share entanglement can outperform
players who do not, the most famous example being the CHSH game [CHSH69]. The
most immediate application of non-local games is to “test quantumness”: a referee who
observes a winning probability in a non-local game which exceeds what is attainable
classically can have high confidence that the players (or devices) she is interacting with
were sharing entanglement. A more refined analysis of non-local games allows the ref-
eree to obtain more precise characterizations of the devices involved. For example, in
some cases, the referee might be able to infer that the devices must share high-dimensional
entanglement [BPA+08]. In special cases, the referee might even be able to completely
characterize the quantum state inside the devices and the measurements that they are
performing (up to local isometries and some small error) [MY04, MYS12, CGS17].

In this work, we focus on the study of non-local games as witnesses of high-
dimensional entanglement. This has had on the one hand fruitful applications in quan-
tum cryptography, and on the other it has shed light on foundational questions in the
theory of entanglement. Before proceeding further, we clarify that when we use the term
non-local game we do not restrict ourselves to games with a binary outcome (“win” or
”lose”), but rather we consider games specified by an arbitrary function V taking values
in R which determines the players’ score as a function of questions and answers. There is
a natural one-to-one correspondence between such non-local games and Bell inequalities.
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Certifying high-dimensional entanglement - previous work and state of the art
Non-local games with the property that a lower bound on the score provides a lower
bound on the dimension of the players’ quantum systems are referred to as dimension
witnesses. The study of games (or correlations) with such a property was initiated by
Brunner et al. [BPA+08], who coined the term. In this work, we focus on dimension
witnesses that can certify entanglement of arbitrarily high dimension.

The first example of a game which cannot be won perfectly with any finite amount
of entanglement was proposed by Leung, Toner and Watrous [LTW13], and is intimately
connected to our result. The game that they introduced is not a non-local game in the
usual sense, since it involves quantum questions and answers. However, it has the prop-
erty that in order to succeed with high probability, the players have to perform a coher-
ent state exchange which requires them to share an embezzling state of high dimension.
More precisely, the game forces the two players to coherently transform a product state
of two qubits into an EPR pair, using only local operations. This task is, of course, im-
possible to perform exactly, but can be performed to arbitrarily high precision if the two
players share an auxiliary entangled state of sufficiently high dimension (referred to as
an embezzling state).

Subsequently, several examples of dimension witnesses for entanglement of arbitrar-
ily high dimension have been proposed over the years consisting of non-local games with
classical questions and answers [BBT11, Slo11, BNV13, MV14, CRSV18, CN16, Col17,
CS17a, NV17, CS17b]. However, all of these examples involve families of non-local games
whose questions and answers increase as the witnessed dimension increases. For some
time, it was an open question to determine whether there exists a non-local game, with a
finite number of questions and answers, whose optimal value cannot be attained by any
finite-dimensional strategy (in the tensor product model), but which can be attained in
the limit of finite-dimensional strategies. This question was answered recently by Slofstra
in a sequence of two breakthrough works [Slo20, Slo19], where he introduces novel tech-
niques based on the representation theory of finitely-presented groups. Slofstra’s result
implies that the set of quantum correlations is not closed.

An alternative proof of the latter result was given subsequently by Dykema, Paulsen
and Prakash [DPP17], and more recently by Musat and Rørdam [MR18], using techniques
based on the representation theory of C∗-algebras. The games constructed in [DPP17]
and [MR18] have significantly smaller question and answer set sizes, namely 5 and 2.

In contrast, a more recent result by Coladangelo and Stark [CS18] gives an exam-
ple of a point in the set of quantum correlations on question sets of size 5 and answer
sets of size 3 which cannot be attained using finite-dimensional entanglement but can be
attained exactly using infinite-dimensional entanglement, in the tensor product model.
This asserts that the the set Cq of quantum correlations attainable with finite-dimensional
entanglement is strictly contained in the set Cqs of correlations attainable with possibly
infinite-dimensional entanglement.

All of the above results are not explicit or quantitative about the tradeoff between
winning probability (or expected score in the game) and the dimension required to attain
it. What we desire from a dimension witness is a quantitative statement of the following
form: if the players’ score is ε-close to optimal, then their strategy has dimension at least
f(ε), where f(ε) is a function that tends to infinity as ε tends to zero. In [SV18], Slofstra
and Vidick analyze such a tradeoff for the machinery introduced by Slofstra in [Slo20],
and they relate such tradeoff to a quantity called the hyperlinear profile of a group. In a
subsequent work [Slo18], Slofstra provides a finitely-presented group whose hyperlinear
profile is at least subexponential. As a corollary, this yields a two-player non-local game,
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with question and answer sets of finite size, with the property that a 1− εwinning proba-
bility requires dimension at least 2Ω(ε−c) to attain for some constant 0 < c < 1. The caveat
of such a non-local game is that its description is quite involved and the size of question
and answer sets is large. Moreover, it is not clear whether a winning probability of 1
in the game can be attained in the limit of finite-dimensional strategies or not (although
it can be attained in the commuting-operator model). These caveats not only make an
experimental demonstration of such a dimension witness infeasible, but, more impor-
tantly, they somewhat conceal what is truly happening behind the scenes: the resulting
non-local game, although remarkable for its behaviour, does not arguably provide much
intuition about what is causing the exponential blow-up of the dimension.

A much simpler game with a similar exponential tradeoff between optimality and di-
mension, and without this caveat, but involving three players, was proposed recently by
Ji, Leung and Vidick [JLV18]. Their work constitutes, in some sense, a return to the orig-
inal ideas of Leung, Toner and Watrous’coherent state-exchange game [LTW13], which
are cleverly translated to a setting in which all questions and answers are classical. At
the heart of the three-player non-local game of Ji, Leung and Vidick is the idea of dele-
gating the actions of the quantum verifier of the coherent state-exchange game to a third
player. By combining different non-local tests, the verifier is still able, using only classical
communication, to enforce that two of the three players must be performing a coherent
state-exchange which involves a high-dimensional embezzling state as a resource.

Our result In this work, we show, strikingly, that the third player is not required. We
design a much more direct two-player non-local game with an (improved) exponential
trade-off between optimality and dimension: one of the key ideas is the introduction
of a simple additional sub-test which can guarantee the coherence of a state-exchange
between the two players even in the absence of a “physical” third register that forces
coherence, like in the games of [LTW13] and [JLV18]. Our result is the following:

Theorem 1. (informal) There exists a two-player non-local game on question sets of size
5 and 6, and answer sets of size 3, with the property that:

• (completeness) For any ε > 0, there exists a strategy of dimension 2O(ε−1) that is
ε-close to optimal.

• (soundness) Any ε-close to optimal strategy has at least 2Ω(ε−1/8) dimension.

Our game can be thought of as a direct de-quantization of the coherent state-exchange
game. It is by far the simplest non-local game (in terms of question and answer set size)
with such an exponential tradeoff. For a comparison, even with three players, the ques-
tion and answer sets are of size 12 and 8 respectively in [JLV18].

Our game provides a new proof of the non-closure of the set of quantum correlations.
However, strikingly, compared to the proofs in [Slo19], [DPP17] and [MR18], our proof is
arguably elementary, and does not involve any representation-theoretic machinery. We
point out, additionally, that an exponential tradeoff between optimality and dimension
does not hold for the game in [DPP17], where a strategy of dimension 1/poly(ε) can be
ε-close to optimal (and we suspect that this is also the case for the game in [MR18]).

Next, we sketch the main ideas in the design of our two-player non-local game.

1.1 A sketch of our two-player non-local game

For ease of exposition, we will leave states unnormalized in this introduction.
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Our game consists of sub-tests (a), (b) and (c), executed by the verifier with equal
probability:

(a) A non-local game G3-CHSH whose unique optimal strategy requires the provers to
share the state |00〉+ |11〉+ |22〉. G3-CHSH is an instance (for d = 3) of a more general
family of non-local games from [Col18]. G3-CHSH contains a special “computational
basis” question for Alice which requires her to measure her half of the state in the
computational basis.

(b) The well-known “tilted CHSH” non-local game, which we denote by GtCHSH
[AMP12, BP15]. This requires, for the appropriate choice of parameters, that the
provers share the state |00〉 +

√
2 |11〉. GtCHSH contains a special “computational

basis” question for Bob, which requires him to measure in the computational basis.

(c) A sub-test in which Alice is asked the “computational basis” question from (a), and
Bob is asked the “computational basis” question from (b). Alice and Bob win if:
either they both answer “0”, or they both answer different from “0”.

The intuition behind the game is the following: Alice and Bob could share the state
(|00〉 + |11〉 + |22〉)AB ⊗ (|00〉 +

√
2 |11〉)A’B’. This would allow them to win parts (a)

and (b) optimally, but they would fail in part (c). The power of part (c) is that Alice is
uncertain about whether she is being asked a question from part (a) or (c), and Bob is
uncertain about whether he is being asked a question from part (b) or (c). Magically,
the condition of part (c) is sufficient to enforce that Alice and Bob cannot keep the two
optimal states from part (a) and (b) into two separate registers, but rather they should
coherently transform one into the other in order to achieve consistency in answering part
(c). This coherent transformation is what requires an exponentially growing amount of
entanglement dimension to perform to increasing precision. We refer the reader to section
3 for a formal description of our game.

Outline Section 2 covers some preliminaries: 2.1 introduces some notation, 2.2 intro-
duces non-local games, 2.3 gives two important examples of non-local games which are
used as sub-tests in our non-local game, and 2.4 briefly introduces embezzlement. Section
3 describes our non-local game. Section 4 covers completeness: we give a family of strate-
gies that approximates arbitrarily well the optimal value in our non-local game. Section
5 covers soundness: we show that any close to optimal strategy requires a lot of entan-
glement. Section 6 briefly discusses how our non-local game implies the non-closure of
the set of quantum correlations.

2 Preliminaries

2.1 Notation

For some unitary U , δ > 0, states |ψ〉 , |φ〉, we write |ψ〉 ≈U,δ |φ〉 if ‖U |ψ〉 − |φ〉 ‖ ≤ δ,
where ‖ · ‖ is the Euclidean norm. We write |ψ〉 ≈δ |φ〉 if ‖ |ψ〉 − |φ〉 ‖ ≤ δ. Let σx, σy, σz

be the Pauli matrices.

2.2 Non-local games

Definition 1 (Non-local game). A non-local game G is a tuple G = (X ,Y,A,B, D, V ),
where X ,Y,A,B are sets, D is a distribution over X × Y, and V : X × Y ×A× B → R.
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X and Y are referred to as question sets, and A and B as answer sets. V is referred to
as the scoring function.

We denote by D(x, y) the probability of outcome x, y according to distribution D.
Note that we use the term non-local game to refer to games in which the scoring function V
can take any real value, not just values in {0, 1} like is sometimes the case in the literature.
With this nomenclature, non-local games and Bell inequalities are equivalent.

Definition 2 (Quantum strategy for a non-local game). A quantum strategy for a non-
local game G = (X ,Y,A,B, D, V ) is a triple(

|Ψ〉 ∈ HA ⊗HB, {P ax : a ∈ A}x∈X , {Qby : b ∈ B}y∈Y
)
,

where HA,HB are Hilbert spaces, {P ax : a ∈ A}x∈X is a set of projective measurements on
HA, and {Qby : b ∈ B}y∈Y on HB.

Definition 3 (Value of a quantum strategy in a game). Let G = (X ,Y,A,B, D, V ) be a
non-local game, and S = (|Ψ〉 ∈ HA ⊗HB, {P ax : a ∈ A}x∈X , {Qby : b ∈ B}y∈Y) a quantum
strategy for G. The value of S in G is

ω(S,G) :=
∑

x∈X ,y∈Y
D(x, y) · V (x, y, a, b) · 〈Ψ|P ax ⊗Qby |Ψ〉

Note that the value ω(S,G) corresponds to the expected score of strategy S in gameG,
assuming that questions are distributed according to D, and that the score is determined
by the function V .

Definition 4 (Quantum value of a game). The quantum value ω∗(G) of a game G =
(X ,Y,A,B, D, V ) is defined as follows:

ω∗(G) := sup
S
ω(S,G),

where the supremum is taken over all quantum strategies for G.

Since the closure of the set of finite-dimensional quantum correlations contains the
set of infinite-dimensional quantum correlations [SW08], it does not matter whether the
supremum in the definition of ω∗ is taken over finite or infinite-dimensional strategies
(i.e. whetherHA andHB are finite or infinite-dimensional).

Finally, we introduce some terminology which we will primarily employ in section 6.

Definition 5 (Correlation). Given sets X ,Y,A,B, a (bipartite) correlation is a collection
{p(a, b|x, y) : a ∈ A, b ∈ B}(x,y)∈X×Y , where each p(·, ·|x, y) is a probability distribution
over A× B.

Definition 6 (Correlation induced by a quantum strategy). Given a quantum strategy
S = (|Ψ〉 ∈ HA ⊗ HB, {P ax : a ∈ A}x∈X , {Qby : b ∈ B}y∈Y) for a non-local game G =
(X ,Y,A,B, D, V ), the correlation induced by S is {p(a, b|x, y) : a ∈ A, b ∈ B}(x,y)∈X×Y
where, for all a, b, x, y,

p(a, b|x, y) = 〈Ψ|P ax ⊗Qby |Ψ〉 .

Definition 7 (Value of a correlation in a game). Let G = (X ,Y,A,B, D, V ) be a non-local
game, and p = {p(a, b|x, y) : a ∈ A, b ∈ B}(x,y)∈X×Y a correlation. The value ω(p,G) of p
in G is defined as

ω(p,G) :=
∑

x∈X ,y∈Y
D(x, y) · V (x, y, a, b) · p(a, b|x, y).
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Clearly, if p is the correlation induced by a quantum strategy S for game G, then
ω(p,G) = ω(S,G).

We note that quantum strategies can also be considered separately from non-local
games (i.e. without specifying any distribution D or scoring function V ). We then denote
by Cq (resp. Cqs) the set of correlations induced by a finite-dimensional (resp. possibly
infinite-dimensional) quantum strategy. We denote by Cqa the closure of Cq, which by
[SW08] is known to also be the closure of Cqs.

2.3 Useful examples of non-local games

In this section, we describe two families of non-local games which we will employ as
sub-tests in our non-local game.

Tilted CHSH We introduce the tilted CHSH inequality [AMP12], which is a building
block for the non-local game in this work. First, we recall the CHSH inequality. It states
that for binary observables A0, A1 on Hilbert spaceHA and binary observables B0, B1 on
Hilbert spaceHB together with a product state |φ〉 = |φA〉 ⊗ |φB〉, we have

〈φ|A0B0 +A0B1 +A1B0 −A1B1 |φ〉 ≤ 2, (1)

where the maximum is achieved (for example setting all observables to identity). How-
ever, if instead of the product state |φ〉 we allow an entangled state |ψ〉, then the right-
hand side of the inequality increases to 2

√
2. This maximum requires a maximally entan-

gled pair of qubits to achieve. In this work, we would like to use an inequality that re-
quires a non-maximally entangled state to achieve the maximum; this is the tilted CHSH
inequality. Given a real parameter β ∈ [0, 2), for a product state |φ〉 = |φA〉 ⊗ |φB〉,

〈φ|βA0 +A0B0 +A0B1 +A1B0 −A1B1 |φ〉 ≤ 2 + β. (2)

For entangled |ψ〉, we have instead that

〈ψ|βA0 +A0B0 +A0B1 +A1B0 −A1B1 |ψ〉 ≤
√

8 + 2β2. (3)

The maximum in the tilted CHSH inequality is attained by the following strategy:

Definition 8 (Ideal strategy for tilted CHSH). Given parameter β ∈ [0, 2), let θ ∈ (0, π4 ]
be such that sin 2θ =

√
4−β2

4+β2 , µ = arctan sin 2θ, and α = tan θ. Define the α-tilted Pauli
operators as

σzα := cosµσz + sinµσx, and σxα := cosµσz − sinµσx. (4)

The ideal strategy for tilted CHSH with parameter β (i.e. achieving maximal violation of
(3)) consists of the joint state |Ψ〉 = cos θ(|00〉+α |11〉) and observables A0, A1 and B0, B1
with A0 = σz, A1 = σx, B0 = σzα and B1 = σxα.

β and α are related by an invertible function, and α is typically the parameter of
interest, so we choose to denote by tCHSH(α) the tilted CHSH game whose ideal state is
|Ψ〉 = cos θ(|00〉+ α |11〉).

We can equivalently formulate the tilted CHSH inequality as a non-local game, as
follows:
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Definition 9 (Tilted CHSH as a non-local game). For α ∈ (0, 1], the tilted CHSH game
GtCHSH(α) is

GtCHSH(α) = (X ,Y,A,B, D, VtCHSH(α)), (5)

where X ,Y,A,B = {0, 1}, D is uniform on X×Y, and VtCHSH(α) = (−1)a⊕b−xy+δ{x=y=0} ·
β · (−1)a, where β and α are related as in Definition 8.

Proposition 1 (Quantum value of the tilted CHSH game). For α ∈ (0, 1], the value of
GtCHSH(α) is ω∗tCHSH(α) := 1

4 ·
√

8 + 2β2, where β and α are related as in Definition 8.

Proof. Notice that for any strategy S, the value ω(S,GtCHSH(α)) takes precisely the form
of the LHS of (3) (upon associating, for each observable in (3), the projection onto the
+1-eigenspace with answer 0 and the projection onto the −1-eigenspace with answer 1,
and up to a factor of 1

4 from sampling the questions uniformly).

In other words, the LHS of the tilted CHSH inequality and the value of the tilted
CHSH game are equivalent reformulations of one another. The following theorem asserts
a robust self-testing result for tilted CHSH, i.e. that any strategy that attains a value close
to the quantum value of the game, must be close to the ideal strategy of Definition 8 (in
the following statement we only write down the conditions that we make use of later).

Theorem 2 (Self-testing with tilted CHSH ([YN13, BP15])). Let α ∈ (0, 1]. Maximal
value in GtCHSH(α) self-tests the ideal strategy of Definition 8 with robustness O(

√
ε),

i.e. for any strategy S = (|Ψ〉 ∈ HA ⊗ HB, {P ax }, {Qby}) with value ω(S,GtCHSH(α)) >
ω∗tCHSH(α) − ε there exists a local unitary U and an auxiliary state |aux〉 such that:

• |Ψ〉 ≈U,O(ε1/2)
1√

1+α2 (|00〉+ α |11〉)⊗ |aux〉

• P 0
0 |Ψ〉 ≈U,O(ε1/2)

1√
1+α2 |00〉 ⊗ |aux〉

The last condition means that the first player’s measurement on question “0” is equiv-
alent (up to a change of basis) to a computational basis measurement.

For clarity of notation and exposition in later sections, it is convenient for us to define
the game G∼tCHSH(α), for α ∈ (0, 1]. This is an equivalent version of GtCHSH(α) with the
only difference that the scoring function is V∼tCHSH(α) := (−1)a⊕b−xy−δ{x=y=0} ·β · (−1)a
(notice the minus sign). It is easy to see that this game is equivalent to the original tilted
CHSH up to a flip of the answer labels (so in particular ω∗tCHSH(α) = ω∗∼tCHSH(α)). The
corresponding version of Theorem 2 for G∼tCHSH(α) is as follows:

Theorem 3. Let α ∈ (0, 1]. Maximal value in G∼tCHSH(α) self-tests the ideal strategy of
Definition 8 with robustness O(

√
ε), i.e. for any strategy S = (|Ψ〉 ∈ HA⊗HB, {P ax }, {Qby})

with value ω(S,G∼tCHSH(α)) > ω∗∼tCHSH(α) − ε there exists a local unitary U and an auxil-
iary state |aux〉 such that:

• |Ψ〉 ≈U,O(ε1/2)
1√

1+α2 (α |00〉+ |11〉)⊗ |aux〉

• P 0
0 |Ψ〉 ≈U,O(ε1/2)

α√
1+α2 |00〉 ⊗ |aux〉

To provide a little more insight, the reason why we introduce this equivalent version
of tilted CHSH is the following. A building block in our non-local game will be a game
that self-tests the state 1√

5

(
|00〉+

√
2 |11〉

)
, i.e. the ideal state for tilted CHSH with α =

√
2. However, the parameter α in the tilted CHSH game is required to be in (0, 1]. Of
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course, the point is that the tilted EPR pair with α =
√

2 is equivalent, up to a σx on
both tensor factors, to the tilted EPR pair with α = 1√

2 . The alternative version of tilted
CHSH from Theorem 3 ensures that the answer labels are naturally consistent with the
self-tested state being 1√

5

(
|00〉+

√
2 |11〉

)
rather than 1√

5

(
|11〉+

√
2 |00〉

)
.

This is a notational choice that simplifies the description of our non-local game in
Section 3.

Generalization of CHSH self-testing states of local dimension d There is a family
of non-local games, parametrized by d ≥ 2 ∈ N, which generalizes the CHSH game
[Col18]. The games in this family have the property that, for the game with parameter
d, maximal score in the game self-tests the maximally entangled state of local dimension
d. Each of the games in this family is a 2-player game in which question sets are of size
2+1d>2 and 2+2·1d>2, and answer sets are of size d. When d = 2, the game coincides with
the usual CHSH game. We denote by Gd-CHSH the game in the family with parameter d.
We do not describe this family of games in full detail here (for details we refer to [Col18]).
We will just recall the self-testing properties of the game that we need in the following
theorem, and describe the ideal strategy for the case of d = 3 (we will use G3-CHSH later
as a sub-test in our non-local game).

Theorem 4 ([Col18]). There exists a family of non-local games {Gd-CHSH}d≥2∈N with the
following properties:

• Question sets are:

– X = Y = {0, 1}, for d = 2
– X = {0, 1, 2},Y = {0, 1, 2, 3}, for d > 2.

Answer sets are A = B = {0, 1, .., d − 1}. For all d, the distribution over questions
is uniform. Denote by Vd-CHSH the scoring function for Gd-CHSH.

• (Self-testing) Let ω∗d-CHSH be the value of the game with parameter d. There exists
a constant C > 0 such that the following holds. Any strategy S = (|Ψ〉 , {P ax }, {Qby})
with value ω(S,Gd-CHSH) ≥ ω∗d-CHSH − ε, for some 0 < ε < C

d3 , is such that there
exists a local unitary U and an auxiliary state |aux〉 such that:

– |Ψ〉 ≈U,O(d6ε1/8)
1√
d

∑d−1
i=0 |ii〉 ⊗ |aux〉

– P i0 |Ψ〉 ≈U,O(d6ε1/8)
1√
d
|ii〉 ⊗ |aux〉.

Again, the last condition means that the first player’s measurement on question “0”
is equivalent (up to a change of basis) to a computational basis measurement.

Next, we describe the ideal strategy for G3-CHSH. First, we fix some notation.
We define an isometry V : (C2)A → (C3)Ã as follows:

V |0〉 = |1〉 , V |1〉 = |2〉 (6)

For an operatorO on C2, we write V (O) to refer to the pushforward V OV † ofO along
V . For example, V (σz) = |1〉 〈1| − |2〉 〈2|. If O has +1, 0,−1 eigenvalues, we write O+ for
the projection onto the +1 eigenspace and O− for the projection onto the −1 eigenspace.
One can check that with this notation O = O+ −O−. We use the notation

⊕
Ai to denote

the direct sum of observables Ai. If HA ≈ C3, we still write σzA to mean σzA = |0〉〈0|A −
|1〉〈1|A. On the other hand, in accordance with the notation above, we write V (σz)A to
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mean V (σz)A = |1〉〈1| − |2〉〈2|. We adopt an analogous notation for all other Paulis and
tilted Paulis, and projections onto their eigenspaces. (We will make use of the α-tilted
Paulis σzα, σxα from Definition 8).

Definition 10 (Ideal strategy for G3-CHSH [Col18]). The ideal strategy for G3-CHSH is
(|Ψ〉 , {P ax }, {Qby}), where |Ψ〉 = 1√

3(|00〉 + |11〉 + |22〉), and the ideal measurements are
described in Tables 1 and 2.

Table 1: Alice’s ideal measurements for G3-CHSH. The entry in cell x, a is the projector P a
x .

x
a 0 1 2

0 |0〉〈0|Ã |1〉〈1|Ã |2〉〈2|Ã
1 (σx)+ (σx)− |2〉〈2|

2 |0〉〈0| [V (σx)]+ [V (σx)]−

Table 2: Bob’s ideal measurements for G3-CHSH. The entry in cell y, b is the projector P b
y .

y
b 0 1 2

0 (σzα=1)+ (σzα=1)− |2〉〈2|

1 (σxα=1)+ (σxα=1)− |2〉〈2|

2 |0〉〈0| [V (σzα=1)]+ [V (σzα=1)]−

3 |0〉〈0| [V (σxα=1)]+ [V (σxα=1)]−

We emphasize, as it will be important later, that both the ideal strategies forGtCHSH(α)
and Gd-CHSH include a computational basis measurement for the first player on question
“0”.

2.4 Embezzlement

The phenomenon of embezzlement was first discovered by van Dam and Hayden [vDH03].
A family of embezzling states can be used to coherently transform a product state into an
EPR pair (or viceversa). The fidelity of this transformation increases with the dimension
of the embezzling state.

Definition 11 (Embezzlement). Let {|Γd〉}d∈N be a collection of states, where |Γd〉 ∈
(C2)⊗dA′ ⊗ (C2)⊗dB′ . We say that {|Γd〉}d∈N is an “embezzling family” if there exist unitaries
WAA′ on C2

A ⊗ (C2)⊗dA′ and WBB′ on C2
B ⊗ (C2)⊗dB′ such that

‖WAA′ ⊗WBB′ |EPR〉AB |Γd〉A′B′ − |11〉AB |Γd〉A′B′ ‖ = O

( 1√
d

)
.

Example 1. Let |Γd〉 = 1√
Nd

∑d
j=1 |11〉⊗jA′B′ |EPR〉

⊗(d−j)
A′B′ , where Nd is a normalizing con-

stant. Then, the family of states {|Γd〉} is an embezzling family. The unitaries WAA′ and
WBB′ are the “left-shift” unitaries, which act on C2

A ⊗ (C2)⊗dA′ and C2
B ⊗ (C2)⊗dB′ respec-

tively, by shifting by one to the left each of the d + 1 qubit registers. It is easy to check
that the family of states {|Γd〉}d∈N satisfies Definition 11.
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3 Our non-local game

The following is our non-local game. We describe it informally first, and then we give a
precise description in Fig. 1. We refer to Alice and Bob as the two players in our non-local
game.

The non-local game consists of three tests, run with equal probability.

(a) In the first test, the verifier sends both players questions from the game G3-CHSH,
and they obtain a score according to its scoring function.

(b) In the second test, the verifier sends both players questions from the (flipped) tilted
CHSH game G∼tCHSH( 1√

2). Importantly, their roles are also switched: Alice is sent
the questions of player 2 in G∼tCHSH( 1√

2), and Bob the questions of player 1. They
obtain a score according to the scoring function of G∼tCHSH( 1√

2).

(c) In the third test, Alice receives the “computational basis” question (question “0”
of the first player) from the game G3-CHSH, and Bob receives the “computational
basis” question (question “0” of the first player) from the game G∼tCHSH( 1√

2). The
players’ score is 1 if: Alice answers 0 if and only if Bob answers 0. They score 0
otherwise.

The intuition behind this game is the following.
If Alice and Bob’s strategy attains an ε-close to optimal expected score overall (where

optimally here means playing perfectly in all three tests), then it must attain a 3ε-close
to optimal expected score in each of the three tests. By the self-testing result of Theorem
4, in order to play 3ε-close to optimally in (a), the players need to be sharing a state
close to a maximally entangled state of qutrits, up to a local isometry, and moreover
one of Alice’s measurements is a “computational basis” measurement. By Theorem 3,
in order to play 3ε-close to optimally in (b), Alice and Bob must be measuring a state
close to a tilted EPR pair with ratio 1√

2 , up to a local isometry. Moreover one of Bob’s
measurements must be a “computational basis” measurement. Crucially, Alice cannot
distinguish her question in (c) from a “computational basis” question in (a), while Bob
cannot distinguish his question in (c) from a “computational basis” question in (b). In
order to play close to optimally in (c), Alice and Bob’s computational basis measurements
need to satisfy a consistency condition. It is this consistency condition that forces the two
players to “agree” on a computational basis element |00〉 ∈ C3

A ⊗ C3
B , and to perform a

coherent state exchange such that:

1√
3

(|00〉+ |11〉+ |22〉)AB 7→
1√
3

(|00〉+
√

2 |11〉)AB, (7)

with |00〉AB 7→ |00〉AB and 1√
2(|11〉+|22〉)AB 7→ |11〉AB . The LHS of (7) is the state that the

players need in order to play part (a) perfectly, while the RHS is the state that they need
to play part (b) perfectly. Part (c) ensures that players have to “agree” on the term |00〉,
and this enforces that they must perform coherently the exchange in (7) to high accuracy
if they are to perform well in all three parts.

Next, we give a precise description of our non-local game Gemb. We denote by Vemb
its scoring function. Recall that V3-CHSH and V∼tCHSH( 1√

2) are the scoring functions for
games G3-CHSH and G∼tCHSH( 1√

2) respectively.
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Question sets: X :=
(
{“3-CHSH”} × {0, 1, 2}

)
∪
(
{“∼tCHSH( 1√

2)”} × {0, 1}
)
, and

Y :=
(
{“3-CHSH”} × {0, 1, 2, 3}

)
∪
(
{“∼tCHSH( 1√

2)”} × {0, 1}
)
. Answer sets:

A = B = {0, 1, 2}.
The game consists of the following three parts, executed with equal probability.

(a) Pick uniformly random x′ ∈ {0, 1, 2} and y′ ∈ {0, 1, 2, 3}. Send x = (“3-CHSH”, x′)
to Alice and y = (“3-CHSH”, y′) to Bob. Let a and b be the players’ answers. The
players’ score is Vemb(a, b, x, y) = V3-CHSH(a, b, x′, y′).

(b) Pick uniformly random x′ ∈ {0, 1} and y′ ∈ {0, 1}. Send x = (“∼tCHSH( 1√
2)”, x

′)
to Alice and y = (“∼tCHSH( 1√

2)”, y
′) to Bob. Let a and b be the players’ answers.

The players’ score is Vemb(a, b, x, y) = V∼tCHSH( 1√
2

)(b, a, y′, x′) (notice that the roles
of the two players is switched in the last expression).

(c) Send question x = (“3-CHSH”, 0) to Alice, and question y = (“∼tCHSH( 1√
2)”, 0) to

Bob. Let a and b be the players’ answers. Their score is

Vemb(a, b, x, y) =
{

1, if (a, b) ∈ {(0, 0)} ∪ ({1, 2} × {1, 2})
0, otherwise

Figure 1: Our non-local game Gemb

Proposition 2. The value of the non-local game Gemb of Fig. 1 is ω∗(Gemb) =
1
3(ω∗3-CHSH + ω∗∼tCHSH( 1√

2
) + 1).

Proof. Clearly, ω∗ ≤ 1
3(ω∗3-CHSH+ω∗∼tCHSH( 1√

2
)+1). Otherwise, there would exist a strategy

S such that the value ω(S,Gemb) > 1
3(ω∗3-CHSH +ω∗∼tCHSH( 1√

2
) + 1). This would imply that

at least one of the following holds:

• The restriction of S to part (a) has value greater than ω∗3-CHSH.

• The restriction of S to part (b) has value greater than ω∗∼tCHSH.

• The restriction of S to part (c) has value greater than 1.

All three of the above are clearly impossible.
On the other hand, we will construct in the next section a sequence of strategies whose

value in G gets arbitrarily close to 1
3(ω∗3-CHSH + ω∗∼tCHSH( 1√

2
) + 1). This completes the

proof.

4 Completeness

In this section, we describe a family of strategies whose value in our non-local gameGemb
gets arbitrarily close to 1

3(ω∗3-CHSH + ω∗∼tCHSH( 1√
2

) + 1) (which also completes the proof of

Proposition 2). A strategy in the family is parametrized by d ∈ N. The provers start with
the state

1√
3

(|00〉+ |11〉+ |22〉)ÃB̃ ⊗ |Γd〉A′B′ (8)
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where |Γd〉 is an embezzling state. We give first an informal description of the ideal
measurements, and we follow this by a formal description.

• Upon receiving a question with prefix “3-CHSH”, Alice and Bob perform the corre-
sponding ideal measurement for 3-CHSH. In particular on question (“3-CHSH”, 0),
Alice measures her half of the state in (8) in the computational basis.

• Upon receiving a question with prefix “∼tCHSH( 1√
2 )”, Alice and Bob first ap-

ply embezzling unitaries WÃA′ and WB̃B′ respectively, such that (approximately)
1√
2(|11〉+ |22〉) 7→ |11〉 and |00〉 7→ |00〉. So the resulting state is

√
2
3

( 1√
2
|00〉+ |11〉

)
ÃB̃

⊗ |Γd〉A′B′ . (9)

They then perform the corresponding ideal measurements for∼tCHSH( 1√
2) on reg-

isters Ã, B̃ (where Alice takes the role of the second player, and Bob takes the role
of the first player). In particular, on question (“∼tCHSH( 1√

2)”, 0), Bob measures his
half of the state in (9) in the computational basis.

A key observation is that when Alice and Bob are asked questions (“3-CHSH”, 0) and
(∼ “tCHSH( 1√

2)”, 0) respectively, then it is straightforward to see that, if they follow the
above strategy, they reply with answers (a, b) which attain a score of 1 in part (c) of Fig.
1, i.e. (a, b) ∈ {(0, 0)} ∪ ({1, 2} × {1, 2}).

Next, we define the players’ ideal measurements precisely. Recall the isometry V :
C2 → C3 defined in subsection 2.3 as follows:

V |0〉 = |1〉 , V |1〉 = |2〉 (10)

Recall also the notation introduced in subsection 2.3 along with V . In particular, we
write V (O) to refer to the pushforward V OV † of O along V . For O an operator with
+1, 0,−1 eigenvalues, we write O+ for the projection onto the +1 eigenspace and O−

for the projection onto the −1 eigenspace. If HA ≈ C3, we still write σzA to mean σzA =
|0〉〈0|A − |1〉〈1|A. On the other hand, in accordance with the notation above, we write
V (σz)A to mean V (σz)A = |1〉〈1|A − |2〉〈2|A.

Let {|Γd〉ABA′B′} be the embezzling family from Example 1, and WAA′ : (C2)A ⊗
(C2)⊗dA′ → (C2)A ⊗ (C2)⊗dA′ , WBB′ : (C2)B ⊗ (C2)⊗dB′ → (C2)A ⊗ (C2)⊗dA′ be the left-shift
unitaries over the d+ 1 qubit registers. Define W̃ÃA′ : (C3)Ã ⊗ (C2)⊗dA′ → (C3)Ã ⊗ (C2)⊗dA′
as

W̃ÃA′ =
(
|0〉〈0|Ã ⊗ IA′

)
⊕ [(V ⊗ I)WAA′(V † ⊗ I)],

and define W̃B̃B′ analogously.
The following is the family of ideal strategies for Gemb achieving a value arbitrarily

close to 1
3(ω∗3-CHSH + ω∗∼tCHSH( 1√

2
) + 1).

Definition 12 (Ideal strategy for Gemb). The family of ideal strategies is {Sd}d∈N, with
Sd = (|Ψd〉 , {P ax }, {Qby}), where

|Ψd〉 = 1√
3

(|00〉+ |11〉+ |22〉)ÃB̃ ⊗ |Γd〉A′B′ ,

and the ideal measurements are described in Tables 3 and 4.
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Table 3: Alice’s ideal measurements for Gemb. The entry in cell x, a is the projector P a
x (tensored

identities are implied where omitted, and Prest completes the set of orthogonal projections in a row).

x
a 0 1 2

(“3-CHSH”, 0) |0〉〈0|Ã |1〉〈1|Ã |2〉〈2|Ã
(“3-CHSH”, 1) (σx)+

Ã
(σx)−

Ã
|2〉〈2|Ã

(“3-CHSH”, 2) |0〉〈0|Ã [V (σx)]+
Ã

[V (σx)]−
Ã

(“∼tCHSH( 1√
2), 0) W †

ÃA′
([σx(σz

α= 1√
2
)−σx]Ã ⊗ IA′)WÃA′ W †

ÃA′
([σx(σz

α= 1√
2
)+σx]Ã ⊗ IA′)WÃA′ Prest

(“∼tCHSH( 1√
2), 1) W †

ÃA′
([σx(σx

α= 1√
2
)−σx]Ã ⊗ IA′)WÃA′ W †

ÃA′
([σx(σx

α= 1√
2
)+σx]Ã ⊗ IA′)WÃA′ Prest

Table 4: Bob’s ideal measurements for Gemb. The entry in cell y, b is the projector P b
y (tensored

identities are implied where omitted, and Prest completes the set of orthogonal projections in a row).

y
b 0 1 2

(“3-CHSH”, 0) (σzα=1)+
B̃

(σzα=1)−
B̃

|2〉〈2|B̃

(“3-CHSH”, 1) (σxα=1)+
B̃

(σxα=1)−
B̃

|2〉〈2|B̃

(“3-CHSH”, 2) |0〉〈0|B̃ [V (σzα=1)]+
B̃

[V (σzα=1)]−
B̃

(“3-CHSH”, 3) |0〉〈0|B̃ [V (σxα=1)]+
B̃

[V (σxα=1)]−
B̃

(“∼tCHSH( 1√
2), 0) W †

B̃B′
([σx(σz)−σx]B̃ ⊗ IB′)WB̃B′ W †

B̃B′
([σx(σz)+σx]B̃ ⊗ IB′)WB̃B′ Prest

(“∼tCHSH( 1√
2), 1) W †

B̃B′
([σx(σx)−σx]B̃ ⊗ IB′)WB̃B′ W †

B̃B′
([σx(σx)+σx]B̃ ⊗ IB′)WB̃B′ Prest

Note that the ideal operators for the equivalent version of tilted CHSH from Theorem
3 are the same as for the original tilted CHSH of Definition 9, except conjugated by σx
(i.e. the answers are flipped).

Proposition 3 (Completeness). Let {Sd}d∈N be the family of strategies from Definition
12, and Gemb the non-local game from Fig. 1. Then, ω(Sd, Gemb) = ω∗(Gemb)−O(1

d).

Proof. The value of strategy Sd in part (a) is exactly ω∗3-CHSH. This is because the starting
state is the ideal state for ω∗3-CHSH and measurements are the ideal ones from Definition 10.
The value in part (b) is ω∗∼tCHSH( 1√

2
)−O(1

d). This is because the joint state resulting from

the embezzling transformation has fidelity 1−O(1
d) with the ideal state for ∼tCHSH( 1√

2)
(from Theorem 3), and the measurements for part (b) are also ideal. The value in part (c)
is easily seen to be exactly 1. Thus, ω(Sd, Gemb) = 1

3(ω∗3-CHSH +ω∗∼tCHSH( 1√
2

) + 1)−O(1
d).

Together with the upper bound in the proof of Proposition 2, this completes the proof of
Proposition 2 (i.e. ω∗(Gemb) = 1

3(ω∗3-CHSH + ω∗∼tCHSH( 1√
2

) + 1)), and gives ω(Sd, Gemb) =
1
3(ω∗3-CHSH + ω∗∼tCHSH( 1√

2
) + 1)−O(1

d), as desired.
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5 Soundness

Theorem 5. There exists a constant C > 0 such that any quantum strategy S for the
game Gemb of Fig. 1 with value ω(S,Gemb) ≥ ω∗(Gemb) − ε, for some 0 < ε < C, must
have dimension 2Ω(ε−1/8).

The proof of Theorem 5 can be broken down into two parts:

(i) First, we will show that performing well in parts (a), (b) and (c) of the game imposes
a certain structure on the strategy of the provers.

(ii) Second, we show that such a structured strategy can be used to play well also in
the “coherent state exchange” game of Leung, Toner and Watrous [LTW13]. This
reduction allows us to translate the lower bounds on the dimension of an approx-
imately optimal strategy in the “’coherent state exchange” game to lower bounds
on the dimension of an approximately optimal strategy for our game.

Proof of Theorem 5. Let
(
|ψ〉 ∈ HA ⊗HB, {P ax }, {Qby}

)
be a strategy whose value in Gemb

is ε-close to ω∗(Gemb) = 1
3(w∗3CHSH + w∗2CHSH + 1). This implies that, for each part of the

game, the strategy’s expected score is 3ε-close to optimal. From each part we deduce the
following:

(a) From Theorem 4 (the case d = 3), upon picking an appropriate constant C > 0,
there exists a local unitary U : HA ⊗HB → (C3)A1 ⊗ (C3)B1 ⊗HA′ ⊗HB′ , and an
auxiliary state |aux〉 ∈ HA′ ⊗HB′ such that

– |ψ〉 ≈U,O(ε1/8)
1√
3(|00〉+ |11〉+ |22〉)⊗ |aux〉

– P 0
(“3-CHSH”,0) |ψ〉 ≈U,O(ε1/8)

1√
3 |00〉 ⊗ |aux〉

(b) From Theorem 3, there exists a local unitary U ′ : HA ⊗ HB → (C2)A2 ⊗ (C2)B2 ⊗
HA′′ ⊗HB′′ , and an auxiliary state |aux′〉 ∈ HA′′ ⊗HB′′ such that

– |ψ〉 ≈U ′,O(ε1/2)
1√
3(|00〉+

√
2 |11〉)⊗ |aux′〉

– Q0
(“∼tCHSH( 1√

2
)”,0) |ψ〉 ≈U ′,O(ε1/2)

1√
3 |00〉 ⊗ |aux′〉

(c) P 0
(“3-CHSH”,0) |ψ〉 ≈O(ε1/2) Q

0
(“∼tCHSH( 1√

2
)”,0) |ψ〉

Notice that (a), (b), (c) =⇒ the local unitary Ũ := (U ′)(U)−1 : (C3)A1⊗ (C3)B1⊗HA′⊗
HB′ → (C2)A2 ⊗ (C2)B2 ⊗HA′′ ⊗HB′′ is such that

1√
3

(|00〉+ |11〉+ |22〉)⊗ |aux〉 ≈Ũ ,O(ε1/8)
1√
3

(|00〉+
√

2 |11〉)⊗ |aux′〉 , (11)

and moreover
1√
3
|00〉 ⊗ |aux〉 ≈Ũ ,O(ε1/8)

1√
3
|00〉 ⊗ |aux′〉 . (12)

(11) and (12) immediately imply that

1√
2

(|11〉+ |22〉)⊗ |aux〉 ≈Ũ ,O(ε1/8) |11〉 ⊗ |aux′〉 . (13)

We claim that the local unitary Ũ can be used to approximately win the “coherent state
exchange” game of Leung, Toner and Watrous [LTW13]. More precisely, since Equation
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(13) is O(ε1/8)-approximate (with respect to Euclidean norm), we claim that one can
construct a strategy which employs Ũ , and in which the provers’ initial state is |aux〉,
which wins the game of [LTW13] with probability 1 − O(ε1/4). Assuming this claim is
true, the rest of the proof is straightforward: it was shown in [LTW13] that the winning
probability of any strategy in the “coherent state exchange game” is upper bounded by
1− 1

32 log2(3d) , where d is the dimension of the states used; this implies that it must be

1
32 log2(3d)

= O(ε1/4) =⇒ d = 2Ω(ε−
1
8 ).

To conclude the proof of Theorem 5, we prove the above claim.
The “coherent state exchange” game of [LTW13] between a quantum referee and two

non-communicating provers, proceeds as follows:

• The referee initializes a qubit register R and qutrit registers S and T in the state

1√
2

(|0〉R |00〉ST + |1〉R |φ
+〉ST), (14)

where |φ+〉 = 1√
2(|00〉+ |11〉). The referee sends registers S and T to Alice and Bob

respectively.

• The referee receives single-qubit registers A and B from Alice and Bob respectively.
The triple (R,A,B) is measured with projective measurement {Π0,Π1}, where Π0 =
I − |γ〉 〈γ| and Π1 = |γ〉 〈γ|, and |γ〉 = 1√

2(|000〉+ |111〉).

Consider the following strategy of the provers for this game. They start by sharing the
state |aux〉 ∈ HA′ ⊗ HB′ . Upon receiving the qutrit registers S and T of the state (14),
they apply Ũ to registers (C3)S ⊗ (C3)T ⊗HA′ ⊗HB′ (up to relabelling registers A1 and
B1 as S and T), obtaining a state in (C2)A2 ⊗ (C2)B2 ⊗ HA′′ ⊗ HB′′ . Equations (12)
and (13) imply that the resulting state on registers R, A2, B2, A

′′, B′′ is O(ε1/8)-close to
1√
2(|000〉+ |111〉)⊗|aux′〉. And hence the state on R, A2, B2 is O(ε1/8)-close to the desired

state (in Euclidean norm). Qubit registers A2 and B2 are then sent back to the referee
as A and B. Converting the O(ε1/8)-closeness to a probability of winning in the game,
gives a lower bound of 1 − O(ε1/4), and thus concludes the proof. We remark that the
self-testing arguments applied in this proof also hold when the uncharacterized strategy
of the provers is not a priori assumed to be finite-dimensional, but is instead allowed to
infinite-dimensional (on separable Hilbert spaces).

6 Non-closure of the set of quantum correlations

A corollary of Proposition 3 and Theorem 5 (completeness and soundness for our game)
is that the set Cqs of quantum correlations induced by, possibly infinite-dimensional,
quantum strategies (in the tensor product model) is not closed, i.e. Cqs 6= Cqa, where
the latter is the closure. For precise definitions of these sets see [CS18]. We use super-
scripts to denote question and answer set sizes. For instance Cm,n,r,sqs is on question sets
of size m,n and answer sets of size r, s.

Corollary 1. C5,6,3,3
qs 6= C5,6,3,3

qa .
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Proof. In the proof of Theorem 5, we argued that any strategy with value ω∗(Gemb) − ε
in our game Gemb can be used to construct a strategy that embezzles an EPR pair into a
product state, up to O(ε1/8) error in Euclidean norm. This implies that no strategy has
value exactly ω∗(Gemb). Suppose otherwise for a contradiction. Then, by the reduction
in the proof of Theorem 5, we can construct a strategy that wins the game of [LTW13]
with probability 1. From [LTW13], this is known to imply existence of a strategy that
embezzles perfectly (the argument that shows this implication in [LTW13] is phrased for
finite-dimensional strategies, but it holds also for infinite-dimensional ones). A perfect
embezzling strategy consists of a state |Ψ〉 ∈ HA′ ⊗HB′ and a local unitary U = UAA′ ⊗
UBB′ such that U |φ+〉AB ⊗ |Ψ〉A′B′ = |00〉AB ⊗ |Ψ〉A′B′ . Since Schmidt coefficients are
preserved under local unitaries, it is clear that, whatever the Schmidt coefficients of |Ψ〉
are, the Schmidt coefficients of the LHS and RHS are different. This gives a contradiction.

On the other hand, Proposition 3 gives a sequence of strategies whose value tends
to ω∗(Gemb). If one considers the sequence of correlations induced by such strategies,
it is clear that such a sequence has a limit, and that the limiting correlation has value
ω∗(Gemb). Such a limiting correlation is thus in C5,6,3,3

qa but not in C5,6,3,3
qs .

We emphasize that strictly stronger separations (for question sets of size 5 and an-
swer sets of size 2) are known [DPP17, MR18]. The latter appeared after the original
breakthrough proof of Slofstra, for much larger question and answer sets [Slo19]. What
stands out about our proof is that, unlike all previous proofs, it does not involve any
representation theoretic machinery.

Acknowledgements

The author thanks William Slofstra and Thomas Vidick for useful comments on an ear-
lier version of this paper. The author also thanks the latter for helpful discussions. The
author thanks Vern Paulsen for a useful email exchange about the game in [DPP17]. The
author was supported by the Kortschak Scholars program and AFOSR YIP award num-
ber FA9550-16-1-0495.

References

[AMP12] Antonio Acín, Serge Massar, and Stefano Pironio. Randomness versus non-
locality and entanglement. Physical Review Letters, 108(10):100402, 2012.
doi:https://doi.org/10.1103/PhysRevLett.108.100402.

[BBT11] Jop Briët, Harry Buhrman, and Ben Toner. A generalized grothendieck
inequality and nonlocal correlations that require high entangle-
ment. Communications in mathematical physics, 305(3):827–843, 2011.
doi:https://doi.org/10.1007/s00220-011-1280-3.

[Bel64] John S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195–200,
1964. doi:https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.

[BNV13] Nicolas Brunner, Miguel Navascués, and Tamás Vértesi. Dimension witnesses
and quantum state discrimination. Physical review letters, 110(15):150501, 2013.
doi:https://doi.org/10.1103/PhysRevLett.110.150501.

Accepted in Quantum 2020-05-08, click title to verify. Published under CC-BY 4.0. 16

http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.108.100402
http://dx.doi.org/https://doi.org/10.1007/s00220-011-1280-3
http://dx.doi.org/https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.110.150501


[BP15] Cédric Bamps and Stefano Pironio. Sum-of-squares decomposi-
tions for a family of clauser-horne-shimony-holt-like inequalities and
their application to self-testing. Physical Review A, 91(5):052111, 2015.
doi:https://doi.org/10.1103/PhysRevA.91.052111.

[BPA+08] Nicolas Brunner, Stefano Pironio, Antonio Acin, Nicolas Gisin,
André Allan Méthot, and Valerio Scarani. Testing the dimen-
sion of hilbert spaces. Physical review letters, 100(21):210503, 2008.
doi:https://doi.org/10.1103/PhysRevLett.100.210503.

[CGS17] Andrea Coladangelo, Koon Tong Goh, and Valerio Scarani. All pure bipar-
tite entangled states can be self-tested. Nature communications, 8:15485, 2017.
doi:https://doi.org/10.1038/ncomms15485.

[CHSH69] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. Pro-
posed experiment to test local hidden-variable theories. Physical review letters,
23(15):880, 1969. doi:https://doi.org/10.1103/PhysRevLett.23.880.

[CN16] Matthew Coudron and Anand Natarajan. The parallel-repeated magic square
game is rigid. arXiv preprint arXiv:1609.06306, 2016.

[Col17] Andrea Coladangelo. Parallel self-testing of (tilted) epr pairs via copies of
(tilted) chsh and the magic square game. Quantum Information & Computation,
17(9-10):831–865, 2017. doi:https://doi.org/10.26421/QIC17.9-10.

[Col18] Andrea Coladangelo. Generalization of the clauser-horne-
shimony-holt inequality self-testing maximally entangled states
of any local dimension. Physical Review A, 98(5):052115, 2018.
doi:https://doi.org/10.1103/PhysRevA.98.052115.

[CRSV18] Rui Chao, Ben W Reichardt, Chris Sutherland, and Thomas Vidick. Test for a
large amount of entanglement, using few measurements. Quantum, 2:92, 2018.
doi:https://doi.org/10.22331/q-2018-09-03-92.

[CS17a] Andrea Coladangelo and Jalex Stark. Robust self-testing for linear constraint
system games. arXiv preprint arXiv:1709.09267, 2017.

[CS17b] Andrea Coladangelo and Jalex Stark. Separation of finite and infinite-
dimensional quantum correlations, with infinite question or answer sets. arXiv
preprint arXiv:1708.06522, 2017.

[CS18] Andrea Coladangelo and Jalex Stark. Unconditional separation of finite and
infinite-dimensional quantum correlations. arXiv preprint arXiv:1804.05116,
2018.

[DPP17] Ken Dykema, Vern I Paulsen, and Jitendra Prakash. Non-closure of the set
of quantum correlations via graphs. Communications in Mathematical Physics,
pages 1–18, 2017. doi:https://doi.org/10.1007/s00220-019-03301-1.

[JLV18] Zhengfeng Ji, Debbie Leung, and Thomas Vidick. A three-player coherent
state embezzlement game. arXiv preprint arXiv:1802.04926, 2018.

[LTW13] Debbie Leung, Ben Toner, and John Watrous. Coherent state exchange in
multi-prover quantum interactive proof systems. Chicago Journal of Theoretical
Computer Science, 11(2013):1, 2013. doi:https://doi.org/10.4086/cjtcs.2013.011.

[MR18] Magdalena Musat and Mikael Rørdam. Non-closure of quantum correlation
matrices and factorizable channels that require infinite dimensional ancilla.

Accepted in Quantum 2020-05-08, click title to verify. Published under CC-BY 4.0. 17

http://dx.doi.org/https://doi.org/10.1103/PhysRevA.91.052111
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.100.210503
http://dx.doi.org/https://doi.org/10.1038/ncomms15485
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/https://doi.org/10.26421/QIC17.9-10
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.98.052115
http://dx.doi.org/https://doi.org/10.22331/q-2018-09-03-92
http://dx.doi.org/https://doi.org/10.1007/s00220-019-03301-1
http://dx.doi.org/https://doi.org/10.4086/cjtcs.2013.011


arXiv preprint arXiv:1806.10242, 2018. doi:https://doi.org/10.1007/s00220-
019-03449-w.

[MV14] Laura Mančinska and Thomas Vidick. Unbounded entanglement in nonlo-
cal games. International Colloquium on Automata, Languages, and Programming,
pages 835–846, 2014. doi:https://doi.org/10.1007/978-3-662-43948-7_69.

[MY04] Dominic Mayers and Andrew Yao. Self testing quantum appa-
ratus. Quantum Information & Computation, 4(4):273–286, 2004.
doi:https://doi.org/10.26421/QIC4.4.

[MYS12] Matthew McKague, Tzyh Haur Yang, and Valerio Scarani. Robust self-testing
of the singlet. Journal of Physics A: Mathematical and Theoretical, 45(45):455304,
2012. doi:https://doi.org/10.1088/1751-8113/45/45/455304.

[NV17] Anand Natarajan and Thomas Vidick. A quantum linearity test for ro-
bustly verifying entanglement. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1003–1015. ACM, 2017.
doi:https://doi.org/10.1145/3055399.3055468.

[Slo11] William Slofstra. Lower bounds on the entanglement needed to play
xor non-local games. Journal of Mathematical Physics, 52(10):102202, 2011.
doi:https://doi.org/10.1063/1.3652924.

[Slo18] William Slofstra. A group with at least subexponential hyperlinear profile.
arXiv preprint arXiv:1806.05267, 2018.

[Slo19] William Slofstra. The set of quantum correlations is not closed. In
Forum of Mathematics, Pi, volume 7. Cambridge University Press, 2019.
doi:https://doi.org/10.1017/fmp.2018.3.

[Slo20] William Slofstra. Tsirelson’s problem and an embedding theorem for groups
arising from non-local games. Journal of the American Mathematical Society,
33(1):1–56, 2020. doi:https://doi.org/10.1090/jams/929.

[SV18] William Slofstra and Thomas Vidick. Entanglement in non-local games and
the hyperlinear profile of groups. In Annales Henri Poincaré, volume 19, pages
2979–3005. Springer, 2018. doi:https://doi.org/10.1007/s00023-018-0718-y.

[SW08] Volkher B Scholz and Reinhard F Werner. Tsirelson’s problem. arXiv preprint
arXiv:0812.4305, 2008.

[vDH03] Wim van Dam and Patrick Hayden. Universal entanglement transfor-
mations without communication. Physical Review A, 67(6):060302, 2003.
doi:https://doi.org/10.1103/PhysRevA.67.060302.

[YN13] Tzyh Haur Yang and Miguel Navascués. Robust self-testing of unknown
quantum systems into any entangled two-qubit states. Physical Review A,
87(5):050102, 2013. doi:https://doi.org/10.1103/PhysRevA.87.050102.

Accepted in Quantum 2020-05-08, click title to verify. Published under CC-BY 4.0. 18

http://dx.doi.org/https://doi.org/10.1007/s00220-019-03449-w
http://dx.doi.org/https://doi.org/10.1007/s00220-019-03449-w
http://dx.doi.org/https://doi.org/10.1007/978-3-662-43948-7_69
http://dx.doi.org/https://doi.org/10.26421/QIC4.4
http://dx.doi.org/https://doi.org/10.1088/1751-8113/45/45/455304
http://dx.doi.org/https://doi.org/10.1145/3055399.3055468
http://dx.doi.org/https://doi.org/10.1063/1.3652924
http://dx.doi.org/https://doi.org/10.1017/fmp.2018.3
http://dx.doi.org/https://doi.org/10.1090/jams/929
http://dx.doi.org/https://doi.org/10.1007/s00023-018-0718-y
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.67.060302
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.87.050102

	1 Introduction
	1.1 A sketch of our two-player non-local game

	2 Preliminaries
	2.1 Notation
	2.2 Non-local games
	2.3 Useful examples of non-local games
	2.4 Embezzlement

	3 Our non-local game
	4 Completeness
	5 Soundness
	6 Non-closure of the set of quantum correlations

