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Abstract 
The incorporation of unique molecular identifiers (UMIs) in single-cell RNA-seq assays 
allows for the removal of amplification bias in the estimation of gene abundances. We show 
that UMIs can also be used to address a problem resulting from incomplete sequencing of 
amplified molecules in sequencing libraries that can lead to bias in gene abundance 
estimates. Our method, called BUTTERFLY, is based on a zero truncated negative binomial 
estimator and is implemented in the kallisto bustools single-cell RNA-seq workflow. We 
demonstrate its efficacy using a range of datasets and show that it can invert the relative 
abundance of certain genes in cases of a pooled amplification paradox. 

Background 
Droplet-based single-cell RNA sequencing (scRNA-Seq) technologies have made possible 
quantification of transcriptomes in individual cells at a large scale (1), enabling the study of 
the diversity in molecular state among cells. As an increasing number of datasets have been 
collected (2), methods for integration of results derived by different laboratories have 
become paramount. The diversity of experimental and computational methods used in 
producing individual datasets makes careful accounting of technical and batch effects 
essential (3).  
 
Most single-cell RNA-seq technologies require amplification of the RNA starting material via 
PCR, a step that is known to introduce bias across genes depending on the nucleotide 
sequence. For example, amplification has been shown to depend on the GC content of a 
gene (4). Single-cell RNA-Seq can require many PCR amplification cycles, even more than 
bulk sequencing, due to the small amount of mRNA molecules available in each cell. 
Fortunately, the introduction of unique molecular identifiers (UMIs) (5), where all mRNA 
molecules are tagged with random barcodes, can be used to account for PCR duplicates, 
since copies of captured mRNA molecules can be detected and discarded. This process is 
known as deduplication, or UMI collapsing (6). However, UMI collapsing does not address 
another bias that can result from incomplete representation of differentially amplified 
molecules in sequenced products from a library (Figure 1A), and is common in droplet-based 
single-cell RNA-Seq experiments (7).  
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Figure 1: The pooled amplification paradox . A. Illustration of a seemingly paradoxical 
reversal in gene abundance estimates arising from incomplete sampling of a cDNA library 
generated after a differential amplification of two genes. Consider a situation where more 
molecules have been captured for Gene 1 (8) than Gene 2 (6). Despite the correction for 
amplification bias with unique molecular identifiers, the increased amplification of Gene 2 
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relative to Gene 1, coupled with the incomplete sequencing of the cDNA library, results in a 
lower copy number estimate of Gene 1 (4) in comparison to Gene 2 (5). Correction of 
abundance estimates due to unseen molecules using a histogram of counts per UMI 
improves the quantification, reversing the relative amount of Gene 1 and Gene 2. B. 
Example of the pooled amplification paradox as seen in an analysis of the EVAL dataset. I) 
Histograms of the counts per UMI for two genes with different amplification. The histograms 
are generated from downsampled data (4 times), visualized by a dashed line in II and III.  II) 
Change in the mean gene expression estimates across cells of the two genes when 
downsampling the reads. III) Change in gene expression for downsampled data when 
correcting for unseen molecules. The code to reproduce this figure is here: code for Figure 1  
 
Estimation of unseen species (8,9) is commonly used in ecology, where the number of 
species encountered in an ecosystem given a certain sampling effort is estimated from a 
limited number of samples. We translate this to the problem of estimating the unseen 
number of molecules in a single-cell sequencing experiment, where the species correspond 
to unique molecules and samples to sequencing reads. We show that this is possible in 
assays that utilize unique molecular identifiers.  
 
The mathematical problem of estimating unseen species has previously been addressed 
with the introduction of several estimators. The simplest is the Good-Toulmin estimator (8), 
which while easy to utilize, is limited in prediction range, producing stable predictions of 
species represented only in up to twice the number of samples. Although this limitation can 
be addressed (10), the estimator is still not practically useful for sequencing experiments. 
Daley et al. therefore developed Preseq (11–13), which does not suffer from such limitations, 
and employed it to estimate the optimal number of reads for genome sequencing.  Their 
method is based on rational function approximation, which substantially increases the radius 
of convergence of the power series appearing in the Good-Toulmin estimator, providing a 
stable estimator.  
 
Here, we present BUTTERFLY, a method that utilizes estimation of unseen species for 
addressing the bias caused by incomplete sampling of differentially amplified molecules. 
Specifically, we extrapolate the gene expression to a higher number of reads by estimating 
the missing number of molecules per gene, validate the results using two different 
approaches, and demonstrate that BUTTERFLY can be efficiently applied to datasets using 
the kallisto bustools single-cell RNA-seq workflow (14).  
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Results 
 
To measure the extent and heterogeneity of amplification bias we analyzed a total of 13 
scRNA-seq datasets which were generated from a total of 5 different technologies (see 
Methods).  We found that the variation in RNA amplification was substantial across genes 
(Supplementary Figures 1 -- 3). Amplification bias patterns were different across 
technologies. For example, all 10X technologies (Supplementary Figure 1) displayed 
consistently more amplification bias than Drop-seq (Supplementary Figure 2) or Seq-Well 
(Supplementary Figure 3). Furthermore, we found that amplification bias is consistent across 
technologies. For example, the variance in the fraction of single copy molecules (FSCM) in 
10X technologies was consistently 0.024 (std. dev. 0.008) whereas the variance in FSCM in 
the Drop-seq datasets was 0.013 (std. dev. 0.004). We also found that specific genes were 
more likely to be affected by amplification bias than others (Figure 2A, Supplementary Figure 
4). Interestingly, the genes with high amplification bias, as determined by their FSCM, are 
generally the same across datasets, especially in data generated with the same technology 
(Figure 2B, Supplementary Figure 5).  
 

 
Figure 2: Differences in fraction of single-copy molecules across genes.  A. Fraction of 
single copy molecules (FSCM) vs mean gene expression across cells for the PBMC_V3_3 
dataset. B. Comparison of gene FSCM between 2 datasets (PBMC_V3_2 and PBMC_V3_3) 
produced using the same technology (10x Chromium v3). The code to reproduce this figure 
is here: code for Figure 2  
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To assess the implications of amplification bias on single-cell RNA-seq quantification, we 
downsampled reads in a mouse 10X brain cortex dataset (the EVAL dataset, see Methods) 
and analyzed quantification of abundances with standard UMI collapsing for a pair of genes 
(Figure 1B). We found that while the vomeronal 1 receptor 13 gene (Vmn1r13) appeared to 
be 2.4 times more highly expressed than the Ubiquitin B gene (Ubb) in the full dataset (30 M 
reads), when downsampling to 1.5 M reads (1/20th the dataset) the opposite was the case: 
UBB was 4.9 times more highly expressed than vmn1r13. Increasing the number of reads 
yields the discovery of many new molecules for vmn1r13, but few for Ubb , since many more 
of the molecules belonging to Ubb have already been sampled, and are therefore “canceled 
out” during UMI collapsing. 
 
We hypothesized that by predicting unseen species (8,9), we could reduce, or eliminate, the 
bias introduced by naive UMI collapsing. Each gene’s expected increase in gene expression 
with more reads can be estimated from measurements of counts per UMI (CU histogram, 
see Figure 1B i). We evaluated several methods for this purpose (Supplementary Figure 6): 
The Daley et al. (11) Preseq method (Preseq DS) exhibits similar performance to the 
zero-truncated negative binomial (ZTNB) (9), and both are more stable than the 
Good-Toulmin estimator (8). We found that ZTNB has better performance for highly 
expressed genes, while Preseq DS performs slightly better for medium range genes for 
some datasets (see Supplementary Note).  
 
To evaluate the performance of BUTTERFLY we downsampled a human 10X peripheral 
blood mononuclear cell dataset (PBMC_V3_3, see Methods) to one tenth of the reads and 
compared the uncorrected gene expression estimates and BUTTERFLY corrected gene 
expression estimates in the downsampled dataset, to those of the full dataset. Figure 3A 
shows the log fold change for all genes where no correction is applied, showing large 
discrepancies for many genes. The concordance correlation coefficient (CCC) was 0.981 
(see Methods). With BUTTERFLY the difference is clearly reduced (Figure 3B, CCC = 
0.994), especially for highly expressed genes. These results are recapitulated in 12 other 
datasets from a variety of technologies including 10X Genomics v2, v3 and Next Gem, 
Drop-seq and SeqWell (Supplementary Figures 7 -- 19). We found that pooling histograms 
derived from distinct datasets further improves results; we assembled CU histogram data 
from 6 other 10X Chromium datasets from human PBMC and utilized it for prediction 
(Methods). Use of pooled data clearly improves the prediction for low expression genes (Fig. 
4C, CCC = 0.997).  
 
Part of the discrepancy between corrected expression of downsampled data and the full 
datasets can be explained by sampling effects. To estimate the magnitude of that effect, we 
repeatedly downsampled the original dataset to one tenth of the reads for 20 iterations and 
calculated the mean expression for each gene, thereby obtaining a bound on the accuracy 
possible (Supplementary Figure 20). 
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Figure 3: Effect of BUTTERFLY correction on gene expression.  The log fold change in 
gene expression for the PBMC_V3_3 dataset between the downsampled data (at 1/10 
number of reads) and the original data. A. No unseen molecules correction. B. Unseen 
molecules correction applied to every gene based on the data within the dataset. C. The 
same correction as in B, but using additional data from six other 10x Chromium datasets for 
estimating the copies per UMI histograms per gene (Methods). The code to reproduce this 
figure is here: code for Figure 3 
 
While the downsampling results show that BUTTERFLY correction can be used to scale the 
gene expression of each gene to resemble the gene expression that more reads would yield, 
they do not necessarily imply that the corrected expression values are closer to ground truth. 
To investigate whether that is indeed the case, we assessed whether BUTTERFLY 
increases similarity of gene abundance estimates between datasets from the same 
biological sample assayed with different technologies. Figure 4A shows that as a correction 
for unseen molecules is applied to both 10X Chromium and Drop-seq datasets from PBMC 
cells, there is an increase in concordance. Figure 4B shows that the improvement in 
concordance is driven by individual genes, as the effect on concordance resulting from 
correction of unseen molecules on individual genes is highly gene dependent. 
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Fig. 4: Unseen molecules correction increases gene expression similarity across 
technologies.  Two PBMC datasets generated with different technologies ((EVALPBMC, 10x 
Chromium v2, and EVALPBMC_DS, Drop-Seq) were downsampled to varying depths, and 
corrected for unseen molecules using BUTTERFLY. A. The figure shows the change in 
correlation (CCC) between the two datasets at different prediction/downsampling points. For 
the red curve, the 10X dataset is predicted/downsampled as defined by the prediction range, 
while the Drop-Seq dataset is kept constant at the full number of reads (no prediction). For 
the blue line, both datasets are predicted/downsampled at each point. B. Change in gene 
expression from prediction/downsampling for three genes, for both datasets. The code to 
reproduce this figure is here: code for Figure 4 
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Discussion 
 
The “pooled amplification” paradox we have highlighted is of significant concern because it 
can affect some genes significantly, and therefore inferences based on their relative 
abundance estimates may be based on biased information. For example, the gene 
NEUROD1 has a very high fraction of single-copy molecules in 10x Chromium datasets 
(FSCM = 0.90, calculated from the joint data of all 10x PBMC datasets used in this study) 
suggesting that the number of cells with a detected expression of this gene is much lower 
than what would otherwise be expected. This gene has for example been identified as a 
marker gene used to identify enteroendocrine cell precursors (15). Our results show that this 
gene may appear to be underrepresented in data due to low PCR amplification. 
 
In addition to improving abundance estimates of specific genes, we have shown that 
BUTTERFLY can help reduce batch effect between datasets sequenced at different depths. 
This result should be interesting to explore in conjunction with single-cell integration methods 
(16). Furthermore, while we have demonstrated BUTTERFLY in the context of single-cell 
RNA-seq, the approach we have outlined is relevant for any assay in which objects are 
sampled after amplification, and where the pooled amplification paradox may occur (see, 
e.g. (17)). In particular, genomics assays utilizing UMIs should benefit from our method. 
There are also other applications of estimation of unseen species in genomics, as recently 
shown in (18).  
 
Our work also highlights the need for reliable estimators for the unseen species problem in 
the case where count histograms are based on few observations. While there has been 
significant effort expended in the development of estimators in the case of abundant data, 
this setting may be ripe for new discoveries. Furthermore, the improved reliability of 
estimators with more data means our approach may induce bias in accuracy favoring highly 
abundant genes. This should be taken into account in downstream analyses and in 
interpretation of results, much in the same way that improved abundance estimates of long 
genes affect interpretation of differential analysis (19).  
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Methods 

Datasets 
We analyzed a total of 13 public scRNA-Seq datasets collected using 5 technologies; 
Drop-Seq, Seq-Well and 10x Chromium version v2, v3, and Next GEM. The datasets were 
generated from 4 sample types; mouse brain (dataset EVAL), mouse retina (datasets MRET 
and MRET2), human lung tumor (dataset LC), and human PBMC (remaining datasets). The 
datasets, including metadata, are listed in Table S1, with additional information in 
Supplementary Table S2. The datasets were processed using kallisto (20) and bustools (14), 
yielding counts and gene association for each unique molecule. Molecules mapped to 
multiple genes were discarded before analysis. 

Pre-processing of Sequencing Files 
The datasets were processed using kallisto (20) version 0.46.2 and and a version of 
bustools (14) specifically developed for this study, yielding counts and gene association for 
each unique molecule. kallisto index files were created for mouse and human using cDNA 
files from Ensembl (v. 96 for mouse, v. 94 for human). 
 
We developed the new commands collapse and umicorrect in a branch of the bustools code, 
and modified the commands text and fromtext, to enable production of bus files mapped per 
gene (BUG-files) for further processing in R. The umicorrect command was implemented as 
described previously(21), while collapse transforms the BUS records from being mapped to 
equivalence classes to being merged where appropriate and mapped to genes. Transcripts 
to genes files, which are required for the collapse command, were generated with the 
function transcript2gene from the BUSpaRse R package(22), version 0.99.25. 

Processing of data in R 
All reads mapping to more than one gene were discarded before further processing, as were 
cells with fewer than 200 UMIs (except for the LC dataset, where cells with fewer than 1000 
UMIs were discarded, motivated by the large number of cells compared to the expected 
number from the authors). Statistic metrics were also calculated for each dataset 
(Supplementary Table S2). 

Correction for unseen molecules 
To correct gene abundance estimates, the number of unseen molecules are predicted for 
each gene, assuming that the same gene behaves similarly across cells. For each gene, all 
molecules across all cells are pooled and used to calculate a CU histogram. The CU 
histogram is then in turn used as input to a prediction algorithm. Prediction was done using 
the Good-Toulmin estimator as well as the DS (based on rational functions approximation) 
and zero truncated negative binomial (ZTNB) included in the PreseqR package. We 
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implemented the Good-Toulmin estimator in R and used the functions ds.rSAC and a 
modified version of ztnb.rSAC from PreseqR (where the modified version has larger error 
tolerances, which speeds up computation time considerably while producing very similar 
results). The gene expression was predicted per gene, pooling the UMIs from all cells in the 
dataset. Histograms over the number of copies per UMI (CU histograms) were constructed 
per gene and used as input to the prediction algorithms. The predicted number of UMIs per 
gene was then used to calculate the gene expression in counts per million (CPM). We used 
ZTNB for prediction except for figure 3C, where the pooled prediction is based on the DS 
algorithm (MT = 2). 
 
The ZTNB method is based on using an expectation-maximization algorithm for fitting a 
negative binomial curve to the histogram of number of copies per UMI, where the number of 
molecules with zero counts is unknown. It is then assumed that the size parameter of the 
negative binomial remains the same as the number of reads increase, and that the mean is 
proportional to the number of reads. The number of molecules with at least one copy can 
then be estimated from the probability density function of the negative binomial. 
 
Once the predicted gene expression is estimated, the UMI counts in the counts matrix are 
scaled by a factor mg , calculated for each gene g as  
 

 , cmg =  TP g   
 
where T is the total number of UMIs in the count matrix, P is the total number of predicted 
UMIs across all genes, and cg is the number of predicted UMIs for gene g. 

Correction using Pooled Data from Other Datasets 
The prediction is dependent on having enough data per gene to build CU histograms, as 
sampling effects on the histogram leads to unstable prediction. A way to circumvent this 
issue is to use CU histogram data from other similar datasets in the prediction. The Preseq 
DS algorithm with CU histograms truncated at 2 copies per molecule is convenient in this 
regard, since we only need to estimate the fractions of molecules that have one (FSCM) and 
two (FDCM) copies. These metrics were measured per gene for the datasets PBMC_V3, 
PBMC_V3_2, PBMC_NG, PBMC_NG_2, PBMC_V2 and EVALPBMC (pool source 
datasets), and were used to predict the dataset PBMC_V3_3.  
 
Since each dataset has a different degree of saturation (i.e. average counts per UMI), there 
is a need to normalize FSCM and FDCM between the dataset being predicted and the pool 
source datasets (see for example Fig. 3C, where the dataset PBMC_V2 on average has a 
lower FSCM than PBMC_V3_3). We utilized quantile normalization to adjust the FSCM and 
FDCM of the pool source datasets to be more similar that of the dataset being predicted. 
 
The pooled FSCM and FDCM metrics for a gene is then calculated as a weighted mean of 
all datasets, including the dataset being predicted, where the weight is the number of UMIs 
for the gene per dataset. A third metric, the fraction of molecules that have more than two 
copies (FMCM), is calculated from FSCM and FDCM, as FMCM = 1 - FSCM - FDCM. The 
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histogram used for prediction is simplified to these three bins, and constructed using those 
metrics scaled with the number of UMIs of the gene in the dataset to be predicted. Prediction 
is then carried out as described above. 
 
For generating Figure 3, where prediction is performed using downsampled data, the pool 
source datasets were downsampled as well to better match the dataset being predicted 
regarding degree of saturation. Since much data is lost during downsampling, each dataset 
was repeatedly downsampled 10 times and added to the data pool, providing a list of in total 
60 datasets. 

Concordance Correlation Coefficient 
To compare the similarity in gene expression of two samples, the Pearson correlation is not 
a suitable metric since it measures linearity, and not similarity. We instead used Lin’s 
concordance correlation coefficient (CCC), which describes the expected perpendicular 
distance from a 45° line passing through the origin. We used the CCC function in the R 
package DescTools (version 0.99.36) to calculate the metric, using default parameters.  
 
The similarity was calculated on log-transformed data, where the transformed gene 
expression li for gene i is calculated as , where ei is the gene expression of(e )  li = log2 i + 1  
the gene in counts per million (CPM). 

Figure Details 
In figure 1 B III, the correction is based on correcting the UMIs for all genes individually. The 
prediction range is the same for all genes, scaling up the counts to match the total counts in 
the full dataset. The predicted UMIs are then CPM normalized. 
 
To avoid the uncertainty in the FSCM calculations that arise from having too few molecules, 
only genes with at least 200 molecules in both datasets were included in figure 2B and 
supporting figure 5.  
 
To avoid the uncertainty in prediction from lowly expressed genes, genes with a gene 
expression lower than 100 CPM were removed before calculating CCC in figure 4, leaving in 
total 1018 genes. CPM was then recalculated based on these genes only to avoid the 
influence of lowly expressed genes, for which prediction is less accurate. 
 
In all figures where the gene expression of a dataset is used, the gene expression is 
calculated as the mean gene expression across all cells. 
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Implementation 
The ZTNB prediction was implemented in bustools with the addition of  the `predict` 
command using the same algorithm as PreSeqR(12,13), and utilizing the c++ libraries 
Eigen(23), LBFGSpp(24), and CppOptimizationLibrary(25). The count command in bustools 
has been extended with the option “--hist”, which generates CU histograms that serve as 
input to predict, together with the count matrix. In addition, UMI correction was implemented 
as the “umicorrect” command, utilizing the method of (21). 
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