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Coupled Control Systems: Periodic Orbit Generation with
Application to Quadrupedal Locomotion

Wen-Loong Ma, Noel Csomay-Shanklin and Aaron D. Ames

Abstract— A robotic system can be viewed as a collection
of lower-dimensional systems that are coupled via reaction
forces (Lagrange multipliers) enforcing holonomic constraints.
Inspired by this viewpoint, this paper presents a novel formula-
tion for nonlinear control systems that are subject to coupling
constraints via virtual ‘“coupling” inputs that abstractly play
the role of Lagrange multipliers. The main contribution of this
paper is a process—mirroring solving for Lagrange multipliers
in robotic systems—wherein we isolate subsystems free of cou-
pling constraints that provably encode the full-order dynamics
of the coupled control system from which it was derived.
This dimension reduction is leveraged in the formulation of
a nonlinear optimization problem for the isolated subsystem
that yields periodic orbits for the full-order coupled system. We
consider the application of these ideas to robotic systems, which
can be decomposed into subsystems. Specifically, we view a
quadruped as a coupled control system consisting of two bipedal
robots, wherein applying the framework developed allows
for gaits (periodic orbits) to be generated for the individual
biped yielding a gait for the full-order quadruped. This is
demonstrated through walking experiments of a quadrupedal
robot in simulation and on rough terrains.

I. INTRODUCTION

To achieve dynamic walking on high-dimensional robotic
systems, hybrid zero dynamics (HZD) has proven to be a
successful methodology as a result of its ability to make
theoretic guarantees [19], [7], [2] and yield walking for
complex humanoids [17], [14]. The main idea behind this
approach is that the full-order dynamics of the robot can
be reduced to a lower-dimensional surface on which the
system evolves. The system can then be studied via the
low-dimensional dynamic representation and, importantly,
guarantees made can be translated back to the full-order
dynamics, i.e., periodic orbits (or walking gaits) in the low-
dimensional system imply corresponding periodic orbits in
the full-order system. The goal of this paper is to capture this
dimension reduction in a more general context—that of cou-
pled control systems, which capture the ability to decompose
a complex system into low-dimensional subsystems.

Another means of dimension reduction for robotic sys-
tems comes from isolating subsystems and coupling these
subsystems at the level of reaction forces, i.e., Lagrange
multipliers that enforce holonomic constraints. This is the
idea underlying the highly efficient method for calculating
the dynamics of robotic systems: Spatial vector algebra [5].
For example, a double pendulum can be decomposed into
two single pendula connected via a constraint at the pivot
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Fig. 1. Conceptual illustration of the full body dynamics decomposition,

where the 3D quadruped — the Vision 60 — is decomposed into two

constrained 3D bipedal robots.

joint [6]. More generally, one can consider two equivalent

ways of expressing the dynamics of a robotic system [13]:
Di(q)ds + Hiqi, ¢i) = uwi + Jn A

D(q)ij+ H(q, q) —ue z(lIz)Qz + z(Qqu) i+ h;
s.t. h(¢g) =0
Full-Order Dynamics

Reduced-Order Coupled Dynamics

for ¢ = 1,2, where h is a coupling (holonomic) constraint
that is enforced via the Lagrange multiplier A allowing
for the higher-dimensional ¢ to be decomposed into lower-
dimensional ¢;, i.e., ¢ = (q1, g2). For example, a quadrupedal
robot can be decomposed into two bipeds as in Fig. [I] Thus,
if one can make guarantees on the reduced-order coupled
systems, they can be translated to the full-order dynamics.

The study of coupled dynamic and control systems has a
long and rich history from which the framework presented in
this paper has taken inspiration. The most prevalent example
is that of multi-robot systems [12], and specifically the
consensus problem [15]. Interconnected systems have also
been well-studied [3]. In the context of mechanical and
robotic systems on graphs, network synchronization has been
considered [4]. Port-Hamiltonian systems also capture the
notion of coupling present in general mechanical systems
[18]. Finally, in related work, the coordination of quadruped
and human reaction forces has recently been studied [8].
While not explicitly discussed due to space constraints, many
of these formulations fit within the general setting of coupled
control systems presented here.

This paper generalizes the aforementioned methods —
zero dynamics and system decomposition through coupling
constraints — and unifies them through a novel formulation:
coupled control systems. We then utilize zero dynamics to
reduce to a subsystem dependent on coupling constraint
which is then eliminated via coupling relations to yield the
final isolated subsystem. The main result of this paper is that



solutions of the isolated subsystem are solutions of the full-
order system, and thus periodic orbits on the subsystem yield
periodic orbits on the full-order system. This result is lever-
aged to construct a nonlinear optimization problem utilizing
collocation methods to generate these periodic solutions.
Our motivating application is gait (periodic orbit) gen-
eration for quadrupedal robots. Previously, HZD methods
were applied to quadrupedal walking [10]; yet the high
dimensionality of this system made it computationally ex-
pensive to generate gaits when compared to their bipedal
analogs. To address this shortcoming, recent work has aimed
at decomposing quadruped into bipedal robots [11]—it is
this methodology that this paper formalizes and extends.
Therefore, we consider a quadrupedal robot utilizing the
coupled control system paradigm, wherein this system
can be reduced to lower-dimensional subsystems on which
periodic orbits (gaits) can be generated. We demonstrate
the results through the realization of these generated gaits
experimentally to achieve stable walking on rough terrains.

II. COUPLED CONTROL SYSTEMS

This section introduces the notion of coupled control
systems, for which a collection of differential equations are
coupled via algebraic coupling condition. The goal is to
present the basic paradigm used throughout the paper.

We first introduce a bidirectional graph I' = (N, E)
where the vertices N = {1,2} represent the indices of the
subsystems and edges E = {(1,2),(2,1)} represent their
connections. We then denote X = {X;}ien as a set of
internal states, Z = {Z;};en as a set of coupled states,
and U = {U; };en as a set of admissible control inputs. In
addition, we assume i # j € Nand e = (i,5),€ = (j,7) € E
throughout the paper.

We can now define the main object of interest.

Definition 1. A coupled control system (CCS) (¢ is defined
on a graph I' and a conditional expression:

i = fi(wi, z:0) + gi(mi, zi)ws + Ge (X4, 25, 25) Ae

2 = pi(Ti, zi) + G (X4, 23)ui + Ge (T3, 23, 25) Ae

st ce(zi,2j) =2 — 25 = —ca(z5,2:) =0
Ae = =g,

where, z; € Xj,2; € Z5,u; € U;, and ce(z;,2;) = 0 is

a coupling constraint enforced by the coupling inputs A.,

where = represents the identical equality of functions.

C £ ey

We additionally denote x = {x1, 22} € X, z = {z1,22} €
Z, u={u1,us} and A = {\¢, Az} throughout the paper.
Solutions. We define solutions of coupled control systems by
assuming the existence of feedback control laws: u(z, z) =
{uy (21, 2), uz(x2,2)}. Applying these controllers to (TJ
yields a coupled dynamical system (CDS):

iy = ff' (i, 2) + Ge(@i,2) Ae

De 2 2 = p§ (x4, 2) + e (24, 2) Ae )
st. ce(2)=0, Ae=-Xe
where, f' 2 fi(zi,2i) + gi(wi, zi)ui(zi, 2), and pft £

pi(xiy2;) + qi(xs, zi)u; (2, 2). Then the solution of the
coupled dynamic system, T, is a set of solutions:
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Fig. 2. Left: the configuration coordinates of the quadruped, each
leg of which has a point contact toe. Right: the decomposition of
a quadrupedal robots into two bipedal systems.

{(xl(t), 21 (t), Ae(t)), (wa(t), 22(1), )\é(t))} st. @ VteICR

with initial condition: {(21(0), 21(0), Ac(0)), (z2(0), 22(0),
Az(0))}, and I C R is the time interval of their existence. Per
the above notation, we will sometimes denote the solutions
by (x(t), z(t), A(t)) with initial condition (x(0), 2(0), A(0)).
Coupling constraints. Importantly, the solutions must sat-
isfy the coupling constraints at all time. Therefore,

ce(2) =0 = ¢ée(2,2)=0 3)
Oce(zi, 25) P Oce(zi, 25) =0
8Zi sz
N e’ ————
2509 (2) 2509 (2

= ¢e(z,2) = Jc(i’j)(z) (pfl(xi, 2) + §e(wi, z))\e)

+ 90 @) (55 (@502) +delag, A ) =0 @)
Hence, to solve for the coupling inputs A, that satisfy the
coupling constraints, it is necessary to solve an equation
that depends on the states of both subsystems. To address
this, we present a method for isolating a subsystem via
conditions on the controllers of the other systems in the next
section. Before doing this, we utilize the following example
to illustrate the concepts of coupled control systems.

Application to quadrupedal robots. The motivating appli-
cation considered here, is to compute periodic solutions of
the quadrupedal dynamics. As Fig. [2| shown, we decompose
this quadruped into two bipeds, whose dynamics are on
a CCS graph (according to definition : r £ (N =
{f1},E = {e = (f,r),e = (r,f)}), where f,r label
the front and rear bipedal systems, correspondingly. We
picked the coordinates for these two subsystems as ¢ =
(& 00, 00,) " e = (&,07,6/,) " with & € R® x SO(3)
and the leg joints 6, € R3. Since all leg joints are actuated,
the inputs are u; € U C RS, The decomposed dynamics of a
quadruped as two coupled bipeds in the continuous phase{ﬂ
are given by a set of DAEs:

Digs + H; = J;' F; + Byug + J. Ae Q)

Ro 2 ) il +Jidi =0 (6)
st ce(§i,&5) =& —& =0 @)

Ae = — Az ©)

with D;(¢g;) € R™*"™ the mass-inertia matrix, H;(q;, ¢;) €
R™ the drift vector, and the actuation matrix B; =
[06x6 I6xc). The contact (holonomic) constraint Khi(qi) =
0 is enforced via ground reaction forces F; &€ R3, whose

! The definition for continuous and discrete dynamics (impact dynamics)
for hybrid control systems can be found in [7], which is less relevant to the
main theme here, hence omitted.



second derivative is given in (6). More details of these
notations can be found in [11]. Note that F; can be eliminated
by the solving (5)-(@) to have a shorter form: D§ + H =
Bu+J, \.. The derivation is straightforward hence ignored.
To obtain a CCS as in (I, we pick “normal form” type
coordinates (see [16]), with the “output” (also known as
virtual constraint [19]) that we wish to zero, given by
yilai, @) = y*(q) — v (&, ), )
where 3%, y? are the actual and desired outputs, &; represents
a parameterization of time and v; € R%*S are the coefficients
for six 5'"-order Bezier polynomials that are designed by
the optimization algorithm in Sec[IV] Since our goal is to
find a symmetric ambling gait for quadrupeds, we chose
oy = Moy, with the matrix M representing a mirroring
relation. It is important to note that the output coordinate
here utilizes a state-feedback structure, instead of the time-
based construction of [11]. We can then construct our internal
states ¥; = (y;', 9, )", leaving the coupled states as z; =
(&7,€7)T. The end result is a CCS of the form given in (T)
for this mechanical system:

. Ui s 0 ~ . 0 Y
e inqi - inDlei inD;lBi e inDfljeT c
fi(zi,zi) 9i(zi,2;) Ge(wi,2i,25)

“7 | ~gep m] T e B T gD |

qi(i,24)

Pi(Ti,24) Ge (@i zq,25)

st ce(zi,25) = 2z — 25

with J, = 0yi(¢:)/0q;. Je = 0¢/0q = [Ioxs Osxs],
where we suppressed the dependency on x;, z; for all entries.

III. ISOLATING CONTROL SUBSYSTEMS

The main idea in approaching the analysis and design
of controllers for coupled control systems is to isolate
subsystems that encode the behavior of the overall CCS. This
section outlines the procedure for isolating the subsystems
through a two-step approach: restricting systems to the zero
dynamics manifold, and leveraging this to explicitly calculate
the coupling conditions. We then can reduce the full-order
CCS to a subsystem that no longer depends on the internal
states of the other subsystem. We establish the main result
of the paper encapsulating these constructions: solutions of
the subsystem yield solutions of the full-order dynamics.

A. \-Coupled Subsystem

Given a CCS (¢, we define the zero dynamics manifold
for each subsystem 7 € N as:

Z; 2 {(x,2) € X x Z | x; =0}. (10)

Thus, the zero dynamics manifold for i'" subsystem consists
of the internal states, x;, being zero, i.e., the system evolves
only according to the coupled states z.

We wish to design controllers of the overall CCS on the
zezr(i dynamics of subsystem j € IN. Therefore, a controller

uj (xj,2) is said to render the zero dynamics manifold

Z; invariant if it satisfies the following algebraic condition:
0= /;(0,2) +95(0, 2))ui(0,2) + §e(0,2)A= (1)

where uJZ’A implicitly depends on A; for € = (j,i) € E.
By applying ujz”\, we obtain a A\-coupled control subsystem
(\-CCSub) for the i*" subsystem:

i = filwi, z:) + gi(wi, zi)us
Zi = pi(Ti, 2i) + qi(x4, 25)us
25 = pi(0,25) + 4;(0, 2))uZ(0,2) + G=(0, 2) Az
st. ce(2)=2i—2, =0, Ae= -z (12)
Thus, the i*" subsystem evolves according to its own dy-
namics and the zero dynamics of all remaining systems—all
of which are coupled via the coupling inputs .

ZA A
c;m =

B. Explicit Coupling Conditions

The coupling between the control systems is enforced
via A and the coupling constraints of the form (). Similarly,
even in the reduction to a subsystem (I2)), the coupling
is still achieved through A\. We wish to generalize this so
as to remove the coupling, i.e., isolate subsystems, while
still preserving the overall behavior of the full system. We
first define the coupling relation that allows the use of
the controllers ujz’)‘ to eliminate the dependence on the
controllers and internal states of the other subsystem.

Definition 2. For a A-CCSub Ciz Aandi €N, a coupling
relation is a functional relationship on the coupling inputs

Nz, zui) = AZ (x4, 2)us + b (24, 2), (13)

that satisfies the coupling constraint (3)) for all e = (i, ) € E.

The coupling relation is then summarized in the following:
Lemma 1. For a CCS (C, if we have

5 (g o) & 194(0,25) 3<(0, 2)
QE(ZB“ ) B I:Qj(07zj) de($i72) +(jg(0,z)}
Z

invertible, there exists a controller u7 that renders Z;
invariant and a coupling relation in (13)), given by:

b ] = (o o] mloen 5% 500.20])

Proof: Evaluating (3) along the zero dynamics manifold Z;,
ie., z; = 0, yields: g;(z;, zi)u; + pi(xi, z;) — p;(0,25) =
q;(0, z)uZ (0, 2z;us) — (Ge(i, 2) + Ge(0, 2)) Ae. Combining
this with and simultaneously solving for u% and \Z
yields the desired result. [ ]
Recall that the controller uJZ’)‘ that renders the zero dynam-
ics surface invariant implicitly depends on Az via (TT). Now
with a coupling relation, the dependence of )z is removed,
and as a result we say that uJZ renders the zero dynamics
manifold Z; invariant if:
0= ij(O, z) + ng(O, 2)u; + ¢5(0, ;) (uJZ(O, Z;ui) — ul) (14)

z

where uj is now a function of w; and

[E(@s,2) = fi(w),25) = Ge(xj, 2)bF (i, 2),

97 (x5,2) = 9i(x5,25) — Je(wj, 2) AZ (ws, ).

Returning to (@), given a coupling relation we can rewrite
this coupling constraint as:

ée(xia Z) = JC<Z’J>(Z) (pzz(m’uz) + qg(xlaz)ul)

+JED ) (5 (0, 2) + aF (@i, 2)us) = 0
Z.\

i

15)

(16)

where for the subsystem C; " we have



(1‘17 ) ép’i(‘r’wz )'i_‘iE(thhZJ)bZ(I’Hz)
( ) 2) éqi( )+q€(xl7ZZ7ZJ)A (i, 2)
(3317 ) £ Pj (O ) + qj (07 ZJ)U‘] (0, Z) (17)
qvé(o ZJ,ZZ)beZ(:Ci,Z)
q; (.%'1, ) £ qué(o Zjvzl)AeZ(xivz)

C. Isolating Subsystems

We now arrive at the key concept for which all of the
previous constructions have built — reducing a CCS to a
single subsystem that can be used to give guarantees about
the entire CCS. This is based on the following definition.
Definition 3. For a CCS (¢, and i # j € N, assume a
coupling relation AZ such that there exist uJZ rendering the
zero dynamics manifold Z; invariant. Then the i*! control
subsystem (CSub) associated with the CCS (¢ is given by:

= fE (@i, 2) + g7 (i, 2)us
% = pl (w0, 2) + 4 (23, 2)us
% =i (@i, 2) + 4 (25, 2)us
where fZ(zi,2) = fi(zi,z) + ge(xl,zz,zj)bz(xl,z)
9%(xi,2) £ gi(wi, 2i) + Je(4, 21, 25) A% (2, 2), and pZ, ¢Z,
p%,q% are given in (I7). Furthermore, when a feedback

controller u;(w;, z) is applied to CZ, the result is a dynamical
system, denoted by DZ.

ct e (18)

Note that the coupling constraint (T6) was not explicitly
stated in the CSub CZ. This was because it was solved for
via the coupling relation A\Z. That is, the system naturally
evolves on the constraint manifold: C = {(r,2) € X x Z :
¢e.(z) =0, ¥ e € E}. This is made formal in the following
result. Additionally, it will be seen that solutions of the

I subsystem, denoted by (;(t), z(t), A(t)), can be used to
construct solutions of the full-order CCS. Before formally
stating the ultimate result of this paper, we need some
notation. Let (x;,2) € X; X Z and consider the canonical

embedding ¢ : X; x Z < X x Z given by v(z;, 2) = (z, 2),
where = {z;,z;} and z; = 0.
Theorem 1. Let (¢ be a CCS, and for the j*" system

assume there exist uJZ that render the zero dynamics manifold
Z; invariant. Let CZ be the corresponding \-CCSub for
ith subsystem. Given a feedback controller u;(x;,z) for
the CSub with corresponding dynamical subsystem D% with
solution (z;(t), 2(t)) fort € I C R If

(zi(0),2(0)) e C = (xi(t),2(t)) eC VieICR
and (1(z;(t), 2(t)), N2(t)), with
NA(0) = { N @i(0), 20w @it), 20) }
is a solution of Dz, the CDS obtained by applying u;, uJZ

Proof: The condition that (z(0), 2(0)) € C is equiva-
lent to c.(2(0)) = 0. Concretely, c.(z;(0), z;(0)) = 0. Since
AZ is a coupling relation, it satisfies (@) and more explicitly
(T6); therefore, and being explicit about the arguments,
¢e(x(t),2(t)) = 0 for all t € T and all e € E. It follows
that c.(2(t)) =0 for all t € I and e € E.

The fact that (u(z;(t),2(t)), A%(t)) is a solution of D
assuming that (x;(t), 2(t)) is a solution of DZ follows
trivially from the fact that the zero dynamics Z; are invariant,
ie., ¢(z;(t),2(t) € Z;, Vtel [ |
Periodic Orbits. In the context of quadrupedal dynamics,
we will be interested in generating periodic solutions, i.e.,
walking. A solution of a CDS T is periodic of period T' > 0
if for some initial condition (x(0), z(0), A(0)):

(x(t+T),2(t+T), At +T)) = (2(t), 2(t), A(t))

with the resulting periodic orbit: O = {(z(¢), 2(t)) € X x
Z |0 <t<T}. Asaresult of Theorem [I] periodic orbits
in a subsystem correspond to the periodic orbits in the full-
order dynamics.

Corollary 1. Under the conditions of Theorem [I| assume
that (z;(t),2(t)) is a periodic solution of D% with period
T > 0 and corresponding orbit O; = {(z;(t), 2(t)) € X; x
Z |0 <t < T} Then (u(x(t),2(t), \%(t)) is a periodic
solution of the CDS with period T > 0 and corresponding
periodic orbit O = 1(0;).

Application to quadrupeds. For the quadrupedal dynamics
Ro, since the output (@) has (vector) relative degree 2
with respect to u; (see [19]), we can explicitly design the
controller ujz’A that renders Z; invariant:

u?* = (Jy, Dy ' By) "' (Jy,D; ' Hj —

: Jy, 4 — Ju. Dy IS AG),
as given by Lemma [T} Hence, this controller satisfies (II)
and renders a A-coupled CSub, as in @

For robotic systems, we take these ideas one step further to
obtain “bipeds” that are the isolated subsystems associated
with quadrupeds and include slack variables that are ben-
eficial for gait generation. Operating on the invariant zero

dynamics manifold Z; yields y;(g;, ;) = 0, hence
0. = Ha Yy (§Jvaj) and q; (5]) (f] 7( a yd(é-jvaj))T)T
= G, 6,8) = T6)E + 16,66
where J, = 8qu(§j) /9¢;. In another word, if ujz”\ exists
and is applied to j*" subsystem, the j*" bipedal dynamics
given by in (3)-(6) are equivalent to:
{ D;if (&5, 65) + Hy = Jj F + Bijuf +JXe - (19)
iy (65, €5,65) + J347 (6, €5) = 0 (20)
where for simplicity we have suppressed the dependencies of

Dj(a;(&;)), Jj(4;(€;)) and H;(g;(€;),d5(&;.;))- We then
leverage a spemﬁc structure of rigid-body dynamics when us-

ing the floating base convention: Bju;+.J; Ae = (AJ,u; ).
Utilizing this, and the first 6 rows of yield the
following “bipedal” dynamics:

i o | D76 + HE = JF + A
B JZE +w? =0
with D? = D;J, H? = D;J.& + H;, J? = J;J,, and
J J §j + J J, 51 Here, [J are the first 6 rows (block)
of the variable [J. Hence, RB represents the dynamics of a

subsystem j on Z;, i.e., (ZI) evolves according to by
adding a slack variable F}; that can be uniquely determined.

2n



IV. COUPLED SYSTEM OPTIMIZATION

With the previous construction of coupled control systems,
we present a general optimization framework to solve for
the solution of the i*" CSub in (T8) associated with the
CCS, while synthesising the controllers that render forward
invariance of the zero dynamics manifolds. The approach we
will take is a locally direct collocation based optimization
method [9], which has been widely applied to finding solu-
tions to dynamical systems such as [14]. We now pose the
previous formulations as a series of constraints to represent
the controlled dynamics of CZ. Along this process, the
problem formulation of our target application — the control
of quadrupedal walking, will be used as an example to
illustrate this method.

Optimization setup. We first discretized the time horizon
t € [0,T] evenly to obtain the grid indices k = 0,1, ..K,
ie., t" = Tk/K. We define the decision variable associated
with the i*" control subsystem CZ as:

X4 {19”}&:0,17_“}(, AR A NP I z;,é?,u'f,u]z’”}
Note that we abbreviated the dependency on time ¢ as (0% £
O(¢") for notational simplicity.

Recall that given a coupling relation, we have associated
zero dynamics invariance conditions given by (T4). We will
enforce these conditions in the optimization to ensure that

V7 o
u;"" renders Z; invariant as:

Frero(9"%) 2 ij(O, 2") + ng(O7 2% ui + g;(0,25) (ujz’N — uf) ,
where fZ and g% are given as in (T3).

Next, following from the constructions in SecllII-C| we
define constraints corresponding to the dynamics of the
ith control subsystem CZ (as obtained from the coupling
relation). Denote x" = (zf, zf, 2%) and
FE(E, 25) + gf (2, 2% )usf
pE(af, 2%) + g (af, 2% uf

Py (a7, 2%) + af (20, 2)uf

F(x",uf) =

to obtain the dynamic constraints as
den(ﬁn) 2 Xﬂ - F(Xﬂvu?) =0,

which is an equality constraint imposed on the ' node to
enforce all of the states and controllers satisfy the dynamics
in (I8). Further, to guarantee that those local solutions
satisfying stay on the same vector flow, i.e., belong
to one unique solution, we employ an implicit stage-3
Runge-Kutta method for formulating this objective as an
equality constraint. Concretely, we use Hermite interpolation
to compute the interpolated value of x% and its slope x%
(see equation (30) of [9]) at the center of the subinterval
[t",t5T1]. Then the collocation constraints are formed as:
d(x", X" uf) £ X - F(xd,ui) =0 (€3)
Physical Constraints & Periodic Constraints. A set of
inequality constraints (path constraints) p(9*) > 0 are used
to enforce conditions along the time horizon. For robotics,
these are widely applied as obstacle avoidance condition,
and some feasibility conditions for the dynamical system,
representing real-world physics. In our application — the
walking dynamics of quadrupeds, the inequality constraints

(C2)

are used to define the friction cone condition and maximum
ground clearance of the swing foot to be higher than 8 cm.

In addition, a set of equality constraints are imposed on
the decision variables at ¢ = 0,7 to “connect” the initial
and final condition: b(x°,xX) = 0, so that the optimal
solution of the optimization is a periodic solution of the
dynamical system. Particularly, the dynamics of quadrupedal
locomotion include both continuous and discrete dynamics,
forming a hybrid control system. To find a periodic solution
(ambling motion), we have the periodic constraint as:

A ) g
K 0 -
9 —4q;

where A(+) represents the plastic impact dynamics that maps
the pre-impact velocity ¢ to its post-impact term.

b(q), 45, ai . di)

(C.6)

Optimization problem. To find the periodic solution of dy-
namical system (I8]), we now parse this coupled controlling
problem of the isolating i*" subsystem as:

arg}l{nin d(X) (NLP)
st Freo(9%) =0 k=0,1...,K (C.1)
Fagn(07) = 0 k=0,1...,K (C2)
dx", x" "M uf)=0 k=01...,K—1 (C3)

VT eX X ZxU k=0,1...,K (C4)

p(9%) >0 k=0,1...,K (C.5)

b(X) =0 (C.6)

where ®(-) € R is the cost function. Here, we pick the cost
function as the acceleration of the torso orientation to yield
a less energetic motion for the ease of experiments. (C.4)
defines the upper and lower bounds of the decision variables,
i.e., that they live in the admissible space of values. In the
application of walking, this was used to define the feasible
configuration space and the actuator torque less than 40N-m.
The other constraints are as stated as above.

Solutions. As a result, the optimization can si-
multaneously produce trajectories (solutions) of the states
{z;(t), 2(1)}, u]Z (t) that renders the zero dynamics manifold
Z; invariant and the open-loop controller u;(t), Vt € [0,T]
for which these solutions are defined. Note that one can
also enforce the dynamics #f + exf = 0 with ¢ > 0 to
guarantee the converging attribute of the i'" isolating subsys-
tem, in which case the controller u;(z;, z) is equivalently an
input-output feedback linearization controller. Per Theorem
, given u]z that renders invariant Z; and the feedback
controller u;(x;, z), we can compute A\%(t) using (T3), hence
(e(z4(t), 2(t)), \Z(t)) is a solution of the original CDS.
Further, by imposing the periodic condition on the solution’s
boundary condition, the optimization produced a periodic
solution of period T to the CCS. Therefore, according to
Corollary |1} (¢(z;(t), 2(t), \%(t)) is a periodic solution of
the CDS with period T'.

Application to quadrupeds. When posing the control prob-
lem of quadrupeds, we leverage the subsystems representing
the front and rear bipeds: RZBf and %, as given in ZI).
Note that these subsystems are still coupled through A—
while this could be explicitly solved for via Lemma
we keep it implicit due to the complexity of inverting the
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Top: Snapshots showing a full step of the ambling gait in an outdoor lawn. Bottom: The periodic trajectory produced by optimization (NLP) (in

red) vs. the experimental tracking data (in cyan) vs. RaiSim simulation data (in green) in the form of phase portrait (limit cycle) using 18 seconds’ data.

mass-inertia matrix for this particular robotic application.
The i*" subsystem yield (C.1), (C.2) and (C.3) for (NLP).
Specifically for all of the grid indices k = 0, 1, ...5, we have
the decision variables: ¥~ = {¢f, ¢f,&F, &5, uf, Ff¥, FF, oy,
AL}, Finally, the optimization converged to a periodic solu-
tion of the isolated bipedal system, which can then be re-
constructed to obtain the ambling motion of the quadrupedal
robot (shown in Fig. [3) according to Theorem 1. We re-
port that the computation took 17.6s and 295 iterations of
searching. Comparing to the traditional full-model based
approaches [10], whose fastest record was 42s, the proposed
method is 58% faster.

To validate the proposed periodic orbit generation method
using coupled control systems, we conducted experiments in
indoor and outdoor environments, as well as in a physics en-
gine —RaiSim. The implemented controller is a time-based
PD approximation of input-output linearizing controllers to
track the the desired outputs (represented by oy, oy, = May):
wi(giy dirt) = —kp (9 (@) — yi' (t, o)) — ka(y* (i) — 97 (¢, i)
with k,, kg the PD gains. The result is successful ambling
in simulation, indoor (research lab) environment and outdoor
rough terrains. See [1] for the video and Fig. [3| for walking
tiles and a comparison for the logged data with the optimized
trajectory generated from (NLP). Importantly, we note that
the averaged absolute torque inputs are 9.47, 6.45, 17.56 N-m
for the hip roll, hip pitch and knee motors, all of which are
within the hardware limitations. Thus we are able to translate
the theoretic results on gait generation for coupled control
systems to hardware in a physically realizable fashion.

V. CONCLUSION

As inspired by robotic systems, this paper presented the
new formulation of coupled control systems: control systems
that are connected via coupling relations and coupling inputs.
We demonstrated how these systems can be reduced to
a single subsystem that encodes the behavior of the full-
order coupled system; this was achieved through leveraging
zero dynamics and coupling relations. The main result of
this paper was that solutions for these isolated subsystems
are solutions for the full-order systems. Building on this,
we constructed a nonlinear optimization problem on only
a given subsystem that yields periodic orbits for the full-
order dynamics. Finally, the application of these ideas were
considered for coupled control systems from which a spe-
cific example includes quadrupeds. This was demonstrated

through experiments on hardware. An important future di-
rection of this work is to expand the coupled control system
related concepts to system with more than two subsystems.
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