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ABSTRACT
Consider a system operator that wishes to optimize its objectives

over time subject to operational constraints as well as private con-

straints of controllable loads managed by an aggregator. In this

paper, we design a real-time feedback signal for the aggregator to

quantify and communicate its available flexibility to the system op-

erator. The proposed feedback signal at each time is the conditional

probability of future feasible trajectories that will be enabled by the

operator’s decision. We show that it is the unique distribution that

maximizes a system capacity for flexibility. It allows the system

operator to maintain feasibility and enhance future flexibility while

optimizing its objectives. We illustrate how the design can be used

by the system operator to perform online cost minimization and

real-time capacity estimation, while provably satisfying the private

constraints of the loads.

KEYWORDS
Aggregate flexibility, real-time closed-loop control, data-driven cost

minimization, electric vehicle charging

1 INTRODUCTION
The need to manage the uncertainty and volatility caused by the

growing penetration of renewable sources such as wind and solar

power has created a desire to increase the ability of the system

to provide flexibility via distributed energy resources (DERs) and

aggregators have emerged as dominate players for coordinating

these loads [3, 4]. The power of aggregators is that they are able to

provide coordination among large pools of DERs and then give a

single point of contact for independent system operators (ISOs) to

call on for flexibility. This enables ISOs to minimize cost, respond to

unexpected fluctuations of renewables, and even mitigate failures

quickly and reliably.

To realize the potential benefits of aggregators, ISOs need to

be able to call on the aggregator via a time-varying signal, e.g., a

desired power profile, that satisfies the operational constraints and

optimizes a system objective. The signal is then disaggregated by

the aggegator in order to determine the behavior of the loads under

its control. However, the loads have private constraints on their

operation (e.g., satisfying energy demands of electric vehicles before

their deadlines). These constraints limit the flexibility available to

the aggregator and so the aggregator must also communicate with

the ISO by providing a signal that quantifies its available flexibility.

This signal is of crucial importance for the ISO when determining

the signal it sends to the aggregator, and thus the aggregator and

the ISO form a closed-loop control system.

This paper focuses on the design of this closed-loop system and,

in particular, the design of the signal quantifying the available

flexibility sent from the aggregator to the ISO. The question of how

to design the signal providing information on aggregate flexibility of

the aggregator to the operator, namely the flexibility feedback signal,

is complex and has been the subject of significant research over the

last decade, e.g., [2, 5, 8, 11, 13, 17, 21, 22, 28]. Any feedback design

must balance between a variety of conflicting goals. In particular a

design must be:

(1) Concise. Given the scale of aggregators and the complexity

of the constraints of loads, it is impossible to communicate

precise information about every load. Instead, aggregate flex-

ibility feedback must be a concise summary of a system’s

constraints. Even if it was possible, providing exact infor-

mation about the constraints of each load governed by the

aggregator would not be desirable because the load con-

straints are typically private. Information conveyed to the

ISO must limit the leakage about specific load constraints.

(2) Informative. The feedback sent by an aggregator needs to

be informative enough that it allows the ISO to achieve oper-

ational objectives, e.g., minimize cost, and, most importantly,

guarantee the feasibility of the whole system with respect

to the private load constraints.

(3) General.Any design for a flexibility feedback signal must be

general enough to be applicable for a wide variety of control-

lable loads, e.g., electric vehicles (EVs), heating, ventilation,

and air conditioning (HVAC) systems, energy storage units,

thermostatically controlled loads, residential loads, and pool

pumps. It is impractical to imagine different feedback signals

for each load, so the same design must work for all DERs.

The challenge and importance of the design of flexibility feed-

back signals has led to the emergence of a rich literature. In many

cases, the literature focuses on specific classes of controllable loads,

such as electric vehicles (EVs) [27], heating, ventilation, and air

conditioning (HVAC) systems [12], energy storage units [8], ther-

mostatically controlled loads [13] or residential loads and pool

pumps [19, 22]. In the context of these applications, there have been

a variety of approaches suggested, e.g., convex geometric approxi-

mations [5, 5, 8, 13, 28], scheduling based aggregation [20, 25, 26],

and probability-based characterization [19, 22]. These approaches

have all yielded some success, especially in terms of quantifying the

aggregate flexibility available (we go into more detail about these

approaches in the related work section below). However, to this

point there are no real-time designs of the coordination between

an aggregator and a system operator that achieve the goals laid

out above. In particular, the goal of providing a real-time feedback

signal that is concise and informative has seemed unapproachable

ar
X

iv
:2

00
6.

13
81

4v
1 

 [
ee

ss
.S

Y
] 

 2
3 

Ju
n 

20
20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/345073824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Preprint, June, 2020 Tongxin Li, Steven H. Low, and Adam Wierman

and so nearly all prior work has focused on slower-timescale esti-

mations. In addition to having a flexibility feedback signal that is

concise and informative, it is also desirable to have the feedback

satisfy the following property:

(4) Real-time. The system is time-varying and non-stationary

and so it is crucial that (nearly) real-time feedback can be de-

fined and approximated if it is to be used in online feedback-

based applications.

The need for real-time information requires that computation of

the feedback signal be simple and efficient, which is in direct con-

flict with assuring generality across wide-ranging applications. In

addition, it is highly desirable that the feedback signal be intuitive

and interpretable, so that the ISO can use it at a policy level for

planning purposes.

Contributions. In this paper we propose a novel design of a

flexibility feedback signal that quantifies the flexibility available to

an aggregator. We justify our design by proving several desirable

properties of the flexibility feedback for real-time feedback-based

applications. In particular our flexibility feedback allows the system

operator to maintain feasibility and enhance flexibility in real time

in an online setting. Finally we demonstrate our design through two

example applications: online cost minimization and real time capac-

ity estimation. Our design is conceptually simple, interpretable and

we describe two approximations that are efficiently computable

in real time. Finally, it is the unique design that attains a certain

system capacity for flexibility in an offline setting.

In more detail, we introduce a model of the real-time closed-

loop control system formed by a system opeartor and an aggrega-

tor. Within this model we define the “optimal” real-time flexibility

feedback vector as the solution to an optimization problem that

maximizes the entropy of the feedback vector. The use of entropy

in this context is novel and we show that entropic maximization

has a close relationship to maximization of the system capacity.

Further, we justify axiomatically how entropic maximization is

fundamentally necessary for providing informative and concise

feedback from the aggregator to the operator.

To illustrate applicability of the optimal real-time flexibility feed-

back vector we propose using two applications: online cost min-

imization and system capacity estimation. We demonstrate the

effectiveness of the flexibility feedback vector in these applications

through using real EV charging data from Caltech’s ACN-Data

dataset [16]. In the case of online cost minimization, we use the

flexibility feedback signal in the context of model predictive control

and show that the signal is effective even when it is approximated

via a data-driven approach based on reinforcement learning. In the

case of system capacity estimation, we use the flexibility feedback

signal in the context of Monte Carlo estimation and show that the

signal is effective even when it is approximated via look-ahead

estimation (rather than estimation based on historical data). In both

cases we provide provable guarantees that when the aggregator

communicates with the system operator via the optimal flexibility

feedback signal the private constraints of the loads governed by

the aggregator are respected despite the conciseness of the signal

communicated to the operator. This work is the first to close the

loop and both define a concise measure of aggregate flexibility and

show how it can be used by the system operator to optimize system

objectives while respecting the constraints of loads.

Related literature. The growing importance of aggregators for

the integration of controllable loads and the challenge of defining

and quantifying the flexibility provided by aggregators means that

a rich literature on the topic has emerged. Broadly, this work can

be separated into three approaches.

Convex geometric approximation. The idea of representing the set

of aggregate loads as a virtual battery model dates back to [11, 13].

In [28], flexibility of an aggregation of thermostatically controlled

loads (TCLs) was defined as the Minkowski sum of individual poly-

topes, which is approximated by the homothets of a virtual battery

model using linear programming. The recent paper [5] takes a

different approach and defines the aggregate flexibility as upper

and lower bounds so that each trajectory to be tracked between

the bounds is disaggregatable and thus feasible. However, convex

geometric approaches cannot be extended to generate real-time

flexibility signals because the approximated sets cannot be decom-

posed along the time axis. In [2], a belief function of setpoints is

introduced for real-time control. However, feasibility can only be

guaranteed when each setpoint is in the belief set and this may not

be the case for systems with memory.

Scheduling algorithm-driven analysis. Scheduling algorithms that

enable the aggregation of loads have been studied in depth over

the past decade. The authors of [9] introduced a decentralized algo-

rithm with a real-time implementation for EV charging to track a

given load profile. The authors of [25] considered the feasibility of

matching a given power trajectory and show that causal optimal

policies do not exist. In this work, aggregate flexibility was implic-

itly considered as the set of all feasible power trajectories. Three

heuristic causal scheduling policies were compared and the results

were extended to aggregation of deferrable loads and storage in [26].

Furthermore, decentralized participation of flexible demand from

heat pumps and electric vehicles was addressed in [20]. Notably,

the flexibility signals that have emerged from this literature are not

general, i.e., the apply to specific policies and DERs.

Probability-based characterization. There is much less work on

probabilistic methods. The aggregate flexibility of residential loads

was defined based on positive and negative pattern variations by an-

alyzing collective behaviour of aggregate users [22]. A randomized

and decentralized control architecture for systems of deferrable

loads was proposed in [19], with a linear time-invariant system ap-

proximation of the derived aggregate nonlinear model. Flexibility in

this work was defined as an estimate of the proportion of loads that

are operating. Our work falls into this category, but differs from

previous papers in that entropy maximization for a closed-loop

control system yield an interpretable signal that can be informative

for operator objectives in real-time, as well as guarantee feasibility

of the private constraints of loads.

Other approaches. Beyond the works described above, there are

many other suggestions for metrics of aggregate flexibility, e.g.,

graphical-based measures [14] and data-driven approaches [14].

Most of these, and the approaches described above are evaluated

at the aggregator level however, and much less attention has been

paid to the question of real-time coordination between an ISO and

an aggregator that controls decentralized loads.
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The assessment and enhancement of aggregate flexibility are

often considered independent of the operational objectives and

constraints today. For instance, the notion of aggregated flexibility

is reported to an ISO participating in a reserve market a day ahead

and the scheduling is then conducted the next day after receiv-

ing the flexibility representation as defined in [5, 6, 11, 17], with

notable exceptions, such as [27], which considered charging and

discharging of EV fleets batteries for tracking a sequence of auto-

matic generation control (AGC) signals. However, this approach

has several limitations. First, in large-scale systems, knowing the

exact states of each load is not realistic. Second, classical flexibility

representations often rely on a precise state-transition model on

the aggregator’s side. Third, traditional ISO market designs, such

as a day-ahead energy market, often make use of ex ante estimates

of future system states. The forecasts of the future states can some-

time be far from reality, because of either an inaccurate model is

used, or an uncertain event occurs. In contrast, a real-time energy

market [18, 23] provides more robust system control when facing

uncertainty in the environment, e.g., from fast-changing renewable

resources or human behavioral parameters. This further highlights

the need for real-time flexibility feedback, and serves to differentiate

the approach in our paper.

Notation and Conventions. We use P (·) and E (·) to denote

the probability distribution and expectation of random variables.

The (discrete) entropy function is denoted by H(·). To distinguish

random variables and their realizations, we follow the convention to

denote the former by capital letters (e.g., X ) and the latter by lower

case letters (e.g., x ). Furthermore, we denote the length-t prefix of
a vector x by x≤t := (x1, . . . ,xt ). Similarly, x<t := (x1, . . . ,xt−1)
and xa→b := (xa , . . . ,xb ). The concatenation of two vectors x and

y is denoted by (x ,y). Given two vectors x ,y ∈ Rn , we write x ⪯ y
if xi ≤ yi for all i = 1, . . . ,n. For x ∈ R, denote [x]+ := max{0,x}.

2 PROBLEM FORMULATION
Consider a load aggregator and a system operator that interact over

a discrete time horizon [T ] := {1, . . . ,T }.

2.1 Load aggregator
Let ξt denote the aggregator state at time t that takes value in a cer-

tain set Ω. Let ξ≤t := (ξs ∈ Ω : s = 1, . . . , t) denote the aggregator
state trajectory up to time t and ξ := ξ≤T . The aggregator needs
to accomplish a certain task over the horizon [T ], e.g., delivering
energy to a set of electric vehicles (EVs) by their deadlines. To this

end, it makes a decision ϕt at each time t according to a disaggre-

gation policy ϕ. The decision ϕt changes the aggregator state ξt
according to a state transition function which is not essential for

our discussion. We hence omit its description and represent the

dynamics of the aggregator simply by the state trajectory ξ . Be-
sides accomplishing its task, the decision ϕt also produces a system
input at time t that will affect a system cost, e.g., the aggregate EV

charging rate increases load on the electricity grid. The aggregator

has flexibility in its decisions ϕt for accomplishing its task and,

we assume for this paper, is indifferent to these decisions as long

as the task is accomplished by time T . At each time t the system
operator sends a signal xt to the aggregator to guide the aggrega-

tor’s decision ϕt towards one that minimizes the system cost. The

signal xt at time t ∈ [T ] takes value in a discrete set X ⊆ R.1 Let
x≤t := (x1, . . . ,xt ) denote the signal trajectory up to time t and
x := x≤T . In general, the aggregator’s decision ϕt := ϕt (ξt ,x≤t ) is
a causal function of aggregator state ξt and signal trajectory x≤t
up to time t .2 We use ϕ both to denote the disaggregation policy or

the decision trajectory

ϕ = (ϕ1(ξ1,x1), . . . ,ϕT (ξT ,x))

depending on the context. We often refer to a pair of disaggregation

policy and aggregator state trajectories (ϕ, ξ ) as an aggregator trajec-
tory. That the aggregator must accomplish its task but is otherwise

indifferent to its decisions ϕ can be modeled by the constraints:

дi (x ;ϕ, ξ ) ≤ 0, i = 1, . . . ,m, (1)

where each дi is an arbitrary function of ϕ, ξ and x .
The disaggregation policy ϕ can represent a variety of control

strategies, such as a scheduling algorithm for EV charging, en-

ergy disaggregation, or price signals. We illustrate our model of an

aggregator using an EV charging application.

Example 2.1 (Aggregator: EV charging). Consider an aggregator

that is an EV charging facility with n users. Each user j has a pri-

vate vector (a(j),d(j), e(j), r (j)) ∈ R4 where a(j) denotes its arrival
(connecting) time; d(j) denotes its departure (disconnecting) time,

normalized according to the time indices in [T ]; e(j) denotes the to-
tal energy to be delivered, and r (j) is its peak charging rate. Fix a

set of n users with their private vectors (a(j),d(j), e(j), r (j)), the ag-
gregator state ξt at time t ∈ [T ] is a collection of length-3 vectors

(d(j), et (j), r (j) : a(j) ≤ t ≤ d(j)) for each EV that has arrived and

has not departed by time t . Here et (j) is the remaining energy de-

mand of user j at time t . The decision ϕt (j) is the energy delivered

to each user j at time t . A policy ϕ can be well-known scheduling

policies such as earliest-deadline-first, least-laxity-first, etc. The ag-

gregator decision ϕt (j) ∈ R+ at each time t updates the state, in
particular et (j), even though do not explicitly represent the state tran-

sition function. The decision also produces an aggregate charging

energy

∑
j :a(j)≤t ≤d (j) ϕt (j) that affects the load on the power grid

and operational cost.

Suppose, in the context of demand response, the system operator

(a local utility company, or a building management) sends a signal

xt that is the aggregate energy that can be allocated to EV charging.

The aggregator makes charging decisions ϕt (j) to track the signal xt
received from the system operator as long as they will meet the energy

demands of all users before their deadlines. Then the constraints in

1
We assume that the set X is discrete only for simplicity of presentation. Our results,

for example, the definition of optimal flexibility feedback (Definition 3.1), Theorem 1

can be extended to continuous space using a density function as the flexibility feedback,

changing the summations to integrals, replacing the discrete entropy functions by

differential entropy functions, and redefining the system capacity log |S(ϕ, ξ ) | as the
volume of the space consisting of feasible signal trajectories.

2
The main results can be easily extended to allow for non-causal policies.
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(1) include the following constraints on the charging decisions:

ϕt (j) = 0 , t < a(j), j = 1, . . . ,n,

ϕt (j) = 0 , t > d(j), j = 1, . . . ,n,

n∑
j=1

ϕt (j) = xt , t = 1, . . . ,T , (2a)

T∑
t=1

ϕt (j) = e(j), j = 1, . . . ,n, (2b)

0 ≤ ϕt (j) ≤ r (j), t = 1, . . . ,T (2c)

where constraint (2a) ensures that the aggregator decision ϕt tracks
the signal xt at each time t ∈ [T ], the constraint (2b) guarantees
that EV j’s energy demand is satisfied, and the other constraints say

that the aggregator cannot charge an EV before its arrival, after its

departure, or at a rate that exceeds its limit.

2.2 System operator
As Example 2.1 illustrates, the aggregator decisions ϕt produce a
system input that affects system operation. The goal of the system

operator is to compute a signal xt at time t ∈ [T ] to guide the

aggregator’s decisions ϕt so as to minimize the system cost given

by a cost function f : XT → R. The signal trajectory x must satisfy

certain operational constraints, parameterized by an environmental

parameter ζ :

hi (x ; ζ ) ≤ 0, i = 1, . . . ,k . (3)

Example 2.2 (Operational constraints). Suppose xt represents the
total load of an EV charging facility, or on a power system. If the

operator performs peak shaving, then (3) may be:

xt ≤ γ , t = 1, . . . ,T . (4)

If the operator limits ramp rates, then (3) may be:

|xt+1 − xt | ≤ ε, t = 1, . . . ,T . (5)

Example 2.3 (Cost function). Suppose the electricity cost at each

time t ∈ [T ] is a function ft : X→ R+. Then the total electricity cost

is f (x) := ∑T
t=1 ft (xt ).

The goal of the system operator is to choose the signal x so as

to solve:

min

x
f (x) (6a)

subject to дi (x ;ϕ, ξ ) ≤ 0, i = 1, . . . ,m, (6b)

hi (x ; ζ ) ≤ 0, i = 1, . . . ,k . (6c)

i.e., the operator wishes to minimize its cost f subject to its oper-

ational constraints (6c) while the load aggregator needs to fulfill

its obligations in the form of constraints (6b). This is an offline

problem that involves global information at all times t ∈ [T ]. The
challenge is that the constraints (6b) are private to the aggregator.

It is impractical for the aggregator to communicate the constraint

functions дi (x ;ϕ, ξ ) to the operator because of privacy concerns

or computational effort, and because in an online setting, even the

aggregator will not know all the constraints at each time t that
involve future information, e.g., future EV arrivals in Example 2.1.

Remark 1. For simplicity, we describe our model in an offline set-

ting where the cost and the constraints (e.g., see (2b) in Example 2.1)

in the optimizatoin problem (6) are expressed in terms of the entire

trajectories (x ;ϕ, ξ ). All functions defined in this paper, however,

are causal in that they depend only on local information available

at time t . Hence these functions are designed for solving an online

version of the offline problem (6).

2.3 Online feedback-based solution
We explore a solution where the system operator and the aggregator

jointly solve an online version of (6) in a closed loop in real time, as

illustrated in Figure 1. Our approach does not require the aggregator

to know the system operator’s optimization problem (6), but only

the signal xt at each time t from the operator. It does not require

the system operator to know the aggregator constraints (6b), but

only a feedback signal pt (to be designed) from the aggregator. The

system operator generates its signal xt using a causal function πt
and the aggregator generates its feedback pt using a causal function
ψt . By an “online feedback” solution, we mean that these functions

(πt ,ψt ) use only information available locally at time t .
Specifically, our approach proceeds as follows. At each time t ,

the aggregator computes a length-|X| vector

pt (·|x<t ; ξt ) = ψt (x<t ; ξt ) =: ψt (x<t ) (7a)

based on its current state ξt and previously received signal trajec-

tory x<t = (x1, . . . ,xt−1), and sends it to the system operator. We

will omit ξt in the notation when it is not essential to our discussion
and simplify the probability vector aspt .

3
The system operator then

computes a (possibly random) signal

xt = πt (pt ; ζ ) =: πt (pt ) (7b)

based on the aggregator feedback pt and sends it to the aggrega-

tor. We will omit ζ in the notation when it is not essential to our

discussion. The aggregator makes its decision ϕt (ξt ,x≤t ). It then
computes the next feedback pt+1 and the cycle repeats.

The operator chooses its signal xt in order to solve the time-t
problem in an online version of (6), so the function πt denotes the
mapping from the aggregator feedback pt to an optimal solution of

the time-t problem. See Section 4 for an example.

The focus of this paper is to propose an aggregator feedbackψt
in (7a) that quantifies its future flexibility that will be enabled by

an operator decision xt . The feedback pt therefore is a surrogate
for the aggregator constraints (6b) to guide the operator’s decision.

Specifically, define the set of all feasible signal trajectories for the

aggregator as:

S(ϕ, ξ ) :=
{
x ∈ XT : x satisfies (6b)

}
.

Throughout, we assume that S(ϕ, ξ ) is non-empty. We propose

that the aggregator functionψt (x<t ; ξt ) computes the conditional

probabilities of future signal trajectories x>t := (xt+1, . . . ,xT )
that satisfy the aggregator constraints (6b), as a function of the

operator’s signal choice xt , conditioned on the signal trajectory

3
Note that in (9b) we slightly abuse the notation and use pt to denote a conditional

distribution. This is only for computational purposes and the information sent from

an aggregator to an operator at time t ∈ [T ] is still a length- |X | probability vector,

conditioned on fixed x<t .
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Figure 1: A feedback control approach for solving an online version of (6).

x<t := (x1, . . . ,xt−1) up to time t − 1. Formally, let P denote the

probability simplex:

P :=

{
p ∈ R |X | : p(x) ≥ 0,x ∈ X;

∑
x ∈X

p(x) = 1

}
.

Fix any aggregator trajectory (ϕ, ξ ). Then the aggregator function

ψt : X
t−1 × Ω → P at each time t is: pt = ψt (x<t ; ξt ) such that

for each xt ∈ X,

ψt (x<t ; ξt ) := p (·|(x<t )) ∈ P . (8)

We refer to pt as flexibility feedback sent at time t ∈ [T ] from the

aggregator to the system operator. Given current aggregator state

ξt and signal trajectory x<t , the conditional probabilityψt (x<t ; ξt )
depends not just on the operator decision xt , but also on the fu-

ture evolution of the aggregator state ξt . In this paper, we do not

fully specify the details of the dynamical process ξt . For different
applications, ξt may evolve according to different state transition

functions, possibly with stochastic inputs. These details will deter-

mine the value of the flexibility feedback pt = ψt (x<t ; ξt ) defined
in (8).

In this sense, (8) does not specify a specific aggregator function

ψt , but a class of possible functionsψt . Every function in this col-

lection is causal in that it depends only on information available to

the aggregator at time t . In contrast to most aggregate flexibility

notions in the literature [5, 8, 11, 13, 17, 21, 22, 28], the flexibility

feedback here is specifically designed for an online feedback control

setting.

3 OPTIMAL FLEXIBILITY FEEDBACK
In this section we propose a specific functionψt in the class defined

by (8) for computing aggregator feedback to quantify its future

flexibility.Wewill justify our proposal by showing that the proposed

ψt has several desirable properties for solving an online version of

(6) using the real-time feedback-based approach (7).

3.1 Definition
The intuition behind our proposal is that the conditional probability

pt (xt ) := pt (xt |x<t ) measures the resulting future flexibility of the

aggregator if the system operator chooses xt as the signal at time

t , given the signal trajectory up to time t − 1. The sum of the

conditional entropy of pt thus is a measure of how informative

pt is. This suggests choosing a conditional distribution pt that

maximizes its conditional entropy. Fix any aggregator trajectory

(ϕ, ξ ). Consider the optimization problem:

𭟋(ϕ, ξ ) := max

p1, ...,pT

T∑
t=1
H (Xt |X<t ) subject to X ∈ S(ϕ, ξ ) (9a)

where the variables are conditional distributions:

pt := pt (·|·) := PXt |X<t (·|·), t ∈ [T ] (9b)

X ∈ XT is a random variable distributed according to the joint

distribution

∏T
t=1 pt and H (Xt |X<t ) is the conditional entropy of

pt defined as:

H (Xt |X<t ) :=
∑

x1, ...,xt ∈X

(
−

t∏
ℓ=1

pℓ(xℓ |x<ℓ)
)
logpt (xt |x<t ).

(9c)

By definition, a quantity conditioned on “x<1” means an uncon-

ditional quantity, so in the above, H (X1 |X<1) := H (X1) := H (p1).
The chain rule shows that

∑T
t=1 H (Xt |X<t ) = H (X ). Hence (9)

can be interpreted as maximizing the entropy H (X ) of a random
trajectory X sampled according to the joint distribution

∏T
t=1 pt ,

conditioned on X satisfying (1), where the maximization is over

the collection of conditional distributions (p1, . . . ,pT ). We provide

in Section 3.3 an axiomatic justification of maximizing the entropy

H (X ) of the signal trajectory X in (9a).

Definition 3.1 (Optimal flexibility feedback). Fix any aggre-

gator trajectory (ϕ, ξ ). The flexibility feedback p∗t = ψ ∗t (x<t ; ξt ) for
t ∈ [T ] is called the optimal flexibility feedback if (p∗

1
, . . . ,p∗T ) is

the unique optimal solution of (9).

Remark 2. Even though the optimization problem (9) involves

variables pt for the entire time horizon [T ], the individual variables
pt in (9b) are conditional probabilities that depend only on infor-

mation available to the aggregator at times t . Therefore the optimal

flexibility feedbackψ ∗t in Definition 3.1 is indeed causal and in the

class of functionsψ ∗t defined in (8). The existence and uniqueness

of p∗t is guaranteed by Theorem 1 below, which also implies that

ψ ∗t is unique. □

We demonstrate Definition 3.1 using a toy example.

Example 3.1 (Optimal flexibility feedback p∗). Consider the fol-

lowing instance of Example 2.1. Suppose the number of charging

time slots is T = 3 and there is one customer, whose private vector

is (1, 3, 1, 1) and possible energy levels are 0 (kWh) and 1 (kWh), i.e.,

X ≡ {0, 1}. Since there is only one EV, the scheduling algorithm

ϕ (disaggregation policy) assigns all power to this single EV. For
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this particular choices of ξ and ϕ, the set of feasible trajectories
is S(ϕ, ξ ) = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, shown in Figure 2 with the

corresponding optimal conditional distributions given by (9).

Figure 2: Feasible trajectories of power signals and the com-
puted optimal flexibility feedback in Example 3.1.

3.2 Properties of p∗t
We now show that the proposed optimal flexibility feedback p∗t has
several desirable properties. We start by computing p∗t explicitly.
Fix any aggregator trajectory (ϕ, ξ ). Given any signal trajectory

x≤t , define the set of subsequent feasible trajectories as:

S(ϕ, ξ |x≤t ) :=
{
x>t ∈ XT−t : дi (ϕ, ξ ,x) ≤ 0, ∀i = 1, . . . ,m

}
.

(10)

where x := (x≤t ,x>t ). The size |S(ϕ, ξ |x≤t )| of the set of subse-
quent feasible trajectories is a measure of future flexibility, condi-

tioned on x≤t . Our first result justifies our calling p∗t the optimal

flexibility feedback: p∗t is a measure of the future flexibility that will

be enabled by the operator’s signal xt and it attains a measure of

system capacity for flexibility (see Remark 3 below). By definition,

S(ϕ, ξ |x<1) := S(ϕ, ξ ) and p∗
1
(x1 |x<1) := p∗

1
(x1).

Theorem 1. The optimal flexibility feedback p∗t is given by

p∗t (xt |x<t ) =
|S (ϕ, ξ |(x<t ,xt ))|
|S(ϕ, ξ |x<t )|

, ∀(x<t ,xt ) ∈ Xt . (11)

for t ∈ [T ]. Moreover, the optimal value 𭟋(ϕ, ξ ) of (9) is equal to

log |S(ϕ, ξ )|.

Proof. We prove the statement by induction onT . It is straight-
forward to verify the results when T = 1. We suppose the theorem

is true when T =m. Suppose T =m + 1. Let

𭟋(ϕ, ξ |x1) := max

p2, ...,pT

T∑
t=2
H (Xt |X<t )

denote the optimal value corresponding to the time horizon t ∈
[T ]\{1}, conditioning on x1. We have

𭟋(ϕ, ξ ) = max

p1

∑
x1∈X

p1(x1)𭟋(ϕ, ξ |x1) + H(p1).

By the induction hypothesis, 𭟋(ϕ, ξ |x1) = log |S(ϕ, ξ |x1)|. There-
fore,

𭟋(ϕ, ξ ) =max

p1

∑
x1∈X

p1(x1) log |S(ϕ, ξ |x1)| + H(p1)

=max

p1

∑
x1∈X

p1(x1) log
(
|S(ϕ, ξ |x1)|
p1(x1)

)
whose optimizer p∗

1
satisfies (11) and we get 𭟋(ϕ, ξ ) = log |S(ϕ, ξ )|.

The theorem follows by finding the optimal conditional distribu-

tions p∗
2
, . . . ,p∗T inductively. □

Given the unique optimal flexibility feedback (p∗
1
, . . . ,p∗T ) guar-

anteed by Theorem 1, let q∗(x) =∏T
t=1 p

∗
t (xt |x<t ) denote the joint

distribution of the signal trajectory x . Then (11) implies that the

joint distribution q∗ is the uniform distribution over the set S (ϕ, ξ )
of all feasible trajectories:

q∗(x) :=
{
1/|S(ϕ, ξ )| if x ∈ S(ϕ, ξ )
0 otherwise

. (12)

Remark 3 (System capacity 𭟋(ϕ, ξ )). Fix any aggregator trajec-

tory (ϕ, ξ ). The size |S (ϕ, ξ )| is a measure of flexibility inherent in

the aggregator. We will hence call log |S (ϕ, ξ )| the system capacity.

Theorem 1 then says that the optimal value of (9) is the system

capacity, 𭟋(ϕ, ξ ) = log |S (ϕ, ξ )|. Moreover the optimal flexibility

feedback (p∗
1
, . . . ,p∗T ) is the unique collection of conditional dis-

tributions that attains the system capacity in (9). This is intuitive

since the entropy of a random trajectory x in S(ϕ, ξ ) is maximized

by the uniform distribution q∗ in (12) induced by the conditional

distributions (p∗
1
, . . . ,p∗T ). □

Theorem 1 directly implies the following important properties

of the optimal flexibility feedback.

Corollary 2 (feasibility and flexibility). Let p∗t = p
∗
t (·|x<t )

be the optimal flexibility feedback at each time t ∈ [T ].
(1) For any signal trajectory x = (x1, . . . ,xT ), if

p∗t (xt |x<t ) > 0 for all t ∈ [T ]
then x ∈ S(ϕ, ξ ).

(2) For all xt ,x
′
t ∈ X at each time t , if

p∗t (xt |x<t ) ≥ p∗t (x ′t |x<t )
then |S(ϕ, ξ |(x<t ,xt ))| ≥ |S(ϕ, ξ |(x<t ,x ′t ))|.

We elaborate on the implication of Corollary 2 on our online

feedback-based solution approach.

Remark 4 (Feasibility and flexibility). Corollary 2 says that the

proposed optimal flexibility feedback p∗t provides the right infor-
mation for the system operator to choose its signal xt at time t .
Specifically, the first statement of the corollary says that if the oper-

ator always chooses a signal xt with positive conditional probability
p∗t (xt ) > 0 for each time t , then the resulting signal trajectory is

guaranteed to be feasible, x ∈ S(ϕ, ξ ), i.e., the system will remain

feasible at every time t along the way.

Moreover, according to the second statement of the corollary, if

the system operator chooses a signal xt with a larger p∗t (xt ) value
at time t , then the system will be more flexible going forward than

if it had chosen another signal x ′t with a smaller p∗t (x ′t ) value, in the
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sense that there are more feasible trajectories in S(ϕ, ξ |(x<t ,xt ))
going forward. □

As noted in Remark 1, despite characterizations that involve

the whole trajectory (x ,ϕ, ξ ), such as x ∈ S(ϕ, ξ ), these are online
properties. This guarantees the feasibility of the online closed-loop

control system depicted in Figure 1, and confirms the suitability of

p∗t for online applications.

3.3 Axiomatic justification of (9)
As explained in Remark 4, the optimal flexibility feedback p∗t quan-
tifies succinctly for the system operator the future flexibility of the

aggregator that will be enabled by the operator’s choice of next sig-

nal xt . Intuitively, the system has “more flexibility” at time t if the
distribution pt (·|x<t ) is “more uniform”. This view suggests using

an entropic measure to quantify flexibility, such as the cost function

of the optimization problem (9) that underlies our proposed flexi-

bility feedback. In this subsection we justify this intuition using an

axiomatic argument.

Fix any aggregator trajectory (ϕ, ξ ). Consider a flexibility metric

as a function of any flexibility feedbackp ∈ {p1, . . . ,pT }. Recall that
p is a conditional distribution. For any p, let 𭟋(p) represent a candi-
date metric for quantifying aggregate flexibility. Consider any time

slots τ ∈ [T ], the metric should also be able to provide a value, given

the marginal distributions pt :=
∑
x<t pt (·|x<t )

∏
τ <t pτ (xτ |x<τ ).

We require the metric 𭟋 to satisfy several conditions (axioms):

(1) Continuity: 𭟋(pt ) is a continuous function of pt , t ∈ [T ].
(2) (Strong) additivity: 𭟋(q) = ∑T

t=1𭟋(pt ) if q :=
∏T

t=1 pt .
(3) Subadditivity: 𭟋(qt,t ′) ≤ 𭟋(pt ) + 𭟋(pt ′) where pt ,pt ′ are

marginal distributions corresponding to time slots t and t ′

and qt,t ′ is their joint distribution.
(4) Symmetry:𭟋(qt,t ′) = 𭟋(qt ′,t )where qt,t ′ and qt ′,t are joint

distributions of time slots t and t ′.
(5) Expansibility: 𭟋(p′t ) = 𭟋(p′t ) for all pt , t ∈ [T ] where p

′
t =

(pt , 0), i.e., concatenate a zero entry to pt .

Additivity is useful because the tracking of a random signal trajec-

tory x := (x1, . . . ,xT ) can then be decomposed using the chain rule

into sub-problems of tracking each signal xt at time t , conditioned
on previous signal trajectory x<t . Subadditivity is motivated by

the property that fixing a signal xt may restrict the choice of feasi-

ble signals xt ′ since the signals x1, . . . ,xT may be correlated. This

means that measuring the joint distribution of (xt ,xt ′) gives lower
flexibility than measuring the coordinates xt and xt ′ independently.
For symmetry, the permutation of components in the distribution

pt does not change 𭟋(pt ) since the switch of positions does not

affect the underlying distribution. Expansibility is natural since

adding a new component that equals to zero means xt can never

choose a certain power level. So the aggregate flexibility will not

change.

These five conditions imply that the flexibility metric 𭟋(pt ) (for
all t ∈ [T ]) must be an entropy function:

H(pt ) :=
∑
x ∈X

∑
x<t

pt (x |x<t )
∏
τ <t

pτ (xτ |x<τ )

· log
(

1∑
x<t pt (x |x<t )

∏
τ <t pτ (xτ |x<τ )

)

Data: Sequential cost functions f1, . . . , fT and states ξ1, . . . , ξT
Result: Total cost

∑T
t=1 ft (xt )

for t ∈ [T ] do
Generate flexibility feedback:

pt = ψ
SAC

t (x<t ; ξt )
Generate control signal and compute cost:

xt =π RHC
t (pt )

cost =cost + ft (xt )
Update state:

ξt+1(xt ; ξt ) ←− ξt
end
return cost

Algorithm 1: The RHC scheme for online cost minimization.

up to multiplicative factors and 𭟋(pt ) is the conditional entropy of

pt . This is a classical result about entropy; see [1, 7].
The results in this section justify the design of using the unique

optimal solution of (9) as our flexibility feedback p∗t . The design
attains the system capacity 𭟋(ϕ, ξ ). Moreover it characterizes the

aggregate flexibility in real-time and allows a decomposition (see

Section 5.1 for details) of aggregate flexibility over t via

T∑
t=1
H

(
p∗t

)
= 𭟋(ϕ, ξ ).

We use this decomposition in Section 4 for online cost minimization

where p∗t is used as a penalty in a RHC-based online algorithm. We

also use it in Section 5 for estimating the system capacity 𭟋(ϕ, ξ )
empirically using a Monte Carlo method. Finally, computing the

optimal flexibility feedback is demanding. We provide two approx-

imations for p∗t , one for the case where sufficient historical data

is available and the other when it is not. The first is a data-driven

approach using reinforcement learning (Section 4.2) and the second

is a look-ahead approximation (Section 5.2).

4 ONLINE COST MINIMIZATION
Consider the cost minimization problem introduced in Example 2.3.

In this setting, the operator seeks to minimize the cost in an on-

line manner, i.e., at time t the operator only knows the objective

functions f1, . . . , ft and the flexibility feedback p1, . . . ,pt .
We first describe a receding horizon control scheme for the oper-

ator that, given the flexibility feedback and the objective functions,

allows the operator to compute the signals x1, . . . ,xT . Then, we
introduce a deep reinforcement learning-based approach for the

aggregator to compute an approximation of the optimal flexibility

feedback. Finally, we illustrate our method with simulations.

4.1 Operator: Receding horizon control
The task of the operator is to, given the optimal flexibility feedback,

generate signals x1, . . . ,xT that are always feasible with respect

to both the sets of private and operational constraints and that

minimize cost. For the objective of cost minimization, we propose

an approach that uses receding horizon control (RHC) to achieve

this in an adaptive, online manner – see Algorithm 1.
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We focus on a specific class of constraints and assume the oper-

ational constraints hi (ζ ,x) ≤ 0, i = 1, . . . ,k can be decoupled as

(t ∈ [T ]):

h
(t )
i (ζ ,xt ) ≤ 0, i = 1, . . . ,kt . (13)

First, we consider the following equivalent offline optimization

of (6). Recall q∗ from (12).

min

T∑
t=1

ft (xt ) − β logq∗(x) (14)

subject to hi (ζ ,x) ≤ 0, i = 1, . . . ,k,

where β > 0 is a tuning parameter. Decomposing the joint distribu-

tion q∗(x) =∏T
t=1 p

∗
t (xt |x<t ) by the optimal conditional distribu-

tions given by (9), the objective function (14) becomes

T∑
t=1

ft (xt ) − β log
( T∏
t=1

p∗t (xt |x<t )
)

=

T∑
t=1

(
ft (xt ) − β logp∗t (xt |x<t )

)
. (15)

Eq. (15) motivates the following RHC-based operator function

at time t ∈ [T ], which includes the flexibility feedback pt (·|x<t ) as
a penalty term in a greedy minimization:

πRHCt := argmin

x ∈X
ft (x) − β logpt (x |x<t ) (16)

subject to (13). (17)

Crucially, the following shows that feasibility is guaranteed when

the flexibility feedback is optimal.

Corollary 3. Suppose at each time t ∈ [T ], the optimal flexibility

feedback p∗t (·|x<t ) is sent to an operator constrained by (13). Then,

the trajectory x = (x1, . . . ,xT ) generated by the RHC-based operator

function πRHCt in (16) is always feasible, i.e., x ∈ S(ϕ, ξ ).

Proof. Applying Theorem 2, it suffices to show that the signal

xt = π
RHC
t (p∗t (·|x<t )) generated at time t satisfies p∗t (xt |x<t ) > 0.

Suppose not, then there is a control signal x∗ = πRHCt (p∗t (·|x<t ))
such that p∗t (x |x<t ) = 0 for some t implies the objective in (16)

becomes positive infinity. Our assumption S(ϕ, ξ ) , ∅ implies that

p∗t (·|x<t ) is not an all-zero vector. Therefore, x is not the optimal

solution of (16), yielding a contradiction. □

4.2 Aggregator: Data-driven approximation of
the optimal flexibility feedback

As we have already noted, computing the optimal flexibility feed-

back is computationally intensive. Thus, instead of computing it

precisely, it is desirable to approximate it. For the case of online

cost minimization, it is possible to take a data-driven approach. In

particular, we propose the use of reinforcement learning to learn a

functionψt : Ω → P that outputs the estimated flexibility feedback

pt given the current system state ξt . Note that we do not directly

learn the disaggregation of xt , which would have too large an ac-

tion space. Instead, we fix a specific scheduling algorithm and learn

the feedback vectors directly. This is another benefit of the concise

representation of the feedback vectors.

More specifically, we train an agent functionψt using soft actor-

critic (SAC) [10], with the following generic reward function r :

Ωt × Xt × P → R:

r (ξ≤t , x≤t , pt ) =H(pt ) −
m∑
i=1

ci min

x>t
[дi (x;ϕ, ξ≤t )]+ . (18)

The first term maximizes the entropy of the flexibility feedback

vector, as a heuristic for the objective in (9a). The second term

penalizes the choice of xt that leads to an infeasible trajectory.

Note that the reward function is independent of the price functions.

We provide more details in Appendix A. We next demonstrate

in simulations that feeding back to the operator the approximate

optimal flexibility obtained from reinforcement learning is sufficient

for achieving the desirable properties proven in Section 3.

4.3 Experiments
In the following, we show our experimental results for online EV

charging, using real EV charging data ACN-Data [16], which is a

dataset collected from adaptive EV charging networks (ACNs) at

Caltech and JPL. The detailed choices of SAC parameters and the

design of the reward function for the SAC approach are presented

in Appendix A.
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Figure 3: Pilot control signals and real energy allocated to
EVs generated by Algorithm 1.

Charging curves. In Figure 3, pilot control and real energy

signals are shown. The agent is trained on data collected at Caltech

from Nov. 1, 2018 to Dec. 1, 2019 with linear price functions ft =
1− t/24, where t ∈ [0, 24] (unit: Hrs) is the time index and tested on

Dec. 18, 2019 for JPL with average LMPs on the CAISO (California

Independent SystemOperator) day-aheadmarket in 2016, shown on

the bottom. The scheduling policy is fixed to be LLF (see Appendix D

for more details). The set of power levels X is a discrete set that

contains 60 distinct power levels from 0 kWh to 360 kWh. We use

tuning parameter β = 4000. The pilot control signals are optimal

solutions of (16), which are always bounded from below by the real

charging signals, representing the aggregate charging rates

∑
i ϕi (t)

for t ∈ [0, 24]. The figure highlights that, with a suitable choice

of tuning parameter, the operator is able to schedule charging at
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time slots where prices are lower and avoid charging at the peak of

prices, as desired. Note that the operational constraints used in this

experiments is xt ≤ 150 (kWh) for every t ∈ [T ] and the learned

flexibility feedback is able to automatically flatten the charging

curve within this range, without explicitly knowing it.

5 SYSTEM CAPACITY 𭟋(ϕ, ξ ) ESTIMATION
In addition to minimizing cost, another important goal of the op-

erator is to quantify the amount of flexibility available at each

time. This is crucial for purposes of ensuring the ability to respond

to failures and planning for capacity investment. However, given

that the private constraints of loads are not visible to the operator,

such estimation is challenging. Further, measuring the exact size

of S(ϕ, ξ ) is intractable even if such constraints were visible, since

the subset in RT specified by inequalities (1) can be non-convex

and even computing the volume of a convex body can be a hard

problem [24]. Furthermore, since a system’s states are time-variant,

the flexibility of the system also changes over time.

In this section, we illustrate how the optimal flexibility feedback

can be used to estimate the system capacity𭟋(ϕ, ξ ). To this end, we
propose an empirical estimation of the system capacity that uses an

approximation of the optimal flexibility feedback and demonstrate

our method using a case study of EV charging.

5.1 Operator: Monte Carlo estimation
The task of the operator is to, given the optimal flexibility feedback,

estimate the system capacity 𭟋(ϕ, ξ ) while also generating signals

x1, . . . ,xT that are always feasible with respect to both the opera-

tional constraints (6c) and the private aggregator constraints (6b).

The approach we propose is an empirical estimation of the system

capacity using Monte Carlo estimation. In particular, we consider

µN (ϕ, ξ ) :=
1

N

N∑
ℓ=1

T∑
t=1
H (pt (·|x<t (ℓ))) , (19)

where the summation is overT discrete time slots andN trajectories.

For each, the corresponding entropy function computes the entropy

of the flexibility feedback vector pt conditioned on the generated

signals x<t (ℓ)) at each time t ∈ [T ]:

H (pt (·|x<t (ℓ))) := −
∑
x ∈X

pt (x |x<t (ℓ)) logpt (x |x<t (ℓ)).

The goal of this approach is that, with suitable choices of operator

functions πt , when the number N of sampled trajectories becomes

large, the approximation converges to the system capacity 𭟋(ϕ, ξ ).
To see why, suppose at each time t ∈ [T ], the operation πOPTt is

a stochastic function that samples a signal Xt according to the

optimal flexibility feedback p∗t , i.e., for all t ∈ [T ] and xt ∈ X,

P
(
πOPTt

(
p∗t (·|x<t

)
= xt

)
= p∗t (xt |x<t ).

In this context, the theorem below shows that we obtain an estimate

of the system capacity 𭟋(ϕ, ξ ) using Monte Carlo estimation.

Theorem 4. If the N trajectories {(x1(ℓ), . . . ,xT (ℓ))}Nℓ=1 are gen-
erated i.i.d. by {πOPT

1
, . . . ,πOPTT }, then the empirical estimate in (19)

converges to the system capacity almost surely, i.e.,

µN (ϕ, ξ )
a .s .−−−→ 𭟋(ϕ, ξ ) as N →∞.

Note that, in addition to providing a method for estimating the

system capacity, the theorem also validates that the entropy of

the flexibility feedback sent each time reflects the system’s current

flexibility. This indicates that, for instance, if the feedback vector is a

uniform distribution on X, then the system has maximal flexibility.

Proof of Theorem 4. Suppose N trajectories {x(1), . . . ,x(N )}
are sampled i.i.d. according to the optimal flexibility feedback.

Equivalently, for all ℓ = 1, . . . ,N , the entropy of the optimal flexibil-

ity feedback p∗t (x<t (ℓ)) can be written as the following conditional

entropy H (pt (·|x<t (ℓ))) = H (Xt |X<t = x<t ) , where each Xt ∈ X
is a random signal drawn according to p∗t (x<t (ℓ)). We claim that,

if the random power signal Xt is sampled according to p∗t (·|x<t )
conditioned on previous power signals x<t = (x1, . . . ,xt−1) for all
t ∈ [T ], then the accumulated flexibility over t ∈ [T ] is equal to the

system capacity 𭟋(ϕ, ξ ) in expectation,

EY

[ T∑
t=1
H (Xt |X<t = Y<t )

]
= 𭟋(ϕ, ξ ) (20)

where the expectation is taken over the randomness of the signal

trajectoryY that has the same distribution asX . The equality in (20)

follows by noticing that the left hand side equals to the objective

function in (9a), with the flexibility feedback there at each time

t ∈ [T ] being optimal. Noting that the expectation in (20) equals to

𭟋(ϕ, ξ ), the law of large numbers implies the theorem. □

5.2 Aggregator: Look-ahead approximation of
the optimal flexibility feedback

As we have discussed, computing the exact optimal flexibility feed-

back vectors p∗
1
, . . . ,p∗T is computationally intensive and so ap-

proximations are desirable. In Section 4.2 we have presented a

data-driven approach for estimation via reinforcement learning.

Here, we take a different approach based on looking ahead rather

than referring to historical data. This approach is preferable in

highly non-stationary situations. The approximation is presented

in Appendix B. Notably, one may wonder if sending approximately

optimal flexibility feedback to the operator is sufficient for achiev-

ing the desirable properties discussed in Section 3. In fact, it is

and the results can be extended to hold for approximately optimal

flexibility feedback computed as described above. Perhaps the most

important of these properties is feasibility, and so we provide a

detailed discussion of the extension for feasibility in Appendix C.

5.3 Experiments
In our experiments, we apply Monte Carlo estimation and look-

ahead approximation to the ACN-Data [16].

System capacity 𭟋(ϕ, ξ ) estimation. Figure 4 shows the es-

timated 365-day (average) system capacities µN (ϕ, ξ ) in (19) cal-

culated by Monte Carlo estimation using the look-ahead approx-

imation with N = 5, k = 1 and T = 240 from Sep. 1, 2018 to Aug.

31, 2019. We use parameters that match the setup of the garage.

The total number of charging stations is fixed as 54, with peak

power rate 6.6 kWh. The set of power levels X is a discrete set

that contains 60 distinct power levels from 0 kWh to 360 kWh (for

the definition of the parameters, see Appendix B). Note that, corre-

sponding to this setting, in the case that every power trajectory in
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the length-240 time horizon is feasible, the maximal system capacity

is 240 × log 60 ≈ 983.

An interesting observation from this figure is that, although

there are fewer users after Nov. 1, 2018 (because of switching from

free-charging to paid-charging), there is no significant decrease of

system capacity. Additionally, notice that there is a decline of users

during the holidays, and therefore total flexibility drops during the

Christmas season.
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Figure 4: Estimated system capacities at Caltech with LLF
compared with the number of charging sessions over a year,
from Sep. 1, 2018 to Aug. 31, 2019. Weekends and weekdays
are separated.

Real-time flexibility feedback. Now, let us study the quality

of the real-time flexibility feedback. Eq. (20) gives the desired decom-

position of system capacity, which enables us to characterize the

spectrum of flexibility fluctuations. We show experimental results

for real-time flexibility by considering a charging system within a

single day. We use the same setting of parameters as described in

Fig 4.

We consider the case when operational constraints present, and

the operator seeks to perform peak shaving. In Figure 5, we vary

the peak power limit defined in Example 2.2 and it shows that the

smaller the limit is set to be, the lower real-time aggregate flexibility

the system has. Note that summing the real-time aggregate flexi-

bility over time estimates the system capacity. Therefore a sharper

limit induces a lower system capacity. Supplementary experimental

results can be found in Appendix E.

6 CONCLUDING REMARKS
This paper formalizes and studies the closed-loop control frame-

work created by the interaction between a system operator and an
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Figure 5: Impact of peak shaving constraints on real-time
flexibility. We vary the peak power limit γ (kWh) on Sep. 4,
2018.

aggregator. Our focus is on the feedback signal provided by the

aggregator to the operator that summarizes the real-time availabil-

ity of flexibility among the loads controlled by the aggregator. We

present the design of an optimal flexibility feedback signal based

on entropic maximization. We prove a close connection between

the optimal flexibility feedback signal and the system capacity, and

show that when the signal is used the system operator can perform

online cost minimization and system capacity estimation while

provably respecting the private constraints of the loads controlled

by the aggregator. Further, we illustrate the effectiveness of these

designs using simulation experiments of an EV charging facility.

There is much left to explore about this optimal flexibility feed-

back signal presented in this work. In particular, computing it is

computationally intensive and we have presented two approaches

for estimation. Improving these and developing other approxima-

tions is of particular interest. Further, exploring the use of flexibility

feedback for operational objectives beyond cost minimization and

capacity estimation is an important goal. Finally, exploring the ap-

plication of flexibility feedback in other settings, such as frequency

regulation and real-time pricing, is exciting.
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A LEARNING FLEXIBILITY FEEDBACK
Soft actor-critic (SAC) [10] is an off-policy maximum entropy deep

reinforcement learning algorithm, which in many complicated

learning scenarios (such as control of humanoid robotics) outper-

forms deep deterministic policy gradient (DDPG) approaches, espe-

cially when the action space is a continuous and high-dimensional.

The policy in our experiments is fixed to be a parameterized family

of Gaussian distributions.

A.1 Approximate agent
We train an agentψ SAC

t : Ω → P using SAC whose input at time

t ∈ [T ] is a state parameter ξt that encodes the remaining energy

to be delivered and the remaining charging time for the EV being

charged at each station i ∈ [W ] and time t ∈ [T ], denoted by

ψ SAC

t (i). Knowing the states ξ<t , scheduling algorithm ϕ and the

signals x<t gives the state ξt .

A.2 Parameters in our experiments
In the experiments, the state space is R2×W+ whereW is the total

number of charging stations and a state vector for each charging

station is (et , [d(j) − t]+), i.e., the remaining energy to be charged

and the remaining charging time if it is being used; otherwise the

vector is an all-zero vector. The action space is R
|X |
+ . Moreover, the

outputs of the neural networks are normalized into the probability

simplex P afterwards. Hyper-parameters in our experiments are

shown in Table 1.

Soft actor-critic

Parameter Value

optimizer Adam [15]

learning rate 3 · 10−4
discount (γ ) 0.5

relay buffer size 10
6

number of hidden layers 2

number of hidden units per layer 256

number of samples per minibatch 256

non-linearity ReLU

temperature parameter (α ) 0.5

Markov decision process

power levels (X) {1, 2, . . . , 20} (in kWh)

number of stations (W ) Caltech (54) / JPL (52)

state space R2×W+
action space [0, 1] |X |
reward rEV(ξt ,pt ) σ1 = 0.1, σ2 = 0.2, σ3 = 2

time interval (∆) 6 minutes

operational constraints xt ≤ 150 (kWh), ∀ t ∈ [T ]
Table 1: Hyper-parameters in the experiments.

A.3 Reward function in training
For the deferrable loads in Example 2.1, once constraints are vio-

lated, they can on longer be satisfied by future decisions. Therefore,

theminimization can be removed andwe have the following specific

reward function for EV charging scenario:

rEV(ξ≤t ,pt ) =H(pt ) + σ1 | |ϕt (ξ≤t ,x≤t )| |2

−σ2
[
e(j) −

T∑
t=1

ϕt (j)
]
+
− σ3

���πRHCt (pt ) −
n∑
j=1

ϕt (j)
��� (21)

where σ0,σ1,σ2 and σ3 are positive constants. The second term

is to enhance charging performance and the last two terms are

realizations of the last term in (18) for constraints (2a) and (2b). The

other constraints in Example 2.1 can automatically be satisfied by

enforcing the constraints in the fixed scheduling algorithm ϕ.
With the settings described above, in Figure ??we show a typical

training curve of the reward function in (21). The constants in (21)

are σ1 = 0.1, σ2 = 0.2 and σ3 = 2.

B LOOK-AHEAD APPROXIMATION
Before presenting the design, we first introduce some generalized

notation for feasible power levels that, that extends (10) to the case

of k-step look-ahead.

Sk (ϕ, ξ |x<t ) :=
{
xt→t+k−1 ∈ Xk : ∃xt+k→T s.t.

дi (ϕ, ξ ,x) ≤ 0,∀i = 1, . . . ,m
}
.

Further, the closed-form expression in Theorem 1 motivates us

to consider the following approximation of the optimal flexibility

feedback for all x ∈ X and x<t ∈ Xt−1:

p̂t,k (x |x<t ) =
|Sk (ϕ, ξ |(x<t ,x))|
|Sk (ϕ, ξ |x<t )|

. (22)

This, in turn, leads to the following recursive formula for all 2 ≤
k ≤ T − t + 1:

|Sk (ϕ, ξ |x<t )| =
∑

x ∈S1(ϕ,ξ |x<t )
|Sk−1(ϕ, ξ |(x<t ,x))| . (23)

Here, we use k as the look-ahead depth and note that, when k = T ,
the approximation in (22) becomes exact.

Now, using this notation, in order to estimate the system ca-

pacity 𭟋(ϕ, ξ ), we need to estimate the size of Sk (ϕ, ξ |x<t ) and
Sk (ϕ, ξ |x≤t ) using the recursive formula in (23). Accomplishing

this depends on calculating the feasible set for selecting xt , given
fixed x<t , i.e., characterizing the set Sk (ϕ, ξ |x<t ) with look-ahead

depth k = 1.

To provide a characterization of the first-order approximation

S1(ϕ, ξ |x<t ), we make a monotonicity assumption on the disaggre-

gation policy ϕ, defined as follows.

Definition B.1 (Monotonicity). A (causal) disaggregation pol-

icy ϕ is monotone if for any t ∈ [T ], xt ≤ yt implies that for all

x<t ∈ St (ϕ, ξ ),
ϕt (ξ<t , (x<t ,x)) ⪯ ϕt (ξ<t , (x<t ,y)) . (24)

Assuming that a scheduling algorithmϕ is monotone, the feasible

set of xt conditioning on x<t can be characterized by a closed

interval, as stated in the following theorem.

Theorem 5. Consider a system of deferrable loads with constraints

specified by Example 2.1 and ξ being the associated states. For t ∈ [T ],
for any ξ and monotone scheduling algorithm ϕ, the set S1(ϕ, ξ |x<t )
can be written as the intersection of the set of power signals X and
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a closed interval: S1(ϕ, ξ |x<t ) = X
⋃It (ϕ, ξ ), where It (ϕ, ξ ) :=

[αt , βt ] is a closed interval in R≥0.

Proof of Theorem 5. To prove the theorem, it is equivalent to

show that if x ∈ X and y ∈ X with x < y are two feasible power

levels in S1(ϕ, ξ |x<t ), then any z ∈ X with x ≤ z ≤ y is also in

S1(ϕ, ξ |x<t ). Since the disaggregation policy ϕ is monotonically

causal, the inequality z ≤ y guarantees that the power scheduled

with xt = z to each load is always larger or equal to the case when

xt = x . Therefore, considering that xt = y is a feasible choice,

since z does not violate any constraint for satisfying the demands

of deferrable loads, it must also be a feasible power signal. □

It is typically straightforward to verify that the classical schedul-

ing policies such as the least-laxity-first (LLF) scheduling and the

earliest-deadline-first (EDF) scheduling are monotone, and thus the

theory above applies. We demonstrate this for two classical policies,

LLF and EDF, and one new policy termed feasibility interval maxi-

mization (FIM) in Appendix D. FIM is a new policy motivated by

the feasibility analysis in this paper. Provided with a power signal

xt > αt , FIM assigns power to the loads with negative laxity, pro-

portionally to −ρLax(j, t). Note that our purpose in discussing FIM

is to demonstrate a contrast with LLF and EDF in our experimental

results, not to present an “optimal” policy.

C FEASIBILITY VIA APPROXIMATE
FLEXIBILITY FEEDBACK

Although the approximation of flexibility feedback in (22) is not

precise, in this section we show that it is accurate enough to ensure

feasibility under certain conditions. Specifically, consider a system

of deferrable loads with constraints specified by Example 2.1. The

following lemma states if none of the loads demands “excessive” en-

ergy upon arrival and the system has enough capacity for charging

every load at their peak rates, then the system is always feasible by

choosing the power signal according to the approximate flexibility

feedback.

Lemma 6. Consider a system of deferrable loads with constraints

specified by Example 2.1. Suppose the following conditions hold:

(1) There is no operational constraints and there exists x ∈ X such

that x ≥ ∑n
j=1 r (j).

(2) At each time t ∈ [T ], the selected xt ∈ X satisfies (with look-

ahead depth k ≥ 1)

p̂t,k (x |x<t ) > 0.

(3) The aggregator state ξ satisfies that

ρLax(j, t) ≥ 0, for t ∈ [a(j),a(j) + 1)
and j ∈ [n] where ρLax(j, t) is the laxity of the load j defined
in (25).

It is guaranteed that S1(ϕ, ξ |x<t ) , ∅ for all t ∈ [T ] and any mono-

tone disaggregation policy ϕ.

Proof. Assuming that at time t − 1 ∈ [T ], the chosen power

signal xt−1 satisfies p̂t−1,k (xt−1 |x<t−1) > 0, it remains to validate

that there always exists some xt ∈ X such that the approximated

flexibility feedback p̂t,k (x |x<t ) > 0, conditioning on the previously

selected power levels x1, . . . ,xt−1. To see this, note that condition

(1) and (2) ensures that if the system is feasible at the previous time

step t − 1 (i.e., S1(ϕ, ξ |x<t−1) , ∅), then there is always a feasible

power level inX for xt , assuming there is no new loads arrive at the

current time t . Condition (3) further guarantees that the demands

of the new loads can also be satisfied, as long as the disaggregation

policy ϕ is monotone. Therefore p̂t,k (x |x<t ) > 0. By induction over

t ∈ [T ] the proof is completed. □

D MONOTONICITY OF COMMON POLICIES
In this section we show that LLF, EDF, and FIM are monotone poli-

cies. Throughout, we fix the environment parameter ξ for deferrable
loads and denote by (a(j),d(j), et (j), r (j)) the charging states of the

j-th load at time t ∈ [T ] where a(j),d(j) and r (j) are defined in

Example 2.1 and et (j) is the remaining energy to be delivered at

time t ∈ [T ]. Additionally, let δt (j) := [d(j) − t]+ be the remaining

charging duration (excluding the current time slot).

Least-laxity-first (LLF) scheduling. The laxity of the load j ∈ [n]
at time t ∈ [T ] is defined as

ρLax(j, t) :=
{
δt (j) − et (j)/r (j), t ≥ a(j)
+∞, t < a(j)

. (25)

If the laxity is negative, the car will never be fully charged and

the the system becomes infeasible. Therefore, for any monotone

disaggregation policy ϕ, the corresponding bounds must satisfy

αt ≥
∑

j ∈N(t )
min

{
r (j),−ρLax(j, t)r (j)

}
, (26a)

βt ≤
∑

j ∈N(t )
min

{
r (j), et (j)

}
, (26b)

where N(t) := {j ∈ [n] : ρLax(j, t) ≤ 0}. It is immediate to see that

the equalities (26a) and (26b) hold for LLF.

Earliest-deadline-first (EDF) scheduling. Under EDF the summa-

tion in (26a) for αt needs to be replaced by a summation over

N(t)⋃NEDF(t)where a load j is inNEDF(t) if there exists i ∈ N(t)
such that dj (t) ≤ di (t):

NEDF(t) :=
{
j ∈ [n] : ∃i ∈ N(t) s.t. dj (t) ≤ di (t)

}
.

Feasibility-interval-maximization (FIM) scheduling. Recall that,

when provided with a power signal xt > αt (ϕ, ξ ), FIM assigns

power to the loads with negative laxity, proportionally to−ρLax(j, t).
To understand the motivation behind FIM, observe that increasing

the laxity of the loads decreases the lower bound αt (ϕ, ξ ). Therefore,
intuitively, it is desirable to ensure that as many loads as possible

have non-negative laxity. Clearly, FIM is monotone, since the higher

xt is, the larger amount of energy is assigned to the EVs. The upper

and lower bounds of the interval can be computed the same as

in (26a) and (26b).

E SUPPLEMENTARY SIMULATION RESULTS
In Table 2, we summarize the quality of the capacity estimation,

undelivered energy percentage, and tracking error (see (28) and (27)

for definitions) for three scheduling policies, EDF, LLF and FIM, on

both the Caltech and JPL garages. We measure performance using
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the mean squared error (MSE) as the tracking error:

MSE(ϕ,x) :=
N∑
k=1

T∑
t=1

��� n∑
j=1

ϕ
(k )
t (j) − x

(k )
t

���2/(N ×T ), (27)

where x
(k)
t is the t-th power signal for the k-th test and ϕ

(k )
t (j) is

the energy scheduled to the j-th load at time t for the k-th test.

Additionally, define the mean percentage error with respect to the

undelivered energy as

MPE(ϕ, ξ ) :=
N∑
k=1

T∑
t=1

n∑
j=1

ϕ
(k)
t (j)

/(
(N ×T ) ·

n∑
j=1

ej
)
, (28)

where ej is the energy request for each load j.
The results are averaged over the days from Sep. 1, 2018 to Aug.

31, 2019. The results show that FIM achieves the highest (estimated)

system capacity, and lowest tracking error. However, as FIM always

maximizes the feasible charging interval, as a trade-off, its average

percentage of undelivered energy is always the largest.

ϕ System Capacity Undelivered (%) Tracking Error (kWh)

EDF 262.6726 5.6044 11.1570

LLF 271.7024 10.1406 3.1356

FIM 271.9571 10.3148 2.7661

EDF 221.5389 6.6837 15.5949

LLF 242.4101 11.8726 7.0418

FIM 242.8318 12.1583 6.6034

Table 2: Estimated system capacity 𭟋(ϕ, ξ ), undelivered en-
ergy percentage MPE(ϕ, ξ ), and tracking error MSE(ϕ,x) for
Caltech (top) and JPL (bottom) comparing EDF, LLF, and
FIM.
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