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We present an improved spectral algorithm for Cauchy characteristic extraction (CCE) and char-

acteristic evolution of gravitational waves in numerical relativity.

The new algorithms improve

spectral convergence both at the poles of the spherical-polar grid and at future null infinity, as well
as increasing the temporal resolution of the code. Key to the success of these algorithms is a new
set of high-accuracy tests, which we present here. We demonstrate the accuracy of the code and

compare with the existing Pittnull implementation.

I. INTRODUCTION

The discovery of GW150914 [1] heralded the begin-
ning of gravitational wave astronomy. In the subsequent
years that detection has been followed up by a number
of other signals observed from binary black hole (BBH)
mergers [2-5], as well as from the merger of a binary
neutron star (BNS) system [6]. As the aLIGO [7] and
Virgo [8] detectors push to ever greater sensitivities, the
number of expected observations will continue to grow.

Extracting the signals from the noise involves match-
ing the incoming data against a template bank of the-
oretically expected waveforms generated across possible
binary configurations. The efficacy of extracting the con-
figuration parameters (for instance, masses and spins of
the binary components) from a given signal depends on
the fidelity of the computed waveforms comprising the
template bank; this is because errors in the template
bank will bias the estimated parameters. The only ab
initio method of generating accurate theoretical wave-
forms for merging BBH systems is via numerical relativ-
ity: the numerical solution of the full Einstein equations
on a computer. Other methods of generating theoretical
BBH waveforms, such as Effective One-Body solutions [9]
and phenomenological models [10, 11], are calibrated to
numerical relativity.

One limitation of numerical relativity simulations is
that they all rely on a Cauchy approach in which the
spacetime is decomposed into a foliation of spacelike
slices, and the solution marches from one slice to the next.
Such an approach can compute the solution to Einstein’s
equations only in a region of spacetime with finite spatial
and temporal extents bounded around the compact ob-
jects, whereas the gravitational radiation is defined at fu-
ture null infinity .# . While some work has gone into hy-
perboloidal compactification methods for simulating the
propagation of gravitational waves to .# T [12-14], these
methods have never been fully implemented in the non-
linear regime. Without them, extracting the waveform
signal from the simulations with these finite extents re-
quires additional work.

The most common method of extracting the grav-
itational radiation from a numerical relativity simula-
tion is to compute quantities such as the Newman-

Penrose scalar U, [15] or the Regge-Wheeler and Zerilli
scalars [16] at some large but finite distance from the
near zone (perhaps 100-1000M, where M is the total
mass of the system), typically on coordinate spheres of
constant surface area coordinate coordinate r. Because
these quantities or the methods of computing them in-
clude finite-radius effects, these quantities are computed
on a series of shells at different radii r, fit to a polynomial
in 1/r, and then extrapolated to infinity by reading off
the 1/r coefficient of the polynomial [17]. As the extrac-
tion surfaces are shells of constant coordinate radii, the
choice of gauge implemented in the simulation can con-
taminate the resulting waveforms. Furthermore, if the
shells are too close to the orbiting binary, the extrapo-
lation procedure might not remove all of the near-zone
effects.

An alternative method for computing gravitational ra-
diation in numerical relativity is to solve the full Einstein
equations in a domain that extends all the way to .# 7,
where gravitational waves can be measured. This can be
done by rewriting Einstein’s equations using a character-
istic formalism [18-20], in which the equations are solved
on outgoing null surfaces that extend to #+. This for-
malism chooses coordinates that correspond to distinct
outward propagating null rays, so it fails in the dynam-
ical, strong field regime at any location where outgoing
null rays intersect (i.e., caustics). Because of this, charac-
teristic evolution is unable to evolve the near-field region
of a merging binary system, so it cannot accomplish a
BBH simulation on its own. However, it is possible to
combine an interior numerical relativity code that solves
the equations on Cauchy slices with an exterior charac-
teristic code that solves them on null slices; the determi-
nation of characteristic quantities from Cauchy data is
known as Cauchy-Characteristic Extraction (CCE) (See
Fig. 1.), and the subsequent numerical evolution of those
quantities is known as characteristic evolution.

Specifically, CCE uses the metric and its derivatives
computed from a Cauchy evolution (red region in Fig. 1)
and evaluated on a world tube I' (thick red line) that
lies on or inside the boundary of the Cauchy region.
These quantities on the world tube are then used as in-
ner boundary data for a characteristic evolution (blue
region) based on outgoing null slices (blue curves). Be-
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FIG. 1. Penrose diagram showing a typical CCE setup. The
metric is evolved using 341 methods in the Cauchy region
(shaded red) and with null methods in the characteristic re-
gion (shaded blue). The Cauchy and characteristic regions
overlap. Curves of constant £ or #, the Cauchy coordinates,
are shown in red, and are shown as dashed curves outside the
Cauchy region, where they extend to spatial infinity i or fu-
ture temporal infinity 7. Null curves of constant u are shown
in blue. Given data on an worldtube I" (thick red curve) and
on an initial null slice (thick blue curve), the characteristic
evolution computes the full metric in the characteristic re-
gion. In Section III we describe the interface from Cauchy to
Bondi coordinates on I'. In Section IV we describe the char-
acteristic evolution. In Section V we discuss computing the
news function at .# " (thick green curve) and transforming it
to coordinates corresponding to a free-falling observer.

cause the combined CCE system uses the full Einstein
equations for both the Cauchy and characteristic evolu-
tions, it produces the correct solution at .#+, with the
characteristic evolution properly resolving near-zone ef-
fects. The gravitational radiation is computed according
to a particular inertial observer at .t (green curve).
This observer is related to any other inertial observer by
a single BMS transformation [19] (the group of Lorentz
boosts, rotations, and supertranslations [21]), so up to
this BMS transformation the waveform is independent of
the gauge chosen by the Cauchy evolution.

The first code to implement CCE and characteristic
evolution was the PittNull code [22-24]. Since its ini-
tial implementation there have been a number of im-
provements made, and the current iteration of that code
utilizes stereographic angular coordinate patches, finite-
differencing, and a null parallelogram scheme with fixed
time steps for integrating in the null and time directions.
Overall the code is second-order convergent with reso-

lution [25, 26] (although a fourth-order implementation
also exists, see [27]). Compared to waveforms computed
from a Cauchy code by evaluating ¥, at finite radii and
extrapolating to r — oo as described above, waveforms
extracted via CCE using PittNull were shown to better
remove gauge effects and to better resolve the m = 0
memory modes [28-30].

Currently, PittNull requires thousands of CPU-hours
to compute a waveform at .# T given worldtube output
from a typical Cauchy BBH simulation at multiple res-
olutions [31]. While that cost is smaller than the com-
putational expense of the Cauchy simulation, it is still
unwieldy, and is likely one reason that most Cauchy
numerical-relativity codes do not use CCE and charac-
teristic evolution despite the availability of PittNull. Be-
cause the metric in the characteristic region is smooth,
the computational cost of characteristic evolution should
be greatly reduced by using spectral methods instead of
finite differencing. Such a spectral implementation of
characteristic evolution has been introduced in the SpEC
framework [31-33]. Their tests showed improved speed
and accuracy over the finite-difference implementation of
PittNull [31, 32].

Our work here describes improvements in accuracy, ef-
ficiency, and robustness to the code described in [31-33].
In particular, we discuss an improved handling of the in-
tegration along the null slices, we clarify issues related to
the particular choice of coordinates along the null slice,
and we implement better handling of the inertial coor-
dinates at .# 7. We demonstrate through a series of an-
alytic tests that our version of CCE and characteristic
evolution can compute waveforms with much lower com-
putational cost than PittNull. An earlier version of our
implementation has been used to probe the near-field re-
gion of a binary black hole ringdown [34].

We start with a brief summary of the Bondi metric and
the null formulation of the Einstein equations in Sec I1. A
detailed explanation for how CCE and characteristic evo-
lution works can be broken up into three distinct parts:
the inner boundary formalism, the volume characteris-
tic evolution, and the .# T extraction, which we describe
in subsequent sections. Sec III describes the means by
which the metric known on a world tube is converted
into Bondi form to serve as the inner boundary values for
the characteristic evolution system. Sec IV discusses the
process of evolving Einstein’s equations from the inner
boundary to .# 7. Sec V explains how to take the metric
computed on #T and extract the Bondi news function
in the frame of an inertial observer at .# 7. In Sec VI, we
describe code tests and performance.

Throughout this paper, indices with Greek letters
(s, v, ...) correspond to spacetime coordinates, lowercase
Roman letters (3, j,...) to spatial coordinates, and capi-
talized Roman letters (A, B, ...) to angular coordinates,
and we choose a system of geometrized units (¢ = G = 1).
For convenience, we have included a definitions key in ap-
pendix C.



II. SUMMARY OF CHARACTERISTIC
FORMULATION

In the characteristic region (see Fig. 1), we adopt a
coordinate system z* = (u,r,x4), where u is the coordi-
nate labeling the outgoing null cones, r is an areal radial
coordinate, and z# are the angular coordinates. Note
that a curve of constant (u,z?) is an outgoing null ray
parameterized by r; for this reason we sometimes call r a
“radinull” coordinate. The metric can then be expressed
in the Bondi-Sachs form [18, 19],

d82 — (625 (1 +7'W) _ T2hABUAUB) du2
—2e2P dudr — 2r2hABUBduda?A
+1r2h s pdz?da®, (1)

where W corresponds to the mass aspect, U# to the
shift, 8 to the lapse, and hap to the spherical 2-metric.
The quantity hap has the same determinant as the unit
sphere metric qap, |hap| = |gap|- Note that the met-
ric Eq. (1) is not constrained to be asymptotically flat,
as required by Bondi-Sachs coordinates. Instead, we im-
pose the weaker constraint that all metric components
of Eq. (1) are asymptotically finite at Z+. To empha-
size this subtle difference with Bondi-Sachs coordinates,
we refer to the spacetime metric as having the “Bondi-
Sachs form” rather than being expressed in Bondi-Sachs
coordinates. An additional intermediate quantity, Q 4, is
defined to reduce the evolution equations to a series of
1st order PDEs,

Qa= 7“26_2’8hABU’]f. (2)

Instead of expressing the metric in terms of tensorial
objects, we employ a complex dyad so that the metric
components can be computed as spin-weighted scalars,
and each of these scalars can be expanded in terms of
Spin-Weighted Spherical Harmonics (SWSHes) of the ap-
propriate spin weight; see Appendix A for details about
SWSHes. The dyad ¢ has the following properties:

q*qa =0, (3)
q*qa =2. (4)

If we define gap and g% such that

qaB :%(QA‘?B + Gagqs), (5)
7*“q0B =03, (6)

then
¢t =¢"Pqp. (7)

We express the metric coefficients and the quantity @Q 4
in terms of spin-weighted scalars J, K, U, and @, defined
by

1
J :ihABquBv (8)

1
K =5hapq"q”, )
U ZQAUA7 (10)
Q =Qaq™. (11)

The determinant condition on h 4p defines a relationship
between J and K as

K=+vV1+JJ. (12)

We introduce one more intermediate variable H, the time
derivative of J along slices of constant r,

H = J,u\:v"‘,r:const (13)

The quantities J, 3, and @ are all dimensionless while
U, W, and H have units of 1/R (identically, units of 1/u
in the case of H).

Evaluating the components of the Einstein equation
G = 0 provides a system of equations for the quantities
B8, Q, U, W, and H:

ﬂ,r :Nﬁa (14)
(r’Q),, = —r*(0J + 0K) . +2r'0(r2p)
JrNQ, (15)
Uy =r2e’Q+ Ny, (16)
(r*W) . :%SMR —1—¢’88e?
F RO B0 A N, (17)
2(rH) . =((1+rW)(rJ) ), —r H(r?dU),
+2r71ef%e? — (rW) . J + N, (18)

where

_ 1 - - 1 - - _ _
R =2K — 00K + 5(62J +0%T) + E(6JE§J —9J3.J),
(19)

and N3, Nw,Ng, Nw, and N; are the terms nonlinear
in J and its derivatives, as according to [22]. Appendix B
provides the full expressions for these equations.

These equations correspond to different components
of the Einstein equations, namely, R,. = 0 gives the
equation for 3, R, 4q* = 0 gives the equation for U,,
R phAP=0 gives the equation for W ., and Rapq?q® =
0 gives the equation for H ,. These cover six of the ten
independent components of Einstein’s equations. As [23]
discusses in more detail, of the four remaining compo-
nents of the Einstein equations, one of these is identi-
cally zero (R = 0) while the other three (R!, = 0 and
R7,¢" = 0) serve as constraint conditions for the evolu-
tion on each of the null slices.

However, computing these constraint conditions in-
volve lengthy expressions that include the u—derivatives
of evolution quantities other than J,. It is not straight-
forward to compute these derivatives to the same accu-
racy achieved by the rest of the code. We leave to future



implementations the ability to accurately compute these
constraints as a monitor of how well we obey the full
FEinstein equations during the evolution.

The equations are presented in a useful hierarchical or-
der: the right-hand side of the 8 equation involves only
J and its hypersurface derivatives, the right-hand side of
the @ equation involves only J and 8 and their hypersur-
face derivatives, and so on for the other equations. There-
fore, given data for all quantities on the inner boundary
as well as J on an initial v = constant null slice, we
can integrate the series of equations in Eqs. (14)—(18) on
that slice from the inner boundary to r = oo to obtain
B,Q,U,W and then H in sequence on that slice. Then,
given H = J |,—const 0N that slice, we can integrate for-
ward in time to obtain J on the next null slice.

IIT. INNER BOUNDARY FORMALISM

The coordinates used to evolve Einstein’s equations in
the Cauchy region (red area of Fig. 1) are generally dif-
ferent from the coordinates discussed in Section II. The
Cauchy coordinates are chosen to make the interior evo-
lution proceed without encountering coordinate singu-
larities; the procedure for choosing these coordinates is
complicated and typically involves coordinates that are
evolved along with the solution [35—40]. Therefore, for
CCE we must transform from arbitrary Cauchy coordi-
nates to coordinates such that the spacetime metric takes
the Bondi-Sachs form (Eq. (1)) at the worldtube.

Here, in the Cauchy region, for simplicity we assume
Cartesian coordinates (,#') in which the world tube hy-
persurface T' (which is chosen by the Cauchy code) is a

surface of constant %, where 7 = \/#2 + 92 + 2.

We also define angular coordinates 4 = (5, JJ) in the
usual way from the Cartesian coordinates &'.

The world tube serves as the inner boundary of the
characteristic domain (see Fig. 1). On this boundary, we
assume that the interior Cauchy code provides the spa-
tial 3-metric gy, the shift B', and the lapse &, along with
the # and # derivatives of each of these quantities. Angu-
lar derivatives of these quantities are necessary as well;
however, we can compute those numerically within the
worldtube itself, so they need not be provided a priori.

Ref. [24] describes how to take the data provided by
the interior Cauchy code and covert it into Bondi form
(Eq. (1)) to extract the inner boundary values of the
evolution quantities (Jip, Br, ...). This section is primar-
ily a summary of their results; however, we use different
notation than Ref. [24]. Additionally, as noted above,
the SpEC CCE treatment takes the inner boundary of
the domain to be the worldtube provided by the Cauchy
code, which is generally not a surface of constant r. The
PittNull treatment, on the other hand, uses a surface
of constant r as the inner boundary of the domain, and
performs a Taylor expansion in the affine radial coor-
dinate in order to determine inner boundary data on
this surface. Avoiding the Taylor expansion simplifies

the boundary computation, and may provide marginal
precision improvements by avoiding finite Taylor series
truncation error.

A. Affine Null Coordinates

Our goal is to transform from the coordinates (Z, Z') to
coordinates such that the metric takes the Bondi-Sachs
form (Eq. (1)). It is simplest to proceed in two steps: the
first step, described in this subsection, is to construct co-
ordinates foliated by outgoing null geodesics. The second
step, described in Section II1 B, will be to transform from
these affine coordinates to Bondi coordinates.

We begin by constructing a choice null generator ¢/,
which involves the unit outward spatial vector normal to
the world tube’s surface, s#, and the unit timelike vector
normal to a slice of constant #, nf:

o grij‘
=10, —F/——=7, 20
: { Tx} (20)
no_ - -
== {1,-5'}. (21)

Eq. (20) depends on our simplifying assumption that the
world tube is spherical in Cauchy coordinates, and can
be generalized. From these equations, the null generator
is

o :m (22)
o — gyBlsl
The time derivatives of these vectors are
s*% = {07 (—g" + sisj/2)s];gj,;7tv} ) (23)
't :% {~d a8 -as}, (24)
n@+ﬂ4%ﬂCdf+%ﬂﬁﬁ+mﬁyﬁnmﬁﬁ)

(S
e B¢
I

a — gyfist
(25)

We will now construct a null coordinate system based
on outgoing null geodesics generated by £#. Let A be
an affine parameter along these geodesics such that the
value of X on the world tube I is 5\|p = 0. We also define

a null coordinate % and angular coordinates 4 = (0, ¢)

that obey @ = ¢ and z* = #4 on the world tube, and
are constant along the outgoing null geodesic generated
by ¢#. Thus we have defined a new intermediate, affine
coordinate system, % = (i, \, 0, $) and we will express
the metric gzp in these affine coordinates.

To do this, we will need to write down the coordinate
transformation from " to Z# in a neighborhood of the
world tube, not just on the world tube itself, because we
need derivatives of this transformation. In particular, we
will need derivatives with respect to A\. The derivative



of the metric components g;» along the null direction
simply is

s =00 gjiv 5- (26)

The evolution of the coordinates ## along null geodesics
implies that in a neighborhood of the world tube

= 079yt = (P, (27)

Given the new coordinates Z#, the metric components
in these coordinates are

5% 9B
_or ov 2
9w = 55 7z Jal (28)
On the world tube,
ot
— =0
ozA
oF  9F
oA opA
ot
=~ -1
ou ’
o
50 =0 (29)

where the term 9#'/074 is the standard Cartesian to
spherical Jacobian. The above values of the Jacobians
hold only on the world tube. In addition to the metric
itself, we will also need first derivatives of the metric,
including the derivative with respect to A. This requires
the X derivatives of the Jacobians evaluated on the world
tube, which we represent here as

rah ot

ozAoN  9zA A
T

gun on (30

where we have made use of Eq. (27).

We are now ready to write out the metric in these inter-
mediate coordinates by taking the expression in Eq. (28)
and taking the appropriate derivatives,

gax = — 1,
93 =9xa = 0,
Juu =9,
0%
9uA :5'EA Yxts
0x' 0
IAB =574 ggB I
0x' oF
94aB,X :3EA ozB 9i5,x

Ot O
9AB.u :ﬁaﬂg 95,6
y ot y
Juax =" ;9 95 (9;z,x+€‘fagm), (31)
’ Xr
and
gaa :gaA =0,
AB i
9P g9pe =64,
M =9 9.5,
9 == gaa + 9™ gax,
9*P5 =-9"“9"P g6 5,

B. Bondi Form of Metric

Given the intermediate null coordinates and the metric
in that coordinate system, we apply one last coordinate
transformation to put the spacetime metric in Bondi-
Sachs form (Eq. (1)). We define coordinates (u,r, 6, ¢),
where 7 is a surface area coordinate, v = @, 6 = 6, and

¢ = ¢. The surface area coordinate r is defined by

1 1
3 N
- (lgABl) _ (|gAB|> , (33)
|q48| 245
where g 15 is the unit sphere metric.

The components of the metric in Bondi coordinates are
then

_ Oak Oz¥ 5

HY _
0x* 9zh g

(34)

The Jacobians include the derivatives of the surface area
coordinate r. We compute

ra :g (gABgAB@ - |qAJ_B_|’a) . (35)
d44iB
Since the only difference between the final boundary
coordinates (u,r,60,¢) and intermediate coordinates is
the choice of radinull coordinates, the Jacobians for the
u, 0 and ¢ directions are trivial. Eq. (32) gives us

guu =9 = Oa
guA :g’ﬂA — 0,
g*P =", (36)




g Zﬁg =Tx9 rBY9 - (37)

From this we can also construct the inverse Jacobian
elements. The elements of that Jacobian we shall need
are

ou

Ou

ou

Ozt

8} ra

% X ’

3JEA i

OxA '

ozt ozt
or  du

= 0. (38)

The final metric element we shall want is g4p which we
can compute as

oz oz
gAB = 8?81‘739&6
o\ o\ oX O\
=9gap+ HpB A + DA INE + 924 5B I
=94ip (39)

where we made use of the fact that g55 = 951 = 0.

Because u and z# are equal to f and #4 on the world
tube and are constant along outgoing null geodesics, the
time and angular coordinates (£, #) on the world tube
determine the coordinates v and z# throughout the char-
acteristic region, including on .# *. Thus, the coordinates
at #1 will be gauge-dependent, since { and 4 are de-
pendent upon the gauge choices made in the 3+1 Cauchy
evolution. We will later eliminate this gauge dependence
by evolving and transforming to the coordinates of free-
falling observers on ., as described below in Sec. V B.

C. Inner Boundary Values of Characteristic
Variables

Now that we have the full metric in Bondi-Sachs
form (Eq. (1)), we assemble the inner boundary values
for the various evolution variables used in the volume,

J,8,Q,U, W, and H. We write out the complex dyads as
qa ={-1,—isinb},
A Z.
={-1,—— . 4
q { ’ sin@} (40)

Because of the identification between the intermediate
angular coordinates 4 and the Characteristic coordi-
nates x4, the dyads are identified, ¢* = ¢* and ¢4 = q4.

Then, as a consequence of Eq. (40), g4 5 = qAS\ =0 and

qaa =q" =0.
Inverting the metric in Eq. (1),

0 —e 28 04
g = —e28 (1+ rW)e’Q’B —e28yA ) (41)
0B _e—28/B 2, AB
where haphP¢ = 6§ and |hap| = |qaB|-

In the PittNull code, the quantities J, 5, @, U, and
W and their A derivatives are computed using an expan-
sion in affine coordinates to compute their values along a
surface of constant surface area coordinate r [24]. Pitt-
Null then chooses its internal compactified radinull co-
ordinates in the characteristic region to be surfaces of
constant r. However, in Ref. [31] and here, we choose
our inner boundary to be the worldtube. The value of
the surface area coordinate r at the world tube we define
as R(u,z%),

R :’I"‘F, (42)
R,X =T X (43)
R’ﬁ :r,ﬁu‘. (44)

The consequences of this change in inner boundary hy-
persurface are discussed in more detail within Sec. IV A.

We can now write down the inner boundary values of
the characteristic variables in terms of the metric coef-
ficients that we have computed at the inner boundary.
Going back to the definition of J = $¢*¢Phap, we get
the expressions

I A B I 1B
Tp =5550"0" 98 = 57534747945, (45)

Kir =\/1+ JrJr, (46)

I 2R 5

I3 =50 0 9apx — 5~ I, (47)
I 15 2R

J””F:2R2q 1"9ABa ~ —q Jir- (48)

To get the inner boundary value of H, we expand J,, as

ot 1))

so then we find after substituting and simplifying that,

1 45 R
Hyr = ﬁquB (g,ag,u - R’gAB,x) . (50)

A

We can read off the value for g*" to compute 3,

1
We will also need 3 5 in order to compute Qr. Directly
differentiating Eq. (51) yields
Rxx
2R,;\ ’

Bar=— (52)



but this involves the quantity R 55, which appears to
depend on second derivatives of the metric. So we instead
compute 8 5 r using 4’s evolution equation, Eq. (B1):

8]}%z (JAFJAF (K,j\r)2>7 (53)

which involves only first derivatives.
The quantities U and W can similarly be read off from
the metric:

Bar =

(54)

(55)

To get Qr, we will also need U sjr, which we com-
pute by differentiating the expression for Ujp and using
Eq. (52) to eliminate R 55 in favor of 8 5 p:

sa . Bxs ap . BB
U - :_<g)\A+ : gAB+gAB)qA
AT AR, R
+26 51 (UlF + QAAQA) ; (56)

where it is understood that 3 5 is to be evaluated using
Eq. (53). Now that we have an expression for U jr, the

inner boundary value of @ is given by

Qe =R (JirUxjp + KirUspr) - (57)

D. Computational Domain

We implement angular basis functions through the
use of the external code packages Spherepack [41, 42],
which can handle standard spherical harmonics, and
Spinsfast [43], which is capable of handling SWSHes.
The world tube metric and most of the intermediate
quantities of the inner boundary formalism are real, ten-
sorial metric quantities (i.e. representable by the typi-
cal spherical harmonics), so we use Spherepack. Once
all of the inner boundary values of the Bondi evolution

J

1-2p p(1—
(OF),, =0}, — EPT6\PR F (

p(1
R

o R
—P) (201 — )8,k R — R,0.R) —o.F, (PL=P5 g
5— | (2(1 = )3, R0, 1001 R) =01, F, lo

3OF =5,,0,F + F, (

5 p(1—p) p(L—p)\" 5
=0, <R6|PR> + Fpp (R 0,10,k

Correction factors for dF, 5F,pv J00F, 90F, and 90F

quantities are computed, they are then projected onto
the basis utilized by Spinsfast for use during the vol-
ume evolution. Because Cauchy codes evaluate the world
tube data at discrete time slices, we use cubic interpola-
tion to evaluate each of the metric quantities at arbitrary
time values.

IV. VOLUME EVOLUTION
A. Computational Domain

Because the domain of characteristic evolution extends
all of the way out to .# T where the surface area coordi-
nate r is infinite, to express .#+ on a finite computational
domain, we define a compactified coordinate, p,

r
R+r

p= (58)
where R is the surface area coordinate of the world tube
given in Eq. (42) so that p runs from pp = 1/2 to
p|.#+ = 1. This choice of compactification is subtly dif-
ferent from that which is used in PittNull [27]. Because
they expand in affine coordinates to obtain a hypersur-
face of constant Bondi radius, their compactification pa-
rameter is constant and unchanging during their entire
evolution. By tying our compactification parameter to a
fixed Cauchy coordinate radius 7 and allowing the surface
area coordinate r to change freely, we must be careful in
how we define our derivatives.

One consequence of utilizing p is that angular deriva-
tives computed numerically on our grid, 9,, are evalu-
ated at a constant value of p, so these are not the same
as angular derivatives defined on surfaces of constant r,
which we denote as 8. Since Egs. (14)—(18) involve d and
not 5| 0y We must apply a correction factor to compute 0
from 9,:

OF =3, F — F,0,p=0,F — F,"2=P5 R (50)

R

for an arbitrary spin-weighted scalar quantity F'. Similar
correction factors are needed for second derivatives that
appear in the evolution equations:

P, R

(60)

(61)

(

are obtained by appropriately interchanging ® and 0 in



Egs. (59)—(61).

Numerical derivatives with respect to ¢ and u are also
taken at constant p on our grid, but at constant r in the
equations, so similar correction factors are required there
as well, as discussed below in Sec. IV E.

We employ computational grid meshes suitable for
spectral methods, Chebyshev-Gauss-Lobatto for the rad-
inull direction and Spinsfast mesh for the angular di-
rections with a uniform ¢ and 6 grids.

B. Spectral representability

Spectral techniques represent functions over a finite
numerical domain as a series of polynomial functions.
Such representations are of greatest use when the nu-
merical evolution gives rise to smooth solutions, which
converge exponentially with resolution in the spectral ex-
pansion. However, any defect in the solution, such as dis-
continuities, corners, cusps, or the presence of logarith-
mic dependence, will spoil the exponential convergence
of a spectral method, and potentially introduce spurious
oscillatory contributions to the numerical result. For this
reason, it is of great importance to the characteristic evo-
lution code in SpEC to minimize or eliminate sources of
such non-regular contributions to the hypersurface equa-
tions.

The nature of the characteristic hypersurface equations
permits terms proportional to log(r) to develop in the
solution of the characteristic evolution system. These
terms are not representable by polynomial expansions
in 1/r or by polynomial expansions in p, so if present
they spoil exponential convergence. Such terms creep
into the evolved solutions by three principal avenues: 1)
via the initial data choice, which if constructed naively,
can excite logarithmic modes, 2) via poorly-chosen co-
ordinates of the metric on the u =const hypersurfaces,
and 3) via incomplete numerical cancellation in the equa-
tions, which possess nontrivial pole structure. Points 1)
and 2) arise from the use of the asymptotically non-flat
Bondi form of the spacetime metric, Eq. (1). In that
form, even mathematically faithful solutions to the hy-
persurface equations for generic worldtube data possess
logarithmic dependence. These logarithmic terms would
vanish in an asymptotically flat coordinate system, so are
a pure gauge contribution.

In sections IV C and IV D, we explain our methods
for minimizing the logarithmic contributions in the char-
acteristic evolution system. As part of the discussion
in Sec. IV C, we describe the choice of initial data that
eliminates logarithmic dependence from the first hyper-
surface of the characteristic evolution system, address-
ing point 1) above. In Sec. IV D, we describe improve-
ments to the integration techniques that address point
3) above. These methods reduce logarithmic dependence
to the point where it is not noticable in the tests pre-
sented here. However, the full remedy for point 2) re-
quires careful re-examination of the characteristic evo-

lution equations and a set of coordinate transformations
for the evolution system that will be considered for future
development of spectral characteristic techniques, but is
beyond the scope of this paper.

C. Initial Data Slice

The characteristic evolution equations require bound-
ary data on two boundaries: the worldtube (thick red
curve in Fig. 1) and an initial slice v = wg (thick blue
curve in Fig. 1). Boundary values on the worldtube were
treated in Sec. III above; here we discuss values on the
initial slice. Given the hierarchical nature of the evolu-
tion equations, the only piece of the metric we need to
specify on the initial slice is J, as we can compute all
of the other evolution quantities from J using Eqgs. (14)-
(18). The main mathematical consideration for choosing
J for the initial slice is ensuring the regularity of J at #;
the main physical consideration in typical applications is
choosing a J that corresponds to no incoming radiation,
either by a linearized approximation [26], or by matching
to a linearized solution [44]. Finally, there is the numeri-
cal consideration mentioned in Sec. IV B that we wish to
minimize the excitation of pure-gauge logarithmic depen-
dence and keep the initial data C°° over the numerical
domain.

When choosing J on the initial © = ug slice, we wish to
match the worldtube data provided by the Cauchy code
as closely as possible. The worldtube data that we take
as input (see Sec. III) consist of the full spacetime metric
and its first radial and time derivatives, which are suffi-
cient to constrain the value of J and the value of 9,.J on
the worldtube. By careful analysis of the characteristic
evolution equations, one can show that the initial u = ug
hypersurface is free of logarithmic dependence if [45]
2] —J ((8@[()2 — 3@J3gj) =0 at 1. This condition
is satisfied by the simpler conditions J = J =0 at &,
so we construct an initial J that satisfies J = J 4 =0 at
# T and matches the world tube data. This construction
is consistent with the input Cauchy data in the overlap
region of (Fig. 1) to linear order in a radial expansion.

Our initial choice of J, determined by the functions
J|r and 9, J|r, is

R R3
Jinitial = o (3J|r + RO, J|r) — 5,3 (J|r + RO, J|r)
R /1
=3 (p - 1) (3J|r + RO, J|r)
R® (1 3
- (p - 1) (J|r + RO J|r). (62)

D. Radinull Integration

The characteristic equations Eqgs. (14)—(18) can be
solved in sequence by integration in r from the worldtube



to #+. We use a numerical radinull grid in the compacti-
fied variable p, and we re-express the characteristic equa-
tions in terms of p derivatives; see Eqs. (B1)-(B6). The
grid points in p are chosen at Chebyshev-Gauss-Lobatto
quadrature points. The radinull equations for §, and
U, (Eq. (B1), (B3)) both lend themselves to straight-
forward Chebyshev-Gauss-Lobatto quadrature. Starting
at the inner boundary values of Sir (Eq. (51)) and Ujp
(Eq. (55)), these evolution variables are integrated out
to .

A quick examination of the radinull equations for the
evolution quantities @ ,, W ,, and H, (Eq. (B2), (B5),
(B6)) reveals powers of (p — 1) in denominators, so regu-
larity at £ (p = 1) is not guaranteed by the form of
the equations. A previous version of this same spec-
tral characteristic evolution method [31] utilized inte-
gration by parts in order to rewrite the equations in a
form without poles, allowing them to be integrated di-
rectly via Chebyshev-Gauss-Lobatto quadrature. How-
ever, integration by parts introduced logarithmic terms
like log(1 — p) which canceled analytically in the final
results of gauge-invariants such as the Bondi news, but
which were not well represented by a Chebyshev-Gauss-
Lobatto spectral expansion in p. These logarithmic terms
spoiled exponential convergence and led to a large noise
floor, limiting the accuracy of the method. We choose an
alternative approach here.

The evolution equation for @, Eq. (B2), can be written
in the form

Qc @b
= " T=p)”

where Q¢ corresponds to the 1/(1 — p)? term and Qp is
the 1/(1— p)? term in Eq. (B2), and all factors of (1 — p)
in denominators have been written explicitly.

To better characterize the asymptotic behavior of this
equation, we rewrite the system in terms of the inverse
radinull coordinate x = R/r = 1/p — 1. Then Eq. (63)

(r*Q),, = (63)

becomes
where
C= _ch#’ (65)
-3 (66)

We know the right-hand side quantities C and D are
regular at z = 0, and we seek a solution @ that is also
regular there. So we introduce new variables, motivated
by Taylor series expansions of @, C, and D about %
(x=0),

Q=Q - Qs+ —2Q 0+, (67)
C=C~-Clg+ —2C 40+, (68)

72

Thus, by construction, @ and C are both guaranteed to
behave like 22 near 2 = 0 while D behaves as 3. Sub-
stituting these variables into Eq. (64) and gathering like
terms, we find the differential equation

DZD*D|]+*$D’ML¢+7

Q C D ZO,x\]Jr +D,mx\ﬂ+
<x2>r_x2+x3+ 2z
Q2|+ +Clyt + Do+ 2Q g+ + D) g+
+ 2 + 3 .

(70)

Because of how we have defined Q, C and D, any potential
singularity issues are confined to the last three terms. To
satisfy Eq. (70) for all z, the numerators of each of these
terms must identically vanish, providing constraints and
boundary conditions on the asymptotic values of @, C,
and D,

D+
Qo+ =— |2 , (71)
Qo+ =—Clo+ — D go+, (72)
1
0=—Coajys = 5Dyzals+- (73)

The last equation, Eq. (73) is a regularity condition on
C and D. If satisfied, it ensures no logarithmic depen-
dence in the solution to the @) equation. A careful anal-
ysis of the differential equations, which will be presented
in complete detail in future work, shows that the lead-
ing violation of Eq. (73) is o< 002J| 4+, and that Eq.
(73) is entirely satisfied if J = 0 and J,, = 0 at ST,
The leading violation of the conditions on J can be de-
termined through further analysis to have the leading
contribution of U(d,J)?| s+. These pure-gauge regular-
ity violations are important to note for precision studies
and for unusual regimes for characteristic evolution, but
for the practical evolutions, the scales we observe do not
typically exceed U ~ 1076, J ~ 1073, So, even for long
evolutions, the logarithmic dependence does not grow to
a significant fraction the main contribution.
We now integrate the equation

553w

2 2 3

s

with inner boundary value

Dis+
Qr =Qr+ ‘Tﬂ + (Clo+ + D yo+) (75)

to obtain @ at all radinull points. Then we reconstruct

@ by adding back in its asymptotic values,

D s+
2

Because the equation for ) does not mix the real and

imaginary parts of @, we follow [31] and solve for real
and imaginary parts of @) separately.

Q=9— *I’(Cl]#» JrD’x‘er). (76)



Examining the evolution equation for W, Eq. (B5), we
recognize that it has the same form as the equation for @,
Eq. (B2). Therefore, in order to solve for W, we use the
same procedure as we do for @, following from Eq. (63)
through Eq. (76) but replacing all of quantities specific
to @ with their W equivalents.

The radinull equation for H, Eq. (B6) can be written
as

J
(Hﬂm—%{HT+EHU:H%+

Hg He
+ —
l=p (1-p)?
(77)

where Hg = X;Hp;. The form of this equation is very
similar to that of Eq. (63) that governs the @ (and W)
radinull evolution. However, there is now the additional
complication that H , has a term proportional to not only
H, but also to H. This couples the real and imaginary
parts of the equation.

The previous version of this code employed the Magnus
expansion in order to handle this difficulty [31]. While
the Magnus expansion might be useful for systems where
the terms in its expansion are rapidly shrinking, there
is no guarantee that will hold in general. Instead, we
will write the system as a matrix differential equation,
expressing H (and Hyu, Hg, and H¢) as column vectors

like
_ ( R(H)
m=(5). (78)
and defining the quantity M as

_ ( R(R(T) R(J)S(T)
v= (3D amam ) @
so that M H here represents matrix multiplication. Then
Eq.(77) becomes the matrix equation,

Hp He

(rH),—rMH=Hjg+ —— 4+ —,

! l—p  (1-p)?

As before, we convert from p into the inverse radinull

coordinate = R/r = 1/p — 1 to better characterize its
behavior near .# T,

(80)

H H B C
() —|—./\/l—=z4—i-——|—f2 (81)
z), T r  x
where
M
— HA
A R(1 + x)2’ (83)
— HB
B R(1+z)’ (84)
c-_He (85)
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As we did with the @ equation, we shall introduce one
final set of variables, motivated by Taylor series expan-
sions of H, B, and C about x = 0.

H=H—H 4, (86)
BZB*B|L¢+*MH|L,¢+ +M|y+H‘y+, (87)
C=C— O|ﬂ+ — xC,x|y+. (88)

Once again, these variables are constructed so that H
and B behave as = and C behaves as 22 in a neighborhood
about z = 0. Substituting these into Eq. (81), we get

H H B C
() +Mf=A+*+*2+
xr z X x X

B

H s+ +C’|y+
1-2

+B‘V¢+ +C7x|y+ —M‘y+H|y+

- (89)

As before, the numerators of the last two terms must

vanish, which gives us a boundary condition on H at
I,

H g+ ==Cig+, (90)
and a boundary constraint on B, C, and M,
0=DB|g+ +C o+ + M| s+C|g+. (91)

The last constraint is a regularity condition that is guar-
anteed to be satisfied provided the input spin-weighted
scalars 8,Q,U, and W themselves are regular [45]. Of
course, the small violation that arises from the @@ and W
equations will lead to a similarly small violation in the
regularity of H. In principle, a carefully chosen coordi-
nate transformation could fully address all of these small
violations.
We then integrate the equation

B C
Cﬂ VL. (92)
X x x X T

from the worldtube to .# T, with boundary value Hr =
Hyp + C| g+, to obtain H on the entire null slice. We
reconstruct H by computing

H=H—Cy-. (93)

To help ensure the stability of the system, we perform
spectral filtering for each of the evolution quantities J,
B, Q, U, W, and H after every time we compute them,
similar to [31]. For the angular filtering, we set to 0
the highest two {—modes in the spectral decomposition
on each shell of constant p. Thus, resolving the system
up through ¢,,,,, modes requires storing and evolving the
evolution quantities in the volume up through £ = £,,,4. +
2 modes. We filter along the radinull direction by taking
the spectral expansion of the evolution quantities along
each null ray and scaling the i—th coefficient by

6—108(1'/(%—1))16’ (94)



where n, is the number of radinull points. This is a fairly
stringent filter. Future work may be able to retain more
mode content by exploring the precise needs of the filter
to avoid aliasing effects in a range of practical simulation
data.

E. Time Evolution

To evolve J forward in time, we integrate
J,u|p,:z:A:const =o (95)

at each radinull point using the method of lines. This is
done using an ODE integrator, integrating forward in wu,
with a supplied right-hand-side ®. Here ® is computed
using

R
= H+p(l-p)2 T, (96)

where R 5 is the derivative of the surface area coordinate
r along the world tube given by Eq. (44) and where H
is the result of the radinull integration, Eq. (18), accom-
plished using the method in Section IV D.

The time integration of J (Eq. (95)) uses a 5th or-
der Dormand-Prince ODE solver with adaptive timestep-
ping [46], and a default relative error tolerance of 1078
except where otherwise noted. The step sizes are limited
entirely by the error measure and is independent of the
time steps of the Cauchy evolution used to generate the
world tube. The time evolution is also done in tandem
with the evolution of the inertial coordinates (Eq. (124),
and of the conformal factor (Eq. (107)) from scri extrac-
tion, as described below.

V. SCRI EXTRACTION

Once the characteristic equations have been solved in
the volume so that the metric variables of the Bondi-
Sachs form Eq. (1) are known on .# T, the gravitational
waveform can be computed. This involves two steps. The
first step is computing the Bondi news function at .#+
from the metric variables there. The second step involves
transforming the news to a freely-falling coordinate sys-
tem at #*; this removes all remaining gauge freedom

J
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up to a BMS transformation. These steps are described
below.

A. News Function

The metric in Bondi-Sachs form given in Eq. (1) is
divergent at £ where r — oo, so we work with a
conformally-rescaled Bondi metric, §,, = ¢%g,,,, where
¢ = 1/r, that is finite at r — co. Expressing this met-
ric in the coordinate system 2% = (u, £, z4), it takes the
form [23]

Gap = — (2P (2 + (W) — hagUAUP) du?
+2e2P dudl — 2h A gUB duda?
+hapdz?dz®. (97)

Here hap, 8, W, and U# are the same quantities that
appear in Eq. (1).
To facilitate the computation of the news function, we
construct an additional conformal metric
Gao = w’ 9o, (98)

that is asymptotically Minkowski at .#*+. The conformal
factor w is chosen so that the angular part of g,, is a
unit sphere metric [45],

qap = w’hap| s+ (99)
In terms of the original metric,

(100)
(101)

o =00,
Q =wl.

On a given constant u slice, w can be computed by
solving an elliptic equation related to the 2D curvature
scalar,

R =2 (wz +hA 2 DaDp lnw) : (102)
where D4 is the covariant derivative associated with
hfﬁ. Eq. (102) has the effect of setting the asymptotic
2D curvature in the conformally rescaled metric to be 2,

which is the curvature of the unit sphere. Expanding out
the covariant derivatives yields [23],

hfﬁDADB Inw :i( — 9202 InwJ — 202 InwJ + 400 Inwk — dlnwdJJ? — dlnwdJJJ — 20InwdJ

+20lnwdKJK +0lnwdJJK +dlnwdJJK — 20 lnwdKJJ + dJ0InwJK + 3J0lnwJK

20K Inw]J — 5nwdJJJ — 251InwdJ — dlnwdJJ? + 201In wf‘ﬁKJK).

Eq. (102) could in principle be used to solve for w at

(103)

(

each slice of constant u. However, we instead solve this



equation for w only on the initial slice, where the equation
simplifies significantly (see below), and then we construct
an evolution equation for w and we evolve w as a function
of u. Note that when evolving w, one could use Eq. (102)
as a check to monitor the error in w; however we do not
yet do so.

On the initial slice, Egs. (102) and (103) simplify con-
siderably; we have set Jj s+ = 0 (see Eq. (62)), so
Eq. (103) implies that hff+DADB lnw = 409 1lnw and
Eq. (19) implies that R = 2, reducing Eq. (102) to
1 = w? +00Inw. This has the trivial solution of w = 1.

The null generators at £ are defined as [23],

il ="V Q) s+, (104)
Al =GN o) g+ = §", (105)

J
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so that

Lak, (106)

= w"
where the covariant derivative Vj is associated with the
Bondi metric, gup. Derivation for evolution of the con-
formal factor on .#7 in the frame of the compactified
metric, is given in Ref [23], and can be computed by

20V lnw = —e 2PW) 4+ (107)

Ref [23] derived the formula for the news function in

the conformal metric with the evolution coordinates, with

a sign error corrected in [47] (Ref [23] chose their conven-

tion to agree with Bondi’s original expression in the ax-

isymmetric case [18]). Here we’ve factored the s; slightly
differently then they did,

N :m (451 + 259 — (U +0U) s3 — %34 + ZS5> , (108)
A =we??, (109)
sy = H, +JJH,+2(K +1)(H,— JK ), (110)
s =0J ¢ JJU +8J ¢ J?U 4 20U JJK 4 + 20U JJJ ¢ + 0J ¢ JJU +dJ ¢ J*U + 20U J*.J , + 20U J*K

+(K +1) (26JZU — 20K 4JU — 20U JJ 4y + 40U K 4 — 20U JK 4 + 40U J 4 + 20J yU — 20K ,JU

~WUJIK  ~ 2007 ), (111)
s3=J2T ¢+ JJJ s +2(K +1)(J,— JK ), (112)
54 =0A0wJJ + BABwI? + (K + 1) (25A8w — 9ABwT — 3A6wj>, (113)
s5 =202 AJJ + 202 AJ? + AT JJ? + BADJTJ?J — 0ADJJJK — AT J?K + 20A0K J*J

+20A0K J?J +0ADJJ?J + 0ABTJ? — 20A0K J* K

+(K +1) (462A — 400AJ 4 20A8.JJ 4 20A8.JJ — 40ADK + 2040 — 20AD.J + 46A5KJ)

(K + 2)( — 20ADK.J.J — DADSIT — 5A6JJ2). (114)

The news as defined in Eq. (108) has spin-weight +2.
However, the usual convention for gravitational radiation
is to work with quantities with spin-weight —2. Further-
more, the news N has the opposite sign as the usual con-
vention. To relate this news function to the gravitational
wave strain defined using the following convention: given
a radially outward propagating metric perturbation from
Minkowski, hzs = gas — nas and polarizations given by
hy = (hgg+hzz)/2 and hy = hy;, the strain is given by

h=hy —ihy. (115)
Then the news is related to the strain by,
dzh = 2N. (116)

(

B. Inertial Coordinates

Once the news function is computed according to Sec-
tion V A, it is known as a function of coordinates (u, z4)
on .#*. Recall that these coordinates are chosen so that
u =1 and 24 = 74 on the world tube, where (£, %) are
the time and angular coordinates of the interior Cauchy
evolution. Therefore, the news as computed above de-
pends on the choice of Cauchy coordinates.

In this section, we transform the news to a new iner-

tial coordinate system (@, #4) on £, where curves of

constant #4 correspond to worldlines of free-falling ob-
servers (because we are working on .# T, we can suppress
the radinull coordinate). This removes the remaining
gauge freedom in the news, up to a choice of free-falling



observers (or in other words up to a BMS transforma-
tion).

On the initial slice, we choose @& = u and #4 = z*.
These inertial coordinates then evolve along the £+ gen-

erators [23],

(117)
(118)

where the n* are given by elements of the compactified
metric according to Eq. (105).
Since #4 = (6, ) are not representable via a spec-

tral expansion in spherical harmonics, thus making them

J
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_0F 0§ 502 At
mz%—i—yz% (Z°+7 )%— pxv

By expanding the basis from 2 coordinates to 3, we also
need to introduce a constraint which will force the &' to
remain on the unit sphere and eliminate the extra degree
of freedom, 7 = /22 + ¢ + 22 = 1. While this holds
analytically, numerically 7 will shift away from 1 during
the evolution, which makes it necessary to introduce a
constraint equation to the system of equations,

or .0 0y _0Z

=T —+y; +=z

ou " ou ou ou o),

(123)
where C(7) is an constraint term where C(7 = 1) = 0. In
our code, C(F) = —k(F — 1) for some positive parameter
K.
With these three equations, Egs. (121)—(123), we solve

for the three %—55. After some manipulations and massag-
ing, we obtain the evolution equations for the Cartesian
inertial coordinates with respect to the characteristic co-
ordinates,

oFt 7t 1

N oFk pA
g~ 7 Mt R pYY e

(—=2'37 6,5 + 6"17°) (124)

Once we know @(u,z?), Z'(u,2*), then obtaining the
news on this grid is a matter of interpolation. Our code
does so in two steps. First, each of the spatial coor-
dinates, as well as the news function is interpolated in
time onto slices of constant @, so that we then have both
# (@, x*) and N(@,z?) = N(@,4'), using a cubic spline
along each grid point on #+.

Then on each constant @ slice, we perform the spa-
tial interpolation by projecting the news function onto
its spectral coefficients ¢/, using the orthonormality of
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poor choices for our numerics, we represent the inertial

coordinates using a Cartesian basis 7' = (7,9,2). We
reexpand Eq. (118), using the transformations,

o0 1 o oy
i 119
dzr  E2 4 g2 ( Y +x8x“) ' (119)
d¢ 1 % dj 0z
2 - —(# o g — (P + P) ) -
Ok 72, /52 4 32 ozH ozH oxH

(120)

Plugging those into Eq. (118) yields the coupled equa-
tions

_0F 0y )
—j— ), 121
< Yosd " Toza (121)
__0F 0y o o OZ )
TZ— +yz—— — (27 + —]. 122
( pai TP pa IR (122)
[
SWSHes from Eq. (A7),
™) = | N(a,#)2Y"(0,¢)sin0dodp.  (125)

S2

However, since we numerically evaluate news function
on the the noninertial characteristic coordinates, we
must instead do the integration over its area elements,
sin #dfd¢, so we convert the coordinates of this expres-
sion, which introduces the determinant of a Jacobian,

oiA

dfdo = dodg A
a

. (126)

Once again, because of the difficulties of representing an-
gular coordinates spectrally, we convert this expression
from @ and ¢ to #'. To facilitate our expansion to Carte-
sian coordinates, we introduce a temporary radial coor-
dinates t and t on the unit sphere with 4 = (%, 0, <;~S) and
x4 = (t,0, ¢) so that we can properly define the determi-
nants (keeping in mind t and v are analytically identical
to 1 so will disappear from the final expressions),

ozt| ozt | o7
ozA| | 071 || 0xA
1 0
=\s—=|3=I|" 127
<f25in9> ’336“ (127)
Plugging everything in yields the full expression,
s =~ 1 | 0%
Z'm ~ — ~ ~1 m .
c™(a) = = N(a,z')2Y (0, ¢) g ‘W sin dfde.

(128)



Note that we have included a factor of sin 6/ sin § which,
while analytically trivial, aids with the numerics of our
code. Incorporating the sinf in the numerator gener-
ates the proper spherical area element for the integration,
while we factor the 1/sin 6 into the a%s terms in the Jaco-
bian, as numerically computed spherical gradients return
factors of -1 -2

sinf 0¢°

If the strain is similarly decomposed into spin-weight
—2 spherical harmonic coefficients, hg,,, then they are
related to the news coefficients by,

Dahim = 2(—1)"™c5m, (129)

One potential issue with Eq. (128) is the possibility
that there is a significant drift in the inertial coordinates
relative to the code coordinates. If there is a large sys-
tematic shift in the coordinates (for example, if they all
drift towards a single sky location), then there could be
regions on the unit sphere which are sparsely represented.
Because spectral methods of computing integrals often
assume an optimal distribution of grid points across the
surface, this drift means there is a risk of underresolving
the computation Eq. (128), especially for high ¢ modes.
To forestall this issue, we have taken to representing the
scri extraction portion at a significantly higher angular
resolution from the rest of our code. In particular, when
we properly resolve the volume evolution up to £,,,, an-
gular modes, the use maintain a basis consisting of 24,4,
angular modes for our scri extraction code. Our properly
resolved information content is still no better than what
is resolved in the volume evolution (i.e. £,4.), but this
allows us to accurately project onto the inertial coordi-
nates with Eq. (128). Because the scri extraction portion
of the code is only a 2D surface, this choice is an insignif-
icant contribution to the overall computational cost of
our code.

While this coordinate evolution projects the news func-
tion on an inertial frame, it is not a unique inertial frame.
The class of inertial observers at .# T are all related to
each other by the group of BMS transformations. Be-
cause our CCE inertial coordinates at .# * correspond to
free falling observers, the BMS frame remains constant
throughout the entire characteristic evolution. Thus, the
BMS frame we use in our evolution is frozen in entirely
by our choice to identify our inertial coordinates with the
characteristic coordinates on our initial slice (i.e. @ = u
and #4 = z?). This choice is in some sense arbitrary,
as it is ultimately related to the coordinates provided on
the world tube by the Cauchy evolution on that initial
slice, and there no guarantee of consistency between CCE
evolutions on different world tubes even from the same
Cauchy evolution. However, development of a consistent
treatment of handing the choice of BMS frame is beyond
the scope of this paper.
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C. Computational Grid

We use Spherepack for most of the Scri Extraction,
with the final projection onto the inertial coordinates
done using Spinsfast. The time evolution of the iner-
tial coordinates, Eq. (124), and of the conformal factor,
Eq. (107), is done in tandem with the evolution of J,
Eq. (96), in the Volume Extraction, using the same rou-
tine (5th order Dormand-Prince) and error tolerance as
specified for that evolution.

VI. CODE TESTS

In order to showcase the accuracy, speed, and robust-
ness of this spectral CCE code, we perform a number
of tests on the code. We have two linearized solutions,
a trivial analytic solution, and two fully nonlinear tests
which outline how well the code can remove purely coor-
dinate effects from the news output.

A. Linearized Analytic Solution

The linearized form for the Bondi-Sachs metric for a
shell of outgoing perturbations on a Minkowski back-
ground was given in [48], though our choice of notation
follows more closely with that used in [25]. We can ex-
press the solutions in terms of the metric quantities

Tiin =/ (C+ 2/ (€ = 2)1 2ZR (T (r)e™™)
Biin = "Z""R (Bu(r)e™™)
Wiin = °ZmR (Wg(r)e“’") ,

(130)

where v is a real constant setting the frequency of the
perturbations and Jg(r), Ue(r), Be(r) and Wi(r) are all
analytic complex functions of just the radius and /—mode
of the perturbation, given below. The angular content is
expressed through the various *Z™, which are just linear
combinations of the typical SWSHes defined as in [48]

1
sZZm :ﬁ (Sylm + (_1)7” SYZ*m) for m > 0,
s ztm :\L@ (=)™ sytm _ SYE*’") for m < 0,
s 70 _ syl0 (131)

To get the linearized expression for Hy;,, we can simply
take a direct u derivative of Jy;,,. Since these expressions
are defined according to the Bondi metric, with the sur-
face area coordinate r (rather than p), u derivatives are
taken along curves of constant . Thus Hyy = Jiin,u-

From this, the linearized news function can be ex-
pressed as

| oo+ 1 ur? .
N =R (e“’“ lim ( (D), i J“) +ewum>

r—oo 4 2
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FIG. 2. The difference between the numerically evolved
news function and the analytic solution for the linearized an-
alytic test of Section VI A, for various amplitudes of the linear
perturbation a. The (2,2) mode is on the left and the (3,3)
mode on the right. We expect differences of order o because
we evolve the nonlinear terms that the linearized analytic so-
lution neglects. For both modes, the magnitude of the dif-
ferences scales as at least o until they approach numerical
roundoff.
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Ref [25] explicitly wrote out the solutions to the lin-
earized evolution quantities and news function for the
¢ = 2 and ¢ = 3 modes, which we reproduce here. For

0 =2,
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and for ¢ = 3,
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N (134)

where By, Cy, and CYy, are all freely chosen complex con-
stants. Note that only the values of Cp, show up in the
expression for the news.

For the tests we performed here, we follow a similar
setup as in [25, 27], where we evolve a system which is a
simple linear combination of the (2,2) and (3,3) modes.
Specifically, the parameter values are v = 1, By = .5ia,
Cyo = 1.5a, and Cy, = —iC3, = .5a, where the constant
« sets the amplitude of the resulting news as well as the
scale of the linearity of the system. Because we evolve
the entire nonlinear solution, and not just a linearized
version, we expect our results to differ from the analytic
solution with differences that scale as the square of the
amplitude, o?.

We place these linearized values of the evolution quan-
tities (J,W,U, ) on a chosen world tube to serve as
the inner boundary values for the volume evolution. By
starting with the world tube in the Bondi metric, we by-
pass the entire inner boundary formalism since we are
already starting with the Bondi metric quantities. To
make this test even more demanding, we chose our world
tube such that its surface area coordinate varies both in
time and across the surface, given by the formula
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R(u,2,y,2) =5 <1+(

We chose this distortion of the surface area coordinate
somewhat arbitrarily, ensuring that it had distortions
with modes up through ¢ = 4 as well as a time vary-
ing component with a frequency distinct from that of the
linearized perturbation. This tests the code’s ability to
distinguish between H and ¢ with a correct handling
of the moving world tube surface area coordinate, R, at
least to linear order. Since this test bypasses the inner
boundary formalism, we can not make any claim about
whether the coordinate radius 7 of the world tube is mov-
ing as there is no defined coordinate radius.

The data for J on the initial slice we also read off
from Eq. (130). With the world tube metric values and
initial slice established, we evolve the full characteris-
tic system. We resolve SWSH modes through ¢ =
with a radinull resolution of 20 grid points and rela-
tive time integration error tolerance of 1078, We test
the characteristic evolution against perturbation ampli-
tudes of @ = (1072,1073,107%,107°,1075,1077,1078)
from u = 0 to u = 10. We compute the difference be-
tween the computed news and the analytic results from
Eq. (132), |[AN*™| = |N&P . — Mf™| in Fig 2. Note, we
are examining the news function evaluated at the ﬂ +
coordinates (u, 8, ¢), rather than the inertial coordinates,
(@, 0, J)) because we expect the difference between the two
systems to be a small correction to the linearized values.

From Fig 2 we clearly see that when a > 1076, [AN?™|
scales as a?. When a < 107°, the difference in news
rapidly reaches a floor below 10~ for the smallest am-
plitude perturbations. Modes other than (2,+2) and
(3,£3) all converge towards 0 with scaling behavior no
worse than |[AN‘"| < O(a?) until reaching machine
roundoff. The observed scaling with « matches the ex-
pected scaling: we are evolving the full nonlinear equa-
tions but are comparing to an analytic solution of the
linearized equations.

Previous iterations of CCE codes have performed a
similar linearized analytic test [28, 47]. While their choice
of parameters differs slightly from ours, they are most
similar to our & = 107, with inner boundaries at fixed,
uniform R world tube surfaces. The error in their news
at the resolutions they tested was worse than 10719
whereas the error in our news for the o = 107% case
is at the order of 10~!4, hovering just about the error
of our numerical roundoff. While comparing our results
to theirs is not exactly a 1-1 comparison, we believe this
is evidence for how effective our code is at resolving the
linear case.

—42x + .29y + .092) (.22 + 1y — .122)(.Tx + .1y — .32)(. 122 — .31y — .5z) .
sin Ty
(xZ + y2 + 22)2
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FIG. 3. The difference between the numerically evolved news
function and the analytic solution for the Teukolsky wave test
of Section VIB, for various amplitudes of the linear pertur-
bation a. The (2,0) mode is on the left and the (4,0) mode
on the right. We expect differences of order a® because we
evolve the nonlinear terms that the Teukolsky wave solution
neglects. For both modes, the magnitude of the differences
scales as at least o until it approaches numerical roundoff.

B. Teukolsky Wave

A Teukolsky wave is a propagating gravitational wave
in the perturbative limit of Einstein’s equations. For out-



going waves the metric has the form [49]
ds* = — di? + (1 + f,r)di® + 2B fprdidd
+2B [t sinfdid + (1+CJiy) + AJS)) r2dd?
+2(A — 20) foui sin §dfd
F(1) F(2)\ w2 o2 5772
+ (14 CF5) + AFE)) 7 sin? Gdg?, (136)

where the functions fij are known functions of angles
listed below, and the functions A, B, and C are computed
from the freely specifiable function F(u) = F(t — ),

2F  3dyF 3F
AS(%3+iﬂiﬁ»
BF 3d2F 6d;F 6F
B=-(-a 173 A 75 )0
T T T T
oL (diF | 2d3F 9F | 21diF  21F
a7 72 = Iz )

(137)

where dj is the total derivative with respect to w. The
choice of F(f —7') specifies outward propagating waves, as
opposed to F(f+7#) which would generate ingoing waves.

Following [50, 51], we choose the outgoing solution cor-
responding to the SWSH 2Y2° mode, defining the ﬁj
from above as

frr =2 — 3sin? 5, fre = —3sinécos§, fm =0,
Tag) =3sin®0, f§)) =1, fop =0,

£5) = fag)s 18 =3sin®0 -1, (138)

and defining the profile of the waves with F(ua) =
e/ 72, where o and 7 are the amplitude and width
of the wave, respectively. This is slightly different than
the choice of F'(@) used in either [50] or [51].

Because this solution starts with a metric that is not in
Bondi-Sachs form, this test utilizes the full inner bound-
ary formalism, in contrast to the linearized analytic test
in section VI A, which tests only the characteristic evo-
lution. We evaluate the components of the metric (see
Eq. (136)) at a world tube of constant radius, #p. The

spatial 3-metric §;; is computed from the various f;;

transformed into a Cartesian basis, the shift is Bl =0,
and the lapse is & = 0.

Given the metric and its derivatives evaluated on a
world tube, the inner boundary formalism creates a cor-
respondence between time and angular coordinates on
the world tube and at £+, ie. (u =160 =0,¢ = ¢).
With that in mind, the news function of this waveform
at T is given by the formula [51]

3sin? 0
4
where here % = u — #p. For our choice of F(),

6 .
NP —aq [ e ™ (1200 — 1605 + 32i%)  (140)

N = =20 ), (139)
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with all other news modes N“"720 = 0. When we com-
pare our computed news with this analytic news, we do
so using the news evaluated on the coordinates (u, 8, ¢),
rather than the inertial ones (i, 6, ¢).

Because this is a solution of the linearized Einstein
equations, comparing with our numerical solution of the
full nonlinear equations should yield differences that scale
like o2. Note that even though we represent the magni-
tude of the linear perturbation with « in both this test
and the linearized analytic test above, the absolute am-
plitude for a given « is not the same for the two tests.
The Teukolsky wave news function here is over two orders
of magnitude larger than the linearized analytic solution
for the same value of a.

For our test, the worldtube is at coordinate ra-
dius of #p = 5, and we start the wave at the ori-
gin with a width of 7 = 1 with amplitudes a =
(1072,1073,1074,1075,1075,1077,107%). The CCE
code is run to resolve the news up through ¢ = 8 modes
with 20 radinull points and a relative time integration er-
ror tolerance of ~ 4 x 107%. We evolve the system from
u = 0 through u = 10, which starts and ends when the
metric is effectively flat.

We show the difference between the numerical evo-
lution and the (2,0) mode of the analytic news from
Eq. (140), |[AN?°| = |[N2% 5 — N?°| on the left side of
Fig 3. We see for larger perturbations (o = 107%) the
difference in the news scales with o2, while for smaller
perturbations (o < 1076) |[AN?| reaches a floor below
10~'2. For other ¢ = even, m = 0 modes, such as the
(4,0) mode plotted on the right half of Fig 3, the behav-
ior is similar. Because we chose a solution with m = 0,
all m # 0 modes of the numerical solution vanish to nu-
merical roundoff error for all «.

This behavior is very similar to what we see for the
linearized analytic test. This confirms that our CCE code
is consistent with the linear solution. Because this test
also incorporates the full inner boundary formalism (as
opposed to the linearized analytic test which does not),
this also confirms that to linear order, we reproduce the
Bondi metric on the world tube.

C. Rotating Schwarzschild

Following the test used in [23], we generate data cor-
responding to the Schwarzschild metric in Eddington-
Finkelstein coordinates with a rotating coordinate trans-
formation, gzvb — quﬁ—i— w1, so the metric is

o

oM o
d5? = — (1 - — w2 sin? 9) du? — 2dudr
T

+2wi? sin? Bdudg + # sin? d)?, (141)
where M is the mass, w is the parameter of the transfor-
mation, and « is the coordinate & = t — 7*. For our test,
we chose M = 1 and w = .1. The world tube has a ra-
dius of ¥ = 3M and the solution is evolved from u = 0M



to u = .5M. Because the metric is just Schwarzschild
in different coordinates, there is no gravitational radia-
tion. We ran our code with an absolute time integration
error tolerance of 10712, and inertial coordinate damp-
ing parameter of k = 10. The resulting numerical values
of all the news modes (resolved up through ¢ = 8) are
below absolute values of 107'2. Because this case uses
a spacetime metric that is not in Bondi form and has a
nontrivial angular dependence, it is a full, nonlinear test
of our code (albeit with no time dependence) from the
inner boundary formalism through the extraction of the
news function at £,

D. Bouncing Black Hole

One expected key feature of CCE is its ability to re-
move gauge effects from the resulting waveform regard-
less of the coordinates of the Cauchy metric. We con-
struct a test similar to those in [28, 51]. We start with
a Schwarzschild black hole and apply a simple time-
dependent periodic coordinate translation on the space-
time. Doing so produces a time-dependent, periodic met-
ric at the (coordinate-stationary) world tube, but be-
cause this black hole is not radiating, the news function
of this spacetime should be zero; the goal of this test is
to verify that we indeed get zero in this nonlinear, time-
dependent situation.

Specifically, the solution is that of a Schwarzschild
black hole with mass M = 1 in Kerr-Schild coordinates
(f,%,7, %), with a simple oscillating coordinate transfor-
mation

; (142)

L 4 (271'5)

r—T+asin [ — |,
where in our test we chose ¢« = 2M and b = 40M.
Thus, in the coordinate frame, which is also the frame
of the world tube, the black hole will appear to bounce
back and forth along the Z-axis, but there is no radiated
gravitational wave content. The world tube is placed at
7r = 15M, which is intentionally very small compared
to what would be used for a compact binary simula-
tion (typically hundreds of M); we chose an artificially
small world tube to produce an extremely difficult test
of the CCE code. We evolve the system from u = OM to
u = 40M, one full period of the coordinate oscillation,
starting and ending when the coordinates of the black
hole are at the origin.

We performed the characteristic evolution with our
spectral code at 3 different resolutions, which we label as
Sk, where k is (0,1,2). We set the resolution at each level
of refinement as follows: we retain SWSH modes Y™
through £,.x = 842k, we use 20+2k collocation points in
the radinull direction, and the adaptive timestepper uses
a relative error tolerance of 3 x 107° x e™* with a max-
imum step size of Au = .1. For each resolution, we ran
our code on a single core on the Wheeler cluster at Cal-
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FIG. 4. The absolute values of the (2,2) and (2,0) news
modes for both the SpEC (color, resolutions denoted by SO
through S2) and PittNull (grayscale, resolutions denoted by
PO through P5) CCE codes for the bouncing black hole test
(Section VID). For this test the news should be zero. Al-
though both codes are convergent, the SpEC results achieve
much smaller errors than the PittNull results, especially near
the beginning and end of the cycle as the off-center translation
vanishes.

tech an intel Xeon E5-2680, taking less than (30, 50, 120)
minutes for the (SO, S1, S2) resolutions, respectively.

For simplicity, we examine the news at .#* in the co-
ordinates (u, 6, ¢) rather than in the inertial coordinates
(@, 0, gg) Similarly, we expand the news into spherical
harmonic modes 2Y“™ (6, ). Since the news function is
supposed to be zero uniformly, simple coordinate trans-
formations at £+ are not expected to affect the overall
results presented here.

As a baseline for comparison, we also ran the Pitt-



—
T
~J

LILLI IIIIIIIIIIIIIIIIIIII

—
<+ 108
Z

10~°

10—10

-
€]
L ITI A T T 1111

w2
—
IT

10711

10—12
0 10 20 30 40

FIG. 5. Same as Fig 4, but for the (3,3) and (4,4) modes
of the news. For these modes, the SpEC news is at least two
orders of magnitude smaller than that of PittNull.

Null code on the same world tube data. We ran Pitt-
Null at multiple resolutions (P0-P5). These correspond
to a resolution of (100%,2002,300%,400%,600%, 900°)
spatial points and fixed time steps of Au =
(.05,.025,.01667,.0125,.00833,.00556) M. Because Pitt-
Null takes significant computational resources at high
resolution, we intentionally terminated the P5 simula-
tion after less than 15M. During the time that it ran,
that simulation continued trends seen in the lower res-
olution PittNull simulations. The PittNull resolutions
(PO, P1, P2) were run on 24 cores on the Wheeler clus-
ter at Caltech, taking approximately (850, 2650, 5350)
total CPU-hours, respectively, while resolutions (P3, P4,
P5) were run on 512 cores on the BlueWaters cluster,
taking approximately (9000, 17000, 24000) total CPU-
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hours, respectively. In the case of P5, that corresponds
to the cost expended on the simulation before we ter-
minated it. This massive discrepancy on computational
cost between the two codes demonstrates the impressive
speed up achieved by utilizing spectral methods, similar
to what was observed with the previous implementation
of this spectral code [31, 32].

In Fig 4 and Fig 5, we plot the amplitude of the
(2,2),(2,0),(3,3) and (4,4) modes of the news for both
codes for all resolutions for one oscillation period. In
both codes, the amplitude of the £ + m = odd modes
vanishes except for numerical roundoff, likely due to the
planar symmetry of the system. For the £ + m = even
modes the computed numerical news is nonzero for both
codes at finite resolution.

We see in Fig 4 that for the £ = 2 modes the SpEC code
does a better job than the PittNull code does at removing
the gauge effects from the news function, at our chosen
resolutions. This is especially true at the beginning and
end of the oscillations when the difference between the
shifted coordinates and Schwarzschild is minor.

During the middle of the period, when the coordinate
effects on the world tube metric are the largest, the dif-
ference between the SpEC and PittNull news in the (2,2)
and (2,0) modes is the smallest. Yet even in this regime,
the lowest resolution SpEC simulation improves on the
highest resolution PittNull simulation by over an order
of magnitude. For the higher order modes, like the (3, 3)
or (4,4) modes in Fig 5, the peak error in the lowest reso-
lution SpEC results are roughly two orders of magnitude
better than those of PittNull. In all the modes, improv-
ing the SpEC CCE resolution reduces the amplitude of
the news, suggesting the remaining errors in the SpEC
results are due to finite numerical resolution, rather than
any issue inherent to the code.

This test is a rather extreme test of the code’s abil-
ity to distinguish coordinate effects, with the black hole
moving an appreciable fraction of the world tube’s radius
in its coordinate frame. We also ran our code at the low-
est resolution on this identical system while placing the
world tube radius at a series of different coordinate val-
ues, 7r € (10, 12,15,20,25)M, spread quasi-uniformly in
1/7. In Fig 6, we plot the amplitude of our code’s (2,2)
mode for each of these world tube radii.

Moving the world tube to smaller radii raises the error
as might be expected; eventually if the world tube is close
enough to the BH we expect caustics to form (i.e. radi-
ally outward null rays cross paths) and the characteristic
formulation to fail. There is a clear convergence of this
error to zero as we move the world tube further away and
the relative size of the coordinate transformation of the
bouncing BH shrinks.

E. Gauge Wave

The bouncing black hole test is a measure of the code’s
ability to remove coordinate effects resulting from sim-
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FIG. 6. The absolute values of the (2,2) news modes from
our SpEC code at the lowest numerical resolution S1, for the
bouncing black hole test at different coordinate world tube
radii 7.
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Here M is the mass of the black hole and dj is the total
derivative with respect to u. For the test, we set M =1
and we chose F to be a sine-Gaussian,

. o _ (u—ug)?
= asin (wi + pg) e~ #2

F(ua) (144)
Here « is the amplitude of the gauge wave, w is the fre-
quency, po is the initial phase offset, g is the time when
the peak is at the origin, and k is its characteristic width.
For our test, we choose « = M, w = .5/M, py = .01,
g = 40M, and k = 10.

Because this system is spherically symmetric, most of
the terms in the evolution equations are trivially zero.
In order to make the test more stringent and to gen-
erate nonzero terms in the evolution equations, we also
apply an additional translation to displace the center of
the black hole from the center of the world tube. The
translation used is

S 542 (1—e—<f/40>4). (145)
By moving the system entirely along the Z-axis, we ex-
pect only m = 0 modes to be excited. We choose the
worldtube radius to be 7 = 50M. Our gauge wave is
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ple translations; we now introduce a test to examine
the code’s ability to distinguish between outgoing grav-
itational waves and gauge waves propagating along null
slices. To generate this gauge wave, we construct a metric
similar to that introduced by Eq. (5.2) in Ref [52], except
modified for an outward propagating gauge transforma-
tion. Starting with the Schwarzschild metric in ingoing
Eddington-Finkelstein coordinates, we apply the trans-
formation of ¥ = £ + # + F(f — #)/# where F(i) is an
arbitrary function. The line element is

dy F) <2M N (1_ 2M) (Fds F—i—F)) didr

) (%

(143)

+ = )) 72 4 2d02.

configured so that the peak will propagate outwards and
pass through this world tube at £ = 90M.

We ran our SpEC CCE code at three different reso-
lutions, Sk, for k = (0,1,2). This corresponds to an-
gular resolution of ¢,,x = 8 4+ 2k, radinull resolution of
20 4 2k and absolute time integration error tolerance of
10712¢=%. The three resolutions, (S0, S1, S2) were run
on a single core on Caltech’s Wheeler cluster for approx-
imately (35, 75,165) minutes.

PittNull CCE was also run at three resolutions,
PO — P2 corresponding to a finite diffencing grid with
(1003, 2002, 300%) spatial points and fixed times steps of
size Au = (.05,.025,0.01667) M. Each resolution was run
on 256 cores on the Blue Waters cluster, costing approx-
imately (1100, 3200, 6000) CPU-hours.

In Fig 7, we plot the amplitude of the (2,0) and (3,0)
news modes for both codes and in both modes. We ex-
pect the news to be zero because the solution is merely
Schwarzschild in moving coordinates. At all times both
codes show convergence towards zero, with SpEC several
orders of magnitude below PittNull. In the SpEC results,
at the times corresponding to the coordinate shift, we see
the amplitude of the news is noticeably smaller than seen
in the bouncing black hole test, consistent with the larger

(
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FIG. 7. The amplitude of the (2,0) and (3,0) mode of the
news for SpEC (color) and PittNull (grayscale) CCE codes,
for the gauge wave test (Section VI E). The center of the coor-
dinate shift off-center occurs around v = 40M while the peak
of the gauge wave propagates to .#* at u = 90M. For this
test, the news should be zero. At all times, the SpEC code is
orders of magnitude more accurate than the PittNull code.

world tube radius used in this test. The passing gauge
wave also leaves an imprint on the news that is appropri-
ately vanishing with resolution.

Examining the higher ¢ modes yields a similar picture
for both codes just at slightly decreasing amplitudes, as
seen in the right panel of Fig. 7. Also, as expected by
the axisymmetry of the setup for this test, both codes
produce zero news to numerical roundoff for all m # 0
modes.
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VII. CONCLUSION

In this paper, we have detailed the implementation of
our spectral CCE code as a means of extracting gravi-
tational wave information from an interior Cauchy evo-
lution of a relativistic system. We summarized the full
theoretical framework CCE along with discussion of the
changes made to the previous version of the code [31, 32].
In particular, beyond bug fixes and miscellaneous alter-
ations to the code, we have improved the numerical treat-
ment of the poles contained within the @, W, and H
evolution equations, switched the timestepper from fixed
step size to a 5th order adaptive, changed the representa-
tion of the inertial coordinates at .# T for better spectral
handling. All of these cumulative effects lead to a more
robust and accurate code than before. This paper also
clarifies a number of analytic subtleties and paper typos
present within [31, 32].

We applied our code to a number of analytic test cases
in order to examine its efficacy to extract the correct
gravitational wave content from the world tube data. In
the pair of linearized test cases, the code successfully re-
produces the analytic solution to linear order, with their
differences scaling as expected (i.e. scaling by the nonlin-
ear terms unaccounted for by the linear approximations).
In these two tests, the code is ultimately limited by the
numerical truncation limit of using double precision. A
third test, a Schwarzschild black hole in a rotating co-
ordinate frame, is a full nonlinear test of the code with
a straightforward vanishing solution. Similar to the lin-
ear tests, the code resolves this solution up to numerical
truncation limits.

The other two tests, the bouncing black hole and the
gauge wave, are more rigorous tests of the code’s capabil-
ity of eliminating gauge effects from the final output, and
is successful at doing so. For these tests, the errors are
small and convergent with resolution. Furthermore, as
the world tube boundary is placed farther from the black
hole, less resolution is needed to attain a given level of
error.

Overall, this version of the code shows marked im-
provements from the previous standards set by the Pitt-
Null code. In both the bouncing black hole and gauge
wave tests, we ran PittNull at a series of different res-
olutions to serve as an independent comparison. The
resulting news output from our code, for tests where the
news should be zero, was orders of magnitude smaller
than that of PittNull. In addition, we still observe the
computational speed up of our code by a factor of > 100
that had been noted in [31, 32].

Our current goal is to run our CCE code on the cata-
log of SpEC waveforms [53, 54]. In future work, we plan
to couple the CCE code to run concurrently with the
SpEC Cauchy evolution. Then CCE would not have to
be run as a separately as a post processing step to gen-
erate the final waveforms. We would then like to follow
that with Cauchy-Characteristic Matching (CCM) [24],
whereby information from the Bondi metric is fed back



into the Cauchy domain as the both the Cauchy and char-
acteristic systems are jointly evolved. The characteristic
evolution would then couple directly with the Cauchy
evolution, removing the need for boundary conditions
at the artificial outer boundary of the Cauchy domain.
While a previous code has successfully performed CCM
in the linearized case, they were unable to stably run it
for the general case [55].
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Appendix A: Spin-Weighted Spherical Harmonics

Spin-Weighted Spherical Harmonics (SWSH) are a
generalization of the typical spherical harmonics by in-
troducing spin-weight raising (d) and lowering opera-
tor (0) [56, 57]. These derivative operators are de-
fined by contracting the dyads with the angular deriva-
tive operator. For any spin-weighted scalar quantity

=g g here each ¢; may be either
V=gt g0, A, W i may q
or q, we define the spin-weighted derivatives,

(A1)
(A2)

A A, B
E‘)’U:qll"'qn q DBUAl‘..Anv

= A A, =B
Ov = q1 Lo -qn "4 DBUAl...A

n?

where D is the angular covariant derivative on the unit
sphere. By contracting these dyads with the tensor com-
ponent gives the spin-weighted version of the quantities,
computed above in Egs. (8)—(11). The dyads contracted
with a given quantity determine its spin-weight, with
+1 for each ¢4, -1 for each g4. For example, the spin-
weight of 8J = $94hpcq? ¢ is —1. Thus we see that
(K, B, W) have spin-weight of 0, (Q, U) have spin-weight
1, and (J, H, ®) have spin-weight 2.

Now we can also express 0 as a complex spherical
derivative operator on a given quantity F' with a spin-
weight of s, and for our choice of dyad given in Eq. (4),

. 0 i 0 . s
OF = —sin® 6 <89 + sin@&d)) (sin ® 0F), (A3)
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- 0 i 0

F=—sin"%0( = — ——= | (sin® 0F). A4
0 sin 0(89 sin98¢)>(bm9) (A4)
While PittNull used a finite difference formulation for
computing these derivatives [58], our code will make use

of how 0 acts on individual SWSH modes,

Y =\/(l —s)(l +s+1)sHy‘m
DYt = — (U +s)(l —s+1) 57 yim

(A5)
(A6)

With this, we can start from the regular spherical har-
monics (s = 0) and build up the SWSH modes for arbi-
trary spin-weight.

And just like regular spherical harmonics, we can take
an arbitrary spin-weighted function of and decompose
into spectral coefficients with use of the expression of
orthonormality of the SWSHes over the unit sphere,

/ sytm sy e'm’ 40 =000/ Oy (A?)
S2

where d{) is the area element of the unit sphere S2. Thus,
given a spin-weighted quantity, we can decompose it as
a sum of SWSH modes and take d and 0 derivatives by
applying the properties of Eq. (A5),(A6) to the spectral
coefficients.

Lastly, we list some basic, useful properties of SWSHes:

e It is only possible to add together spin-weighted
quantities of identical spin-weight.

e The spin-weight of a product of two SWSHes is the
sum of their individual spin-weights.

e Because typical spherical harmonics are more gen-
erally SWSHes of spin-weight 0, SWSHes inherit
the same mode properties of spherical harmonics
(i.e. £>0,|m| <¥).

e In addition, the spin-weight serves as a lower bound
on possible ¢ modes, ¢ > |s|.

e The 3 and @ operators do not commute as, given
spin-weighted quantity F' of spin s, 00F = 00F +
2sF.

We utilize two external code packages to assist with the
numerical implementation for the angular basis function,
Spherepack [41, 42] for the standard spherical harmon-
ics and Spinsfast [43] for the SWSHes. In particular,
we use Spherepack primarily during the inner bound-
ary formalism and partially during scri extraction, while
we use Spinsfast during the volume evolution and scri
extraction.

Appendix B: Nonlinear Evolution Equations

The full system of nonlinear equations appear below.
The equations are the radinull equations on the null hy-
persurface of for a given time slice. Ref [22] computed
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these full nonlinear expressions, and first expressed them  as SWSH quantities in [23], although we follow [31] by
writing them in terms of the compactified coordinate p,

5, =) (1,0, - K2), (B1)
(r°Q) , = a jp)2 [RQpQ (25% — KOK , — K0J,+0(JJ,) +0(JK,) — J,0K
+2I1(2 (0J(J,—J?J,)+0J(J,—J*J, ”
+ﬁ (—4R*p0p) (B2)
U, - RMQ (KQ - JQ) (B3)
R —2K — 05K + - (52J LRT) ¢ e (8707 - 5.57), (B4)
(W), :ﬁ ( R+ —— R2 i (80U, +0U,) — 25%”4(2KU,pl7,p +JU? + JU?%)
LB (R — 2K (3435 + 503) + JOB + Jop? — DB(BK — 0.J) — IB(BK — B.J)
L JBB + JO°) >
+q _1p)3 (R2p(80 + 8U)) (B5)

The evolution equation of J is given by H = J ;|r—const>

rJ Hpy + Hps+ Hps + Hpy Hc

(rH),, — - (HT + HT) = Hs + =, T (B6)
where
JK
T <J,p - K) , (B7)
R
Ha =(1=p)Jp+ 5 0 Wyl + (1= p+ RoW)J,pp = 4B, (B3)
Hp, RT (6 —4p)WJ,—16JWp,—0JU,—0JU,—2K0U,—J, (00 +0U)+J (U, —0dU,)),  (B9)
Hiy =" (000 4 UBI) (17, ~ 1],)) — 2087, 2037,
+2(KJ,-JK,) (UK + USK + K@U — dU) + JoU — JoU)), (B10)
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P
+ JOJOB + K (3J93 — dJOS — 20K0p3)) , (B11)
e 2P R?p? 772 2 2772
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Appendix C: Paper Definition Key

. . & : Lapse function in Cauchy metric
Here we define the quantities we use in the paper for

ease of reference.



' : Shift vector in Cauchy metric

B : Time-time part of metric in Bondi form, Eq. (1)
9,0 : Angular derivative operators, Eqs. (A1)—-(A2)
I' : World tube hypersurface
9w : Metric in Bondi form, Eq. (1)
G+ Cauchy metric
Jpo = ZQg,“, : Compactified metric in Bondi form, Eq. (97)
Gnr = w?Gus : Conformal metric in Bondi form, Eq. (98)

i

H : Time derivative of J in Bondi frame, Eq. (13)
hap : Angular part of metric in Bondi form, Eq. (1)
# T : Future null infinity

1
= Eh 487%¢" Spin-weighted angular metric function

J

K =+/1+ JJ : Auxiliary angular variable

= 1/r : Compactified surface-area coordinate
: World tube null generator, Eq. (22)

: World tube affine radinull parameter
: News function, Eq. (108)

Zyle}iem

S
=

: Timelike unit vector at world tube, Eq. (21)
A* : Compactified Bondi generator at .# ", Eq. (105)
A* : Conformal Bondi generator at .# ", Eq. (104)

® : Time derivative of J in affine frame, Eq. (95)
Q4 : Radial derivative of U4, Eq. (2)
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Q = Qaq” : Spin-weighted radial derivative of U*
qa : Complex dyad, Eq. (40)
gap : Unit sphere metric
R = rp : Radius of world tube, Eq. (42)
R : Curvature scalar for angular metric, Eq. (19)

r : Surface-area coordinate

: Compactified surface-area coordinate

hS)

r
R+
: Radius of world tube in Cauchy coordinates

=«

VA
T

: Spatial outgoing unit normal to T, Eq. (20)

: Time coordinate in Cauchy metric

S

: Retarded time coordinate
@ : Conformal Bondi time coordinate, Eq. (104)
U4 : Angular shift part of metric in Bondi form, Eq. (1)
U = U”qy : Spin-weighted angular shift
W : Mass aspect of metric in Bondi form, Eq. (1)
Q : A conformal factor at ", Eq. (101)
dS) : Unit sphere area element
w : A conformal factor at #t, Eq. (99)
z® = (u,r,0,¢) : Coordinates of g,,,, Eq. (1)

% : Coordinates of Cauchy metric Gpi
z% : Coordinates of gz, Eq. (28)

% = (u, 4,0, $) : Coordinates of §us, Eq. (97)
% : Coordinates of Giv, Eq. (98)
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