Supporting Information

Synthesis and Characterization of 3,5-Bis(di-*tert*butylphosphinito)pyridine Pincer Complexes

Nicholas A. Swisher and Robert H. Grubbs

Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States

Table of Contents:

1.	NMR Spectra	S2-S25
2.	Infrared Spectra	S26-S27
3.	Cyclic Voltammetry Data	S28-S29
4.	X-Ray Crystallographic Information	S30-S31
5.	References	S32

Nuclear Magnetic Resonance Spectra

Figure S1. ¹H NMR (400 MHz, C₆D₆) spectrum of 3,5-bis(di-*tert*-butylphosphinito)pyridine, 1.

Figure S2. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of 3,5-bis(di-*tert*-butylphosphinito)pyridine, **1**.

Figure S3. ³¹P{¹H} NMR (162 MHz, C₆D₆) spectrum of 3,5-bis(di-*tert*-butylphosphinito)pyridine, **1**.

Figure S4. ¹³C{¹H} NMR (101 MHz, C₆D₆) of 3,5-bis(di-*tert*-butylphosphinito)pyridine, 1.

Figure S5. ¹H NMR (400 MHz, C₆D₆) spectrum of *N*-tris(pentafluorophenyl)borane-3,5-bis(di*tert*-butylphosphinito)pyridine, **2**.

Figure S6. ³¹P{¹H} NMR (162 MHz, C₆D₆) spectrum of *N*-tris(pentafluorophenyl)borane-3,5-bis(di-*tert*-butylphosphinito)pyridine, **2**.

Figure S7. ¹⁹F {¹H} NMR (376 MHz, C_6D_6) spectrum of *N*-tris(pentafluorophenyl)borane-3,5-bis(di-*tert*-butylphosphinito)pyridine, **2**.

Figure S8. ¹³C{¹H} NMR (101 MHz, C₆D₆) of *N*-tris(pentafluorophenyl)borane-3,5-bis(di-*tert*-butylphosphinito)pyridine, **2**.

Figure S9. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of (PyPOCOP)Rh(CO), **3**. Contamination by small amounts of silicone grease and pentane is present.

Figure S10. ${}^{31}P{}^{1}H$ NMR (162 MHz, CD₂Cl₂) spectrum of (PyPOCOP)Rh(CO), 3.

Figure S11. ${}^{13}C{}^{1}H$ NMR (101 MHz, CD₂Cl₂) of (PyPOCOP)Rh(CO), 3.

Figure S12. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of (BCF-PyPOCOP)Rh(CO), **4**. Contamination by a small amount of silicone grease is present.

Figure S13. ³¹P{¹H} NMR (162 MHz, CD₂Cl₂) spectrum of (BCF-PyPOCOP)Rh(CO), 4.

Figure S14. ${}^{19}F{}^{1}H$ NMR (376 MHz, CD₂Cl₂) spectrum of (BCF-PyPOCOP)Rh(CO), 4.

Figure S15. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) of (BCF-PyPOCOP)Rh(CO), 4.

Figure S16. ¹H NMR (400 MHz, C₆D₆) spectrum of (BCF-PyPOCOP)NiBr, **5**. Contamination by water is present.

Figure S17. ${}^{31}P{}^{1}H$ NMR (162 MHz, C₆D₆) spectrum of (BCF-PyPOCOP)NiBr, 5.

Figure S18. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of (BCF-PyPOCOP)NiBr, **5**. Contamination by a small amount of silicone grease is present.

Figure S19. ${}^{31}P{}^{1}H$ NMR (162 MHz, CD₂Cl₂) spectrum of (BCF-PyPOCOP)NiBr, 5.

Figure S20. ${}^{19}F{}^{1}H$ NMR (376 MHz, CD₂Cl₂) spectrum of (BCF-PyPOCOP)NiBr, 5.

Figure S21. ${}^{13}C{}^{1}H$ NMR (101 MHz, CD₂Cl₂) of (BCF-PyPOCOP)NiBr, **5**. Contamination by a small amount of silicone grease is present.

Figure S22. ¹H NMR (400 MHz, CD₂Cl₂) spectrum of (PyPOCOP)NiBr, **6**. Contamination by a small amount of silicone grease is present.

Figure S23. ${}^{31}P{}^{1}H$ NMR (162 MHz, CD₂Cl₂) spectrum of (PyPOCOP)NiBr, 6.

Figure S24. ¹³C $\{^{1}H\}$ NMR (101 MHz, CD₂Cl₂) of (PyPOCOP)NiBr, **6**. Contamination by a small amount of silicone grease is present.

Infrared Spectra

Figure S25. IR spectrum (ATR-IR, thin film THF) of (BCF-PyPOCOP)Rh(CO), 4.

Figure S26. IR spectrum (ATR-IR, thin film THF) of (PyPOCOP)Rh(CO), 3.

Cyclic Voltammetry

Figure S27. Cyclic voltammogram of complex **5** in CH₂Cl₂ with 0.1 M (*n*-Bu₄N)(PF₆) electrolyte. $E_{1/2} = 1.68$ V and $E_{ox} = 1.74$ V vs. decamethylferrocene.

Figure S28. Cyclic voltammogram of complex **6** in CH₂Cl₂ with 0.1 M (n-Bu₄N)(PF₆) electrolyte. $E_{ox} = 1.749$ V vs. decamethylferrocene.

X-Ray Structure Determination

Compound 5 (BCF-PyPOCOP)NiBr

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Mo K_{α} radiation ($\lambda = 0.71073$ Å) from an I μ S micro-source for the structure of compound **5**. The structure was solved by direct methods using SHELXS and refined against F^2 on all data by full-matrix least squares with SHELXL-2016 using established refinement techniques.¹⁻³All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).

Compound 5 crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit.

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions b = 12.0823(15) Å c = 19.875(3) ÅVolume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

C39 H38 B Br F15 N Ni O2 P2 1049.07 100(2) K 0.71073 Å Monoclinic $P2_1/n$ a=18.331(2) Å a= 90°. $b = 99.077(5)^{\circ}$. $g = 90^{\circ}$. 4346.9(9) Å³ 4 1.603 Mg/m^3 1.539 mm-1 2112 0.450 x 0.450 x 0.400 mm³ 2.250 to 36.417°. -28<=h<=30, -20<=k<=20, -33<=l<=33 151341 21162 [R(int) = 0.0554] 99.9 % Semi-empirical from equivalents 0.7471 and 0.6178 Full-matrix least-squares on F2 21162 / 0 / 571 1.025 R1 = 0.0357, wR2 = 0.0693R1 = 0.0611, wR2 = 0.0765n/a 0.918 and -0.964 e.Å⁻³

 Table S1. Crystal data and structure refinement for complex 5.

References

- 1. Sheldrick, G.M. Phase Annealing in SHELX-90: Direct Methods for Larger Structures. *Acta. Cryst.* **1990**, *A46*, 467-473.
- 2. Sheldrick, G.M. A Short History of SHELX. Acta. Cryst. 2008, A64, 112-122.

3. Müller, P. Practical Suggestions for Better Crystal Structures. *Crystallography Reviews* **2009**, *15*, 57-83.