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Abstract

Characterizing the structure of the Galactic interstellar medium (ISM) in three dimensions is of high importance for
accurate modeling of dust emission as a foreground to the cosmic microwave background (CMB). At high Galactic
latitude, where the total dust content is low, accurate maps of the 3D structure of the ISM are lacking. We develop
a method to quantify the complexity of the distribution of dust along the line of sight with the use of HI line
emission. The method relies on a Gaussian decomposition of the HI spectra to disentangle the emission from
overlapping components in velocity. We use this information to create maps of the number of clouds along the line
of sight. We apply the method to (a) the high Galactic latitude sky and (b) the region targeted by the BICEP/Keck
experiment. In the north Galactic cap we find on average three clouds per 0.2 square degree pixel, while in the
south the number falls to 2.5. The statistics of the number of clouds are affected by intermediate-velocity clouds
(IVCs), primarily in the north. IVCs produce detectable features in the dust emission measured by Planck. We
investigate the complexity of H1 spectra in the BICEP/Keck region and find evidence for the existence of multiple
components along the line of sight. The data (doi: 10.7910/DVN/8DASLH) and software are made publicly
available and can be used to inform CMB foreground modeling and 3D dust mapping.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Neutral hydrogen clouds (1099); Interstellar
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1. Introduction

The ability to reconstruct the 3D distribution of matter in the
Galactic interstellar medium (ISM) is important for astro-
physics and cosmology. 3D maps inform us about nearby
Galactic spiral structure (e.g., Rezaei et al. 2018, and references
therein), dust evolution (e.g., Schlafly et al. 2017), star-forming
regions (e.g., Zucker et al. 2019), and the ISM magnetic field
(e.g., Van Eck et al. 2017). Such maps are also necessary for
accurately modeling polarized dust emission (e.g., Martinez-
Solaeche et al. 2018), which acts as a dominant foreground
contaminating the polarization of the cosmic microwave
background (CMB; e.g., Planck Collaboration et al. 2016).

In recent years 3D mapping capabilities have improved
drastically, largely due to the availability of large, high-accuracy
photometric data sets (e.g., Pan-STARRS, Kaiser et al. 2002) and
information on stellar distances from Gaia (Gaia Collaboration
2016). Most 3D maps exploit the differential reddening of stars
located at various distances to infer the 3D distribution of
intervening ISM dust (e.g., Marshall et al. 2006; Lallement et al.
2014, 2019; Green et al. 2015, 2018, 2019; Capitanio et al. 2017;
Chen et al. 2019; Leike & EnBlin 2019). A different, more
classical method uses kinematic information from molecular (CO)
and atomic (H1) line emission as a tracer of the ISM density and
relies on a model for the Galaxy’s rotation curve to locate clouds
as a function of distance (e.g., Blitz 1979; Kulkarni et al. 1982;
Levine et al. 2006; Wenger et al. 2018). It is possible to combine
these two approaches, as demonstrated by Tchernyshyov & Peek
(2017), to construct a 4D map of ISM clouds in the Galactic
plane. These recent improvements in mapping complement our
existing large-scale view of Galactic spiral arms (obtained by
astrometric measurements of masers in star-forming regions; see

3 Hubble Fellow.

Reid et al. 2019) by revealing the solar neighborhood structure in
detail.

Existing 3D dust maps have complementary strengths (e.g.,
higher angular resolution vs. absence of finger-of-God effect;
see comparison in Green et al. 2019). However, all share a
common problem: they perform best at lower Galactic
latitudes, whereas cosmology experiments avoid these high-
dust emission regions. Maps that do cover regions far from the
Galactic plane (such as those by Green et al. 2019; Lallement
et al. 2019) do not detect reddening toward many high Galactic
latitude sight lines. This may arise partly from photometric
uncertainties, which are comparable to the reddening in such
regions (e.g., Lenz et al. 2017). The maps also do not extend to
large distances at high Galactic latitude. The kinematic distance
method does not apply in these parts of the sky, since cloud
motions are affected by processes other than Galactic rotation
(e.g., Westmeier 2018).

This shortcoming is particularly troublesome for CMB science
and the search for primordial B-mode polarization of the CMB
(Kamionkowski et al. 1997; Seljak & Zaldarriaga 1997).
Experiments that are searching for this signal target regions at
high Galactic latitude where the Galactic foregrounds, such as
dust and synchrotron emission, are lowest (e.g., BICEP2 & Keck
Array Collaborations et al. 2015). In order to separate the Galactic
dust from the cosmological signal, this foreground emission must
be modeled to great accuracy. An important challenge in this
modeling comes from the fact that we do not know a priori the
level of complexity of the ISM in these regions (e.g., as discussed
by Rocha et al. 2019). The observed signal could arise from
multiple dust components (Tassis & Pavlidou 2015), each with
different properties (composition, temperature, magnetic field
orientation). A large effort is underway to understand the effects
of assumed dust models on the retrieval of cosmological
parameters (e.g., Remazeilles et al. 2016; Poh & Dodelson 2017,
Thorne et al. 2017; Hensley & Bull 2018). Innovative, data-driven
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approaches are being developed to characterize the ISM properties
(Clark et al. 2015; Clark 2018; Philcox et al. 2018; Gonzalez-
Casanova & Lazarian 2019; Zhang et al. 2019). Recent studies try
to construct realistic realizations of dust foregrounds using 3D
dust maps (Martinez-Solaeche et al. 2018) or HI data (Ghosh
et al. 2017; Clark & Hensley 2019; Lu et al. 2020; Adak et al.
2020; Hu et al. 2020).

When modeling dust in 3D, studies typically assume a model in
which dust emission arises from discrete layers of dust along the
line of sight (Planck Collaboration 2016a). A key unknown in the
modeling is the number of such layers that occupy a single pixel
on the sky. Some studies assume an arbitrary value for the number
of layers (clouds) along the line of sight (e.g., Tassis & Pavlidou
2015; Hensley & Bull 2018). Other studies adopt a more
physically motivated assumption about the number of clouds per
pixel. For example, Ghosh et al. (2017) and Adak et al. (2020)
assume three dust layers, each arising from a different gas phase
of the ISM. The approach of Martinez-Solaeche et al. (2018)
assumes that each distance bin in the 3D dust map of Green et al.
(2019) is a different dust layer.

In this work we aim to measure the number of clouds along
each line of sight—a critical but missing input to CMB
foreground modeling. We focus on the high Galactic latitude
sky, where the 3D reconstruction of the dust distribution based on
stellar reddening is incomplete. This difficulty can be surpassed by
the use of an indirect but more sensitive tracer of dust: HI line
emission. The HT column density correlates well with dust in the
diffuse ISM (e.g., Boulanger et al. 1996; Planck Collaboration
2014; Lenz et al. 2017). In contrast to existing 3D dust maps, HI
data show detection of the H I line throughout the sky—there is no
sight line free of HT emission (HI4PI Collaboration et al. 2016).

Though the HI line does not directly provide distances,
important knowledge can be acquired through the kinematic
information it carries. ISM clouds that lie at different distances
likely have different kinematic properties, thus appearing as
distinct kinematic components in HI spectra. This is especially
true for the high Galactic latitude sky, where the H I emission can
be cleanly separated into three classes of clouds: low-,
intermediate-, and high-velocity clouds (LVCs, IVCs, HVCs)
based on their radial velocities with respect to the local standard of
rest (v sg; €.2., Wakker 1991; Kuntz & Danly 1996).

Various approaches have been adopted to separate such
kinematically distinct structures in HI spectra. Haud (2008)
decomposes HI spectra into a set of Gaussian components
(GCs) using all-sky data from the Leiden/Argentine/Bonn
survey (Kalberla et al. 2005). They identify IVCs and HVCs by
searching for overdensities in the parameter space of all GCs
found across the sky. Within smaller sky regions, Planck
Collaboration (2011) and Martin et al. (2015) define the
velocity range occupied by LVCs, IVCs, and HVCs based on
the standard deviation of the H I spectrum. Murray et al. (2019)
construct smoothed HT spectra toward the SMC by use of a
Gaussian kernel and measure the number of peaks in the
resulting spectra (e.g., Martin et al. 2015).

In this work we develop a method for cloud identification that
builds on the complementary strengths of the aforementioned
studies: it (a) locates overdensities in GC parameter space and (b)
operates locally, within small subregions of the sky. The problem
of identifying clouds by such means has been extensively
addressed in the case of CO emission (e.g., Williams et al. 1994;
Rosolowsky et al. 2008). Recently, Miville-Deschénes et al.
(2017, hereafter MML17) developed a two-step method for cloud
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identification in CO spectral cubes. The MML17 method is based
on a Gaussian decomposition of the data. It uses a hierarchical
cluster analysis to identify clouds that are distinct in position—
position—velocity (PPV) space. The MML17 method was applied
to the Dame et al. (2001) CO survey and resulted in a cloud
catalog of unprecedented completeness.

The nature of the molecular medium allows for a well-defined
process for cloud identification: CO is much more concentrated in
space than HI and allows one to draw boundaries to isolate
distinct clouds (e.g., Williams et al. 1994). Due to the much more
diffuse nature of the atomic medium, a method that aims to define
cloud boundaries, such as that of MMLI17, is not generally
applicable to H1. Exceptions include cases of very distant and/or
compact clouds (e.g., Wakker & van Woerden 1991; Saul et al.
2012; Moss et al. 2013), or restricting the analysis to the most cold
and narrow H I components, as done by Haud (2010). However,
we can use the basic principles of the MML17 approach for the
specific problem of identifying distinct low-, intermediate-, and
high-velocity components far from the Galactic plane that lie
along the same line of sight. We develop a method that makes use
of a Gaussian decomposition (as in many of the aforementioned
works) but that only seeks to identify clouds within the same sight
line and uses limited spatial information from neighboring pixels
for this task.

We briefly describe the Gaussian decomposition in Section 2
and defer a detailed presentation to a separate paper (D. Lenz
2020, in preparation). The method developed here takes this
decomposition as input and searches for prominent velocity
components within groupings of neighboring pixels (as
described in Section 3). Preprocessing steps and validation
are described in Appendices A and B. We apply our method to
regions of interest for CMB polarization studies: the sky at high
Galactic latitude, and the region targeted by the BICEP/Keck
experiment (Section 4). We discuss our results in relation to
CMB foreground analysis, as well as the limitations of our
method, in Section 5. The software and resulting data products
are made publicly available and are presented in Section 6. We
summarize in Section 7.

2. Data and Gaussian Decomposition

We use the all-sky survey of the HI line presented in HI4PI
Collaboration et al. (2016) (HI4PI Survey). The data set has an
angular resolution of 16.2 arcmin and is sampled on a HEALPix
grid of Ngq = 1024. It merges data from the Effelsberg-Bonn HI
Survey (EBHIS; Winkel et al. 2010; Kerp et al. 2011; Winkel
et al. 2016) and the Galactic-All-Sky Survey (GASS; McClure-
Griffiths et al. 2009; Kalberla et al. 2010; Kalberla & Haud 2015)
to create a full-sky database of Galactic atomic neutral hydrogen.
The velocity range is (—470, 470)km s~ for the part of the sky
covered by the southern hemisphere survey and (—600,
600) km s~ for the northern hemisphere survey, and the spectral
resolution is 1.49kms ™" (the channel separation is 1.29 km sh.

Each spectrum can be decomposed into a set of Gaussian basis
functions, yielding a compressed description of the data (e.g.,
Haud 2000). This approach has been adopted by many previous
works for studying the properties of different ISM phases (e.g.,
Haud & Kalberla 2007; Roy et al. 2013; Lindner et al. 2015;
Murray et al. 2017; Kalberla & Haud 2018; Marchal et al. 2019;
Riener et al. 2019), as well as detecting different classes of clouds
(e.g., Haud 2008, 2010).

D. Lenz (2020, in preparation) created a Gaussian decom-
position of this data set that is publicly available. For each
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spectrum, the intensity / as a function of velocity v is
decomposed in a basis of the form

1 (v—vo, 2
e i

o 2T ’

where N is the number of GCs, v ; is the centroid velocity of
the ith GC, A; is its amplitude, and ¢; is its standard deviation.
The spectrum is fit approximately 100 times with different
numbers of components and initial parameters. The best
compromise between complexity and goodness of fit is then
selected via the Bayesian information criterion. The priors used
for all three parameters of the GCs are uniform. A is
constrained so that the column density for each GC is within
the range [5 x 10'8, 5 x 10??] cm~2. The centroid velocity,
vo, must lie within the HI4PI band. Finally, o is related to
the HI kinetic temperature and is constrained to be within
the range [50, 4 x 10%] K. The model is fit to the velocity
range [—300, +-300] km s ' and results in high-quality fits. We
define the relative residual as the ratio of the difference between
the model column density and the total column density, ANy,
over the total column density of the pixel, Ny;. The mean
relative residual, is 1%, while 65% of pixels have a relative
residual less than 5%.

Figure 1 shows examples of the Gaussian decomposition for
three neighboring pixels at high Galactic latitude. The original
spectrum in each pixel is fit well by the sum of the GCs. The
three pixels show similar spectra but have been fit by a different
set of GCs (the number of components varies from 7 to 9). This
is to be expected, since Gaussians do not form an orthogonal
basis. The nonuniqueness of the fit gives rise to differences in
the description of emission spectra that may not reflect actual
changes in ISM properties (e.g. as discussed by Marchal et al.
2019). Such differences can be reduced by imposing spatial
coherence criteria when performing the decomposition (see
Marchal et al. 2019), with the disadvantage that this can be
computationally expensive, especially for large sky areas. In
the following section, we describe a method that overcomes
this difficulty by combining the Gaussian decompositions from
multiple neighboring pixels.

N
10) =304 (M

3. Cloud Identification

We define a cloud as a distinct peak appearing in the HI
spectrum. Peaks are often fit by multiple GCs, the properties of
which can vary between neighboring pixels (Figure 1). However,
if Gaussians from multiple neighboring spectra appear to cluster
around a certain region of parameter space (specifically in velocity
space), then this is a strong indication that they are probing the
same peak in the spectrum—a cloud. This idea of searching for a
“consensus” between adjacent pixels was used, for example, in
the method of MML17 and in Haud (2010) to identify clouds in
PPV space. Here we adopt a different approach: we search for a
“consensus” of GCs only in velocity space and consider GCs
within a specified area, termed a superpixel.

We collect information from multiple spectra by segmenting
the sky into large superpixels, sampled on the HEALPix grid
(Gérski et al. 2005; Zonca et al. 2019). The choice of superpixel
size is a free parameter in the method. We have found that the
method works well when there is a statistically significant number
of GCs in each superpixel. For illustrative purposes, we choose a
superpixel size of Ngqe = 128. Each superpixel thus contains 64
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Figure 1. Spectra of three neighboring pixels in the HI4PI data set (gray lines) and
Gaussian decomposition (each black line shows one GC). The sum of Gaussians
in each spectrum is shown with a red dashed line. The box in the upper right
corner shows the Galactic coordinates of each pixel and the number of GCs.

pixels of the HI4PI data. This superpixel size corresponds to 0746
on each side, comparable to the angular resolution of the Lite
satellite for the studies of B-mode polarization and Inflation from
cosmic background Radiation Detection (LiteBIRD) at CMB
frequencies (Sugai 2020). We investigate the effect of slightly
varying the N4, parameter in Appendix B.

We remove Gaussians associated with known artifacts. The
part of the HI4PI survey that is based on the EBHIS data
(northern hemisphere) exhibits residual stray radiation patterns,
which are inevitably fit by the Gaussian decomposition. We
identify regions where this effect is more pronounced and
remove the associated GCs as explained in Appendix A. We
also remove all GCs within the 13’ beam centered on (I,
b) = (209°018, —19237), where the signal drops significantly
to negative values.

Now that we have a set of GCs that is free of artifacts, we
proceed to analyze the distribution of mean velocities, vy,
within each superpixel (Figure 2). We estimate the probability
density function (pdf) of 1 using a kernel density estimator
(KDE) of Gaussian shape. The size of the kernel is selected
through validation tests described in Appendix B. The selected
kernel standard deviation is four channels wide (5.1 kms™!).

Next, we identify local maxima in the constructed pdf
following the procedure described in Lindner et al. (2015). We
search for local minima of negative curvature (bumps), i.e.,
locations where all the following conditions are met:

1. The third derivative of the pdf changes sign.
2. The second derivative is negative.
3. The fourth derivative is positive.
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Figure 2. Method of cloud identification. (a) Distribution of mean velocity of all GCs within a superpixel, after applying the quality cuts described in the text. (b) KDE
of the distribution in panel (a) (red line). Maxima (black upward-pointing triangles) and minima (open downward-pointing triangles) of the pdf, as well as maxima of
the second derivative (open black circles), are used to define the location and velocity range of each peak. Peaks containing fewer than 20 GCs are later discarded
(marked as open upward-pointing triangles here). The velocity range of each peak is shown with a differently colored vertical band. (c) Individual Gaussians colored
according to the peak they belong to. (d) Mean spectrum (average of GCs) for each peak.
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Figure 3. Identifying peaks and corresponding velocity ranges in the pdf of GC velocities. Top: distribution of GC velocities in a superpixel (right axis, gray line) and
constructed pdf using a KDE (left axis, red line). Maxima are marked with black upward-pointing triangles. Peaks with only a small number of GCs are discarded later
in the analysis (marked here with open upward-pointing triangles). The velocity range of each maximum is colored with a vertical band, its borders marked with black
circles. Panels below show (in order) the first, second, third, and fourth derivative of the pdf. The pdf and each of its derivatives are normalized to have a maximum
equal to unity. Open upward-pointing triangles mark peaks with less than the threshold of 20 GCs. Peaks marked this way are spurious (only a small number of
Gaussians are associated with them) and are removed via quality cuts.

I. Local minima of the pdf (sign change of the first
derivative coincident with positive value of the second
derivative).

II. Points where the pdf is null (in practice, where its value is
less than 10~ of the maximum, meaning that there are no
GCs at these velocities).

III. Points where the second derivative is maximum.

Figure 3 shows the pdf of v, and its derivatives up to fourth
order in an example superpixel. Local maxima in the pdf
indicate the presence of a “consensus”: multiple Gaussians are
tracing the same velocity component.

We now wish to assign each Gaussian to its corresponding
peak. For this we must estimate the extent of each peak (the
range of velocities belonging to each local maximum). To
decide where a local maximum begins and ends, we find the For each local maximum, we find the nearest point of any of the
following three types of points: aforementioned types on either side of the maximum. We now
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have a velocity range assigned to each maximum (see Figure 2,
panel (b)). Figure 2 shows an example pdf with these maxima and
velocity ranges. In this example, the right border of the peak at
—30kms ! is a local minimum. The right border of the peak at
—4kms " is a point of type III and coincides with the left border
of the peak at +20kms™ . Type III points are useful when there
is no minimum between two peaks. In cases where a point of type
I or I is next to a point of type III with no maximum between
them, points of the former types take precedence in border
placement. This ensures that there are no intervals where GCs
exist but were not assigned to a peak.

It is important to note that not all peaks should be considered
as clouds. First, when evaluating the pdf, edge effects can cause
peaks at the beginning and end of the velocity range. We
control for this by adding padding to the velocity axis prior to
evaluating the pdf. Second, it is possible that a very small
number of GCs are assigned to a given peak (for example, the
leftmost peak in Figure 3). If there are fewer than 20 GCs that
are associated with this peak, we discard the peak. We also
discard clouds that cover less than 1 beam size (approximately
3 Ngge = 1024 pixels), which should remove point sources
from our data set.

We validate the code by testing it on mock data as presented in
Appendix B. We find that the method is able to recover clouds at
the correct velocity for over 85% of cases with a false-positive rate
of less than 10%. We have also checked that our method performs
well in assigning the majority of the H 1 emission to clouds. Using
the HI4PI data at high Galactic latitude, we demonstrate in
Appendix B that only a negligible number of pixels (1%) show
residual emission (not assigned to clouds) that is more than 10%
of the total column density. We note that our definition of a cloud
is more general than that used by Heiles & Troland (2003) and
includes not only the cold neutral medium (CNM) but also the
warm neutral medium (WNM).

The method outputs the following information for each
superpixel: (a) the number of identified clouds, and (b) the
parameters of all GCs that belong to each cloud. We post-
process the output to compute cloud properties. For each cloud
we calculate its mean column density in the superpixel, N5,
by averaging the column density of the cloud’s GCs over all
Nsiqe = 1024 pixels that they occupy. We construct a mean
spectrum of the cloud, { I(v) )", by averaging the intensities
of all of the cloud’s GCs at each velocity channel. The centroid
velocity of the cloud, yeoud s calculated as

N,
Cloud Zi Py (1 (vy) )Clovd
Vv =

(2
vachun< I(V,') >Cloud

where v; is the velocity of the ith velocity channel and the
summation is performed over all velocity channels (Nhay) in the
range [—300, 300] km s~ L. As a measure of the width of the cloud
spectrum, we calculate the square root of its second moment:

3)

6VC10ud _ Nehan <I(Vi)>Cloud . (Vi _ VCloud)z
Nc an °
i Zi b (] (v;) )Cloud

Since we retain the information on the GCs, we can also
calculate quantities at the native resolution of the HI4PI data.
For example, we compute the total Ny per Ngq. = 1024 pixel
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from GCs belonging to clouds. This is used to make
morphological comparisons with higher-resolution data
(Section 4) and to check the output of the algorithm, as
explained in Appendix B.

4. Results

Our method is best suited for inferring 3D information about
the dust distribution in regions with low dust content, where the
HT and dust column densities are linearly correlated (Planck
Collaboration 2014). Additionally, because the method relies
on identifying kinematicaly distinct features, it is expected to
perform best in areas where H1 spectra are relatively simple
(with ideally one velocity component within the chosen KDE
bandwidth).

For these reasons, we have chosen to apply our method to
the high Galactic latitude sky (Section 4.1.1), with column
density Ny < 4 x 102° cm~2, where Lenz et al. (2017) find
the best correspondence between HI and dust emission. We
also present results for the region targeted by the BICEP/Keck
CMB experiment, as an illustration of the ability of our method
to inform dust modeling for CMB foreground subtraction
(Section 4.2).

In our analysis we examine HI emission within the velocity
range |[visr| < 70 km s~!, thus excluding HVCs that do not
contribute traceable amounts of dust (e.g., Wakker & Boulanger
1986; Lenz et al. 2017).

4.1. Polar Areas

We apply our method to all pixels in the HI4PI data with
Nur < 4 x 102 cm™2, which covers most of the sky at
Galactic latitude |b| > 30°. The total Ny is calculated at the
native resolution of the HI4PI data (Ngq. = 1024), and the
resolution is then downgraded to produce a column density
map at Ngge = 128. Pixels of the low-resolution map that
exceed the threshold in column density are masked. The total
area covered is 17,494 square degrees (42% of the sky).

4.1.1. The Number of Clouds per Sight Line at High Galactic Latitude

We produce maps of the number of clouds, Ngougs, per
Nsige = 128 pixel (resolution 0746) (Figure 4). The maps are
centered on the north and south Galactic poles for better
visualization. A total of 94% of pixels have Ngguas = 1—4,
with the maximum of seven components found in a single
pixel. There is no sight line free of clouds, as expected from the
HT spectra, which show detections everywhere. The maps
show large-scale coherence, despite the fact that each pixel has
been treated independently. These large-scale regions of similar
Neiougs per pixel mark the presence of clouds that are spread out
over hundreds of square degrees. The patterns are very different
between the north and south Galactic polar regions. We
quantify this difference by looking at the 1D distribution of
Nciougs per pixel for the north and south separately (inset of
Figure 4, same data as in the maps). The distribution in the
north has a mean of N.,qs = 3 compared to 2.5 in the south
and is skewed toward larger values.

In order to understand these differences, we turn to the physical
properties of the identified clouds. We examine the column
density and centroid velocity of the clouds in Figure 5 for the
north and south regions separately. Clouds are found in the entire
velocity range considered (visg| < 70 kms™'). Their column
densities span the range 5 x 108 cm=2 —5.7 x 102 cm ™2
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Figure 4. Number of clouds (Njouas) per Nige = 128 pixel (resolution 0°46) in the north (left) and south (right) regions in the velocity range [visg| < 70 km s~!. The
maps are centered on the Galactic poles and are in orthographic projection. Parallels are spaced by 30° in latitude. The inset shows the 1D distribution of N¢jougs per

pixel for the north (gray) and south (red) regions.

Some clouds exceed the threshold Ny, < 4 x 102 cm~2 placed
when defining the mask for the high-latitude regions.This happens
because some superpixels that lie at the edge of the mask contain
high-resolution pixels with Ny exceeding the applied threshold.
There are 1348 superpixels that contain clouds with column
densities higher than the column density threshold of the sky
mask, which make up only 0.2% of pixels in the studied sky area.

The highest column density clouds are found in the range of
vesr that traditionally corresponds to LVCs (£35km sl
chapter by Albert & Danly in van Woerden et al. 2004). Clouds
within this velocity range exhibit similar ranges of Ny in the
north and south regions. At more negative velocity, cloud
properties in the north and south regions differ: there are more
IVCs at negative velocity with Ny; > 0.5 x 102 cm ™ in the
north than in the south. The excess of [VC emission at negative
velocities in the north is well documented (e.g., van Woerden
et al. 2004) and has been known since early HI surveys (e.g.,
Blaauw & Tolbert 1966; Wesselius & Fejes 1973).

In the literature, the velocity that marks the boundary between
LVCs and IVCs varies by tens of kilometers per second (see, e.g.,
Wakker 1991, 2001; Magnani & Smith 2010, where the cut is at
+20 km s_l, +30km s~ and +40 km s_l, respectively). Here we
can use the second dimension of cloud Ny, to select a more
suitable velocity cut for the selected sky regions. We will exploit
the apparent similarity of LVC properties in the north and south.

For our selected regions, we expect LVCs in the north and
south to have statistically similar physical properties and to
reside within a few hundred parsecs of the Sun, based on
several lines of evidence. First, the fact that all high column
density clouds are LVCs is consistent with the scale height of
the HT gas (Kalberla et al. 2007). Second, linear features in HI
at low velocity are correlated with interstellar polarization of
stars within a few hundred parsecs of the Sun (Clark et al.
2014). Third, the majority of interstellar polarization arises just
outside the Local Bubble at high latitude (Santos et al. 2011;
Berdyugin et al. 2014), as does the majority of dust extinction
detected in 3D dust maps (Lallement et al. 2019). In contrast,
most negative-velocity IVCs are more distant objects, asso-
ciated with the intermediate-velocity (IV) Arch, IV Spur, and
other well-known complexes (Kuntz & Danly 1996). Con-
straints on the value of the distance of northern IVCs from the
Galactic midplane range widely (e.g., Wakker 2001; Welsh
et al. 2004; Puspitarini & Lallement 2012). Most sight lines
have height brackets of 0.5-2 kpc (Wakker 2001). Exceptions
exist for both cloud categories: extragalactic gas from parts of
the Magellanic Stream is known to have low v sr (e.g.,
D’Onghia & Fox 2016), while the molecular cloud IVC 135
+54 (IV21 Kuntz & Danly 1996) lies at a distance of ~300 pc
(Benjamin et al. 1996), as do some intermediate-latitude parts
of the IV Arch (Welsh et al. 2004). Both these exceptions,
however, only affect a small percentage of sight lines of the
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Figure 5. Physical properties of identified clouds (left two panels): 2D distribution of cloud H T column density (N§"?) vs. cloud centroid velocity for the north and
south Galactic polar regions. The dashed vertical lines mark the velocity range that separates LVCs and IVCs (defined in the rightmost panel). Horizontal bars (solid
black for the north and red dotted for the south) mark the 1st and 99th percentile range of the distribution of centroid velocities of clouds above a minimum cloud Ny
(see also right panel). Determination of velocity boundary that separates LVCs and IVCs (right panel): horizontal bars mark the 1st and 99th percentile range of cloud
velocity for different thresholds of minimum cloud column density (black solid for clouds in the north, red dotted for clouds in the south). Dashed vertical gray lines

mark the adopted visg boundaries at —12 and 10 km s

high-latitude sky. Consequently, we expect that the physical
properties of LVCs studied here differ statistically from those
of IVCs.

The higher column density of LVCs and their expected
similarity between hemispheres allow us to define a simple
criterion for selecting the LVC velocity range. Figure 5 (right)
shows the 1st and 99th percentiles of the distribution of cloud
velocities after selecting all clouds above a threshold in Ny ;. As
the threshold is increased, we find improving agreement between
the percentiles of the northern and southern vy sg distributions. For
Ny > 2.5 x 102 ¢cm ™2 the north and south velocity ranges are
the same to within the first decimal. We thus adopt a velocity
range for LVCs of —12km s™! < vyyc < 10 km s~!. Clouds
with centroid velocities outside this range fall in the IVC category.

Note that placing a cut on the centroid velocity of clouds
results in a more natural separation between LVCs and IVCs
than applying a threshold in the HT spectra, as is commonly
done. This has the advantage of allowing for a gradual fall of
the cloud signal, which can extend past the border in velocity.
The emission of a cloud is thus not truncated arbitrarily.

Having defined a velocity cut to separate LVCs from IVCs,
we examine how these classes are distributed on the sky.
Figure 6 shows maps of Njouqs per pixel for the LVC and IVC
range separately. The number of distinct kinematic components
in the LVC range is significantly smaller than that in the IVC
range: 95% of pixels have Njougs < 1 in the LVC range, a
value that only 36% of pixels in the IVC range have. LVCs
cover almost the entire selected area, while IVCs are more
clustered and occupy a smaller sky fraction in the south than in
the north. The patterns seen in Figure 4 can be attributed
primarily to IVCs, as can be seen by comparing with the lower
left panel of Figure 6.

In the north, at longitudes [ = 90°-270°, there are more
clouds per pixel than in the rest of the area. This area is

primarily occupied by negative-velocity IVCs, that are
associated with extraplanar gas structures, such as the IV Arch
(Kuntz & Danly 1996). However, not all IVCs are extraplanar.
Positive-velocity IVCs at longitudes [ = 300°-350° are likely
associated with planar gas that does not lie in our immediate
vicinity. In the south, there are pixels that contain emission
from the Magellanic Stream, which coincides with low vy gg
and can easily be confused with Galactic emission. A more
detailed analysis of the kinematics of the Galactic gas and the
Magellanic Stream is necessary in order to separate the two
contributions (e.g., Nidever et al. 2010).

The fact that the IVC velocity range has a higher number of
clouds per pixel than that of LVC gas can be due to the large
distance to IVCs (e.g., Wakker et al. 2007, 2008). A pixel of 0745
covers 8 pc in angular size at a distance of 1 kpc, and only 0.8 pc
at 100 pc (nearest distance to Local Bubble wall). Moreover, it is
likely that the majority of LVCs reside at the boundary of the
Local Bubble, a structure with simple kinematics. At the same
time, structures like the IV Arch may originate from a Galactic
fountain process (Kuntz & Danly 1996), thus inheriting complex
kinematics. However, another important factor is that the velocity
range occupied by LVCs is only 20 kms~" wide, much narrower
than that of IVCs. At the selected KDE bandwidth of 5 kms ™",
our method cannot distinguish between velocity components that
differ by less than ~12kms™'. For the goal of separating IVCs
from LVCs, the selected bandwidth is sufficient and necessary to
avoid the detection of spurious peaks in the pdf of GC velocities
(see Appendix B).

In our discussion so far, we have not introduced any
weighting in counting the number of components along the line
of sight. However, the column density of clouds varies both
along the line of sight and on the plane of the sky (Figure 6,
right panels). We define a measure of the complexity of the gas
distribution along the line of sight that takes into account the
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Figure 6. Number of clouds per sight line (left panels) and column density (right panels) for clouds having a mean velocity in the LVC (top row) and IVC (bottom
row) range. The maps are centered on the Galactic poles (north, left subpanel; south, right subpanel), as in Figure 4. In all panels the color scale is linear.

cloud column density:

Netouds Nll'II
N = Z max’ 4)
i=1 NHI

where N, is the column density of the ith cloud along the sight
line (within the superpixel) and Nj** is the column density of
the cloud with highest Ny ; in the superpixel. If a sight line has
two clouds of equal column density, N, will be equal to 2. If
one of two clouds has half the column density of the other, then
N. = 1.5, and so forth.

Figure 7 shows maps of A/ for the north and south regions.
We again find an asymmetry between the two polar areas, with
the north showing a higher fraction of pixels with N. > 1. The
1D distributions of A; differ significantly from those of Nejugs
(Figure 4). In the north, the percentage of pixels with NV < 1.5
is 60%; in the south it is 90%. Thus, most sight lines are
dominated by the column density of one cloud, with notable
exceptions existing owing to the presence of northern IVCs. In
the north, 17% of pixels have N, > 2.

The distributions of N, do not show tails extending to large
values, unlike the distributions of N ,ugs. This stems from the fact

that a large population of low column density clouds exist in our
sample (see Figure 5). Clouds with N < 2 x 10" cm~2 may
be affected by certain systematics, as discussed in Section 5.3.
This population is most sensitive to the choice of superpixel size
in the cloud identification step (Appendix B). The column-
density-weighted number of clouds, MN,, is insensitive to these
problems. We show that the distribution of /N, remains stable for
different choices of the superpixel size in Appendix B. Compared
t0 Nejouds> Ve is a more robust measure of ISM complexity along
the line of sight, in the context of CMB foreground subtraction.

4.1.2. Signatures of IVCs in Planck Dust Emission

The previous section shows that higher values of N ouqs and
N, are associated with the presence of IVCs. Dust properties
have been found to differ between IVCs and LVCs in the 14
fields analyzed by Planck Collaboration (2011). We wish to
investigate whether there are signs of varying dust properties
associated with IVCs throughout the entire northern high
Galactic latitude sky. For this we do not attempt to repeat the
joint analysis of HI and Planck dust emission presented in
Planck Collaboration (2011), as it is beyond the scope of the
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The inset shows the 1D distribution of N per pixel for the north (gray) and south (red) regions.

present work. Instead, we search for signatures of varying dust
properties in the maps of dust model parameters produced by
Planck Collaboration (2016b).

We use the map of dust temperature, T, created by fitting a
modified blackbody to multifrequency dust emission maps.* The
Planck and IRIS data were processed with the Generalized
Needlet Internal Linear Combination (GNILC) algorithm
(Remazeilles et al. 2011) to separate the contribution of the
cosmic infrared background to the observed emission. We also
make use of the y* map that resulted from the model fit to
GNILC-processed dust emission maps (Planck Collaboration
2016b).” We downgrade both maps from their native resolution
of Ngge = 2048 to Ngg. = 1024, to match the resolution of
the HI4PI data. The morphological patterns that appear on
the maps under investigation typically cover sky areas much
larger than the pixel size at any of these resolutions. Averaging
model parameters in this way is only used here for investigating
such large-scale spatial correlations (see also Hensley et al.
2019).

We create maps of HI column density of LVCs and IVCs
separately at a resolution of N4 = 1024 (as mentioned in
Section 3). They are used to make a map of the ratio, p, of IVC

4 From the Planck Legacy Archive: COM_CompMap_Dust-GNILC-
Model-Temperature_2048_R2.01.fits.
M. Remazeilles, private communication.

to LVC column density:

NIVC
P=—Tvc )
Hi

In pixels containing an LVC but no IVC, we set p = 1073, In
pixels where only IVCs were detected, we set p = 103
Masking out these pixels instead has no effect on the result.
Pixels where neither IVCs nor LVCs are found are masked. We
apply this mask to the 7; map as well.

Figure 8 shows the maps of 7,; and IVC column density N;}'.
The T, map shows large-scale, coherent variations with a
significant enhancement of 7, near the pole (as noted in Planck
Collaboration 2014). There is an apparent tendency for pixels with
higher Ni)/€ to show higher 7, though the correspondence is not
one-to-one. This morphological similarity was found in Planck
Collaboration (2014) and remains in our maps despite the
different methods of creating the NIEIYC map and the different v gg
cut used to separate LVCs and IVCs (£35kms ' was used in
their work).

A simple correlation of T, and NYC yields the very small
Pearson correlation coefficient of 0.2. However, we need to
take into account that 7, is also found to correlate with the total
Ny, as discussed by Hensley et al. (2019). If IVC intrinsic
properties are responsible for the change in 7, then we should
expect that sight lines with stronger IVC emission show a
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Figure 8. Effect of IVCs on derived dust temperature: morphological connection between maps of dust temperature, 7,; (left), and IVC column density Ny -~ (middle).
Right: 2D distribution of total Ny ; vs. the ratio p of IVC to LVC column density. The color shows the mean 7, in each bin. The vertical dashed line marks the value
p = 1, on either side of which we find significantly different 7, for given Ny ;. The range of p shown is truncated to [0, 15] for better visualization.

higher T,; when compared to LVC-dominated regions with the
same total Ny 1. This is indeed what we find, as demonstrated in
Figure 8 (right panel). By binning pixels in the Ny —p plane,
we find that the average T, for pixels with p > 1 is higher than
that for p < 1. For the same range of Ny namely, [1.0,
2.8]1x 102 cm ™2, the mean T, changes from 19.4 to 20.4 K as
we transition from sight lines dominated by LVCs (p < 1) to
those dominated by IVCs (p > 1). Beyond p = 1 there is very
little variation in 7, The mean T, remains higher for p > 1
compared to p < 1 even if we do not restrict Ny to the
aforementioned range (in which case we find a mean T, of 20.1
and 19.3, respectively).

We hypothesize that the change in 7, is most prominent for a
restricted range of Ny because that is the range where negative-
velocity IVCs dominate. At lower latitude and higher column,
positive-velocity IVCs dominate, and these are most likely not
extraplanar gas. To test this, we select pixels where the Ny ; from
negative velocity, N}IIYC“eg, is at least half of the total IVC Ny 1.
We find that 54% of pixels that satisfy this condition have IVC
Ny in the range [1.0, 2.8]x 102° cm 2 If we look at pixels that
also have p > 1, we find that a significantly larger percentage of
those (74%) lies in the aforementioned column density range.
Therefore, it is likely that the negative-velocity IVCs are those
responsible for the increase in 7,; within the column density range
(1.0, 2.8]x 10 cm ™%

The evidence that dust in IVCs is different from that in LVCs
implies that the dust spectral energy distribution (SED) might be
more complex than a modified blackbody along sight lines where
both classes of cloud exist. If deviations from a modified
blackbody SED exist in such sight lines, then the model used in
Planck Collaboration (2014) might yield a slightly poorer fit than
the rest of the high-latitude sky. We investigate whether this is the
case by using the x” statistic (Figure 9).

A correlation with NYC is not as obvious in the y* map as it
was in the T, map. However, we do find certain regions where the
x° is consistently elevated with patterns that morphologicaly
match certain IVCs. Figure 9 shows zoomed-in portions of the x*
and N;Y© maps centered on prominent features in the former. The
cloud shown in the middle panels is the well-studied diffuse
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molecular cloud IVC 135+54-45 (IV21; Benjamin et al. 1996;
Kuntz & Danly 1996; Lenz et al. 2015), known to have lower
metallicity than LVC gas (Hernandez et al. 2013). The feature in
the right panels extends over ~10°, is part of the IV Arch, and
overlaps with clouds IV2, 4, 11, 17 in the catalog by Kuntz &
Danly (1996). We also find close morphological matches between
x> and N}YC for other known molecular IVCs that are less
extended on the sky. We visually inspected the maps of x> and
NIYC at the locations of the MIVCs in the catalog of Réhser et al.
(2016) (within an area of 4° x 4°). We found 36 locations with
clear similarities, which amounts to 40% of MIVCs within the
footprint of our N € map.

We note that our high-resolution MY maps contain evident
artifacts of the pixelization used in the cloud identification
method. These arise from the IVC/LVC selection and are
largely absent in the total Ny, map. We discuss this artifact in
Section 5. For the purpose of quantifying the number of clouds
along the line of sight (relevant to CMB foreground modeling),
the statistics of individual sight lines are the primary target.
While a more advanced method that includes spatial correla-
tions on scales larger than the superpixel size should be
pursued in order to resolve such artifacts, we do not expect any
significant effect on the statistics of Njougs or Ne.

So far, we have investigated the effect of IVCs on the total
intensity of dust emission. We briefly examine whether IVCs
leave a traceable imprint on the polarized dust emission measured
by Planck at 353 GHz. We follow Planck Collaboration (2020a)
to construct smooth maps of Stokes 7, O, and U at a resolution of
80'. We subtract the zero-level offset of 389 uKcyp from the 7
map. After smoothing, the map resolution is downgraded to
Niige = 128. We construct a map of fractional linear polarization,
Pass» by using the equation pys; = /02 + U?/I.

Figure 10 (top) shows the joint distribution of p3s3 and the
column-density-weighted number of clouds per pixel (V) from
Section 4.1.1. Intriguingly, there is a marked decrease of the
median and maximum pss; at high A.. As discussed in
Section 4.1.1, larger values of A, are found primarily in
regions where IVCs are prominent. The decrease of p;53 with
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Figure 9. Morphological correlation between x> (top row) and Ny (bottom row). From left to right: maps showing the northern Galactic polar region, zoom-ins
centered on /, b = (136°, 54°) and (142°, 75°) (image sizes are 7° and 10°, respectively).

N, may indicate some level of line-of-sight depolarization
caused by IVCs. Note that we have not taken into account the
uncertainties in p;s3, which may cause positive bias for pixels
with low signal-to-noise ratio. The trend shown in Figure 10
(top) is distinct from the decrease in p;s3 with total Ny found
at higher column density by Planck Collaboration (2020a). In
the high Galactic latitude regions studied here, p3s3 is primarily
flat with Ny ; (Figure 10, bottom). We find that p;s; is related to
the IVC column density, rather than the total column density: a
trend similar to that in Figure 10 (top) is seen also when
comparing with IVC Ny, instead of ..

Together, the results of this section indicate that IVCs are
likely an important contributor to the Planck dust emission,
both in total and in polarized intensity.

4.2. The BICEP/Keck Field

A primary motivation for this work is to inform CMB
foreground modeling efforts. To this end, we focus on the
region targeted by the BICEP/Keck experiment (Chiang et al.
2010). We examine the region as defined by the mask provided
on the experiment’s website,® after downgrading from

5 hitp: //bicepkeck.org
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Ngge = 512 to 128. We use the method outlined in Section 3
to quantify the complexity of HI spectra. As in Section 4.1.1,
we analyze the velocity range |visg| < 70kms™" to avoid
most HVC emission. We note that parts of the Magellanic
Stream in this area have |visg| ~70kms™' (Westmeier 2018)
and are therefore not removed by this cut.

The dominant cloud in each pixel lies within the LVC range,
as can be seen by examining the joint distribution of cloud
column density and cloud centroid velocity (Figure 11, left).
The majority of high-Ny ; clouds are found at low velocity, in
agreement with the results presented previously for larger sky
regions. Clouds with very low Ny; (Mg < 0.5 x 102 cm™2)
are found at intermediate velocities. The tail of low-Ny ; clouds
that extends to high (positive) velocity is associated with the
Magellanic Stream and thus will likely not contain traceable
amounts of dust.

Figure 11 (middle) shows the column-density-weighted
number of clouds per pixel, A,. N, ranges from 1 to 2.3,
with 75% of pixels having NV, < 1.1 (for a two-cloud sight line
this would imply that one cloud has 1/10 of the column density
of the other). Thus, one cloud dominates the column density in
the majority of pixels in the BICEP/Keck region. We calculate
the relative contribution of the highest-Ny, cloud per pixel
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Figure 10. Effect of IVCs on polarized dust emission. Top: joint distribution of
fractional linear polarization at 353 GHz, psss, and AN.. Bottom: joint
distribution of p3s3 and Ny ;. A black line marks the running median of each
distribution.

compared to the total Ny, of the sight line. We find that for
85% of pixels the highest-Ny; cloud contributes more than
80% of the column.

We note that our definition of a cloud depends on the choice
of KDE bandwidth. The method is not able to distinguish
between velocity components that differ by less than ~2.5
times the chosen bandwidth. Therefore, it is possible that
within the LVC range there may exist kinematicaly distinct
features that are identified as a single “cloud”. For a bandwidth
of four channels (5 km sfl) we find that there is unresolved
substructure in the identified clouds. We quantify the amount of
substructure by identifying maxima in the mean spectrum of
each cloud. Two or more maxima are found for 40% of LVCs
in the region. Thus, while IVCs are likely not a concern for
foreground modeling in this region, the LVC substructure may
be cause to consider models with multiple dust components.
The very nature of the multiphase neutral medium may cause
such velocity substructure, as well as variations in dust
properties (e.g., Clark et al. 2019; Murray et al. 2020),
motivating the incorporation of phase structure into foreground
modeling (Ghosh et al. 2017; Adak et al. 2020).

We further investigate the velocity substructure by varying
the choice of bandwidth. We repeat the anallysis by choosing a
bandwidth of three channels (3.8kms™ ") and show the
resulting A in the right panel of Figure 11. Much of the
substructure in the cloud spectra is now resolved into separate
clouds. AN, has a maximum value of 3.0, with 54% of pixels
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having N. < 1.1. Pixels with N, > 1.5 take up 20% of the
area, while those with A, > 2 amount to only 4%. The fraction
of pixels where the highest-Ny; cloud contributes more than
80% of the column is now 61%. The conclusion remains that
Ny 1 is dominated by one cloud per superpixel for most of the
area (within |[visg| < 70kms ™).

Substructure in the mean spectrum of clouds exists even after
using the higher velocity resolution (bandwidth = three
channels). An example is shown in Figure 12 (top), where
two maxima are seen in the mean spectrum of an LVC. To
quantify this effect, we construct a map of the number of
maxima per cloud. In each pixel we identify the highest column
density cloud in the LVC range and measure the number of
maxima in its mean spectrum. The resulting map is shown in
Figure 12 (bottom). We find spatially coherent regions with
approximately two maxima, primarily in the western and
eastern areas of the map. Two or more maxima are found in
30% of pixels.

In Section 4.1.2 we found that regions containing multiple
clouds (IVCs and LVCs) sometimes showed elevated values of X2
of the dust SED model fit. With the absence of IVCs in the region,
it is interesting to investigate whether there are any morphological
correlations between the x* map and the complexity of HI
spectra. The distribution of x* on the sky does show
morphological similarities with the total column density map
(middle and left panels of Figure 13, respectively). In particular,
there are two regions of elevated x* that correlate with the H1
column. These are marked with white circles in the middle panel
of Figure 13. The lower part of the map shows a ring feature that
is not related to the H 1 morphology. The right panel of Figure 13
shows the 2D distribution of X2 and Ny 1. The two marked regions
correspond to two correlated regions in this plot. The eastern
region shows higher values of x* (x2 > 0.1) but relatively modest
Ny 1. The western region contributes to the correlation seen at
4 x 100 cm=2 < Ny, < 7 x 10%° cm~2. We separate the two
regions with a simple cut on Galactic longitude of / = 315°.
Within these subregions we find a Pearson correlation coefficient
of 0.68 for the eastern region and 0.40 for the western region.

In Section 4.1.2 we found that the existence of IVCs is
sometimes correlated with elevated values of x*. The origin of the
spatially coherent high-y* values in the BICEP/Keck region,
however, must be different, as there is no significant contribution of
IVCs to the total HT column density. Therefore, if the increased x>
in this region is due to the presence of multiple dust components,
then these components would correspond to clouds in the LVC
range. If that is the case, we expect that LVCs in the regions of
elevated x> will show more complex kinematics. The western
region does indeed show elevated values of N, (Figure 11), as well
as LVC spectra with multiple components (Figure 12). The eastern
region, which has the highest x* values, does not appear to have
elevated . However, this region shows a larger proportion of
spectra with multiple (unresolved) components (Figure 12). We
select pixels in this region by imposing x? > 0.1. We find that
38% of these pixels have at least two maxima in the mean spectrum
of clouds, compared to 26% in the rest of the map.

The regions that exhibit higher x* fall in the outskirts of the
BICEP/Keck region and are assigned lower weights than the
central pixels in the power spectrum analysis of BICEP2 &
Keck Array Collaborations et al. (2015). We isolate pixels
where the mask values (weights) are higher than 0.9 and
investigate the complexity of their associated H I emission. We
find that in 15% of pixels the mean spectrum of the LVC
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Figure 11. Number of clouds per pixel in the BICEP /Keck region. Left: 2D distribution of cloud Ny ; and cloud centroid velocity (from Equation (2)). Middle: map of
the column-density-weighted number of clouds, A, for a KDE bandwidth of four channels. Right: NV, for a KDE bandwidth of three channels. The top inset shows

the distribution of N, for both choices of bandwidth. Grid lines are spaced by 10°.

component shows two maxima. These components may not
exhibit as stark differences in dust properties as seen between
LVCs and IVCs, as the x* is low throughout this central region
of the BICEP/Keck field.

The required precision with which dust must be modeled as a
CMB foreground depends on the target sensitivity of the
experiments. Further work is needed to assess the effect of
multiple clouds on the polarized dust SED in the region. The
results presented in this section can aid future investigations by
providing estimates of the expected dust emission signal from
each cloud along the line of sight.

5. Discussion

By analyzing the HT emission at high Galactic latitude, we
have produced a measure of the number of discrete components
per line of sight that may contribute to the observed dust
emission at microwave frequencies. Our primary motivation
was to inform CMB foreground modeling. We discuss our
results in the context of the latest literature that aims to quantify
line-of-sight effects in the ISM relative to CMB foreground
subtraction.

5.1. Comparison of the Number of Clouds per Sight Line with
Previous Works

In recent years it has been realized that a major uncertainty in
CMB foreground modeling comes from the unknown complex-
ities of the dust distribution along the line of sight (e.g., Tassis
& Pavlidou 2015). Various estimates of the number of dust
components along the line of sight have been used in order to
understand the effect of such complexities on the recovery of
cosmological parameters. The estimates differ drastically in the
literature. In one of the first works assessing such effects, Poh
& Dodelson (2017) studied the region around the north
Galactic pole. They used two models: one with nine clouds per
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kiloparsec and another based on the 3D dust extinction map by
Green et al. (2015). Planck Collaboration (2016a) use a model
of discrete layers of dust to describe the dust emission in the
south Galactic cap (b < —60). They find that four to nine
layers can reproduce the one-point statistics of the polarized
dust emission from Planck. In their approach, the number of
layers was simply a free parameter of the model, unrelated to a
specific physical quantity. In contrast, the model of Ghosh et al.
(2017) and Adak et al. (2020) employs three discrete layers of
dust, each associated with a different phase of the ISM. Their
analysis is based on HI4PI data in the Galactic polar caps and
also succeeds in reproducing observables in the polarized dust
emission. The all-sky model of Martinez-Solaeche et al. (2018)
is based on the 3D reddening map of Green et al. (2015). Dust
emission at high Galactic latitudes in their map arises from
approximately one to two layers.

The variety of assumptions in such models was a prime
motivator for the present work. Our measure of the number of
HT clouds along the line of sight shows that on average 2.5
(south) and 3 (north) kinematicaly distinct components are
found at high Galactic latitude (Section 4.1.1). The relative
contribution of these components along the sight line varies
from pixel to pixel. We introduced a separate measure of the
number of clouds that takes into account the relative column
density of clouds. The southern Galactic polar region is
dominated by the column density of one cloud per sight line. In
contrast, the dominant cloud contributes less than two-thirds of
the total column density for 40% of northern pixels
(where N, > 1.5).

Our determination of the average number of clouds per pixel
differs drastically from that assumed in some of the first works
mentioned previously (Planck Collaboration 2016a; Poh &
Dodelson 2017). These large numbers of “layers” have been
reduced in the physically motivated models of Ghosh et al.
(2017), Adak et al. (2020), and Martinez-Solaeche et al. (2018).
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Figure 12. Substructure in the mean spectrum of LVCs. Top: the red dashed
line (right axis) shows the pdf of GC mean velocity of a superpixel in the
region. The black lines (left axis) show the average spectrum of clouds in the
superpixel (at each velocity we find the average intensity from the collection of
all GCs of the cloud). The pixel shown is centered at (I, b) = (285°6, —52°4).
The mean spectrum that peaks at ~5kms~' has two maxima, revealing
structures unresolved by the cloud identification. Bottom: map of the number of
maxima in LVCs identified in the region. A red filled circle marks the pixel
shown in the top panel. A KDE bandwidth of three channels was used.

When assuming three dust components, each associated with a
discrete phase of the neutral ISM (CNM, WNM, and unstable
neutral medium), Adak et al. (2020) find that the northern Galactic
polar region model lacks a necessary fourth component to account
for all the observed dust. This fourth component corresponds to
IVCs. In our determination of the number of clouds per pixel we
do not distinguish between ISM phases, but we find that there are
on average three kinematicaly distinct components along the line
of sight. Given the wide bandwidth chosen for the application of
our method, it is natural that these components correspond
to discrete multiphase clouds. An improved description for dust
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modeling would combine the two approaches and take into
account not only the ISM phase information but also the discrete
nature of LVCs and IVCs (see also Murray et al. 2020).

Most recently, a different class of models has been
developed in which HI velocity channel maps are treated as
“layers” of emission along the line of sight (Clark & Hensley
2019; Lu et al. 2020; Hu et al. 2020). These approaches utilize
morphological information and the column density to success-
fully reconstruct properties of the polarized dust emission that
are related to the 3D structure of the ISM magnetic field. To
fully model the dust emission Stokes parameters, these
approaches must make assumptions on the temperature and
spectral index of dust within each “layer.” These assumptions
can be informed by the results presented in Section 4, in
particular regarding the constraints on differences between dust
in IVCs and LVCs.

5.2. Are IVCs Important for Polarized CMB Foreground
Subtraction?

At high Galactic latitude the observed HI column density
that is correlated with reddening originates from LVC and IVC
gas (e.g., Planck Collaboration 2014; Lenz et al. 2017). These
two classes of clouds may exhibit systematic differences in
their dust and magnetic field properties, potentially causing
variations of the polarization angle of dust emission with
frequency (as proposed by Tassis & Pavlidou 2015).

Evidence for differences in the dust properties of IVCs
compared to LVCs was found when analyzing the total
intensity of dust emission by Planck Collaboration (2011). The
increased dust temperatures and lower dust emission cross
sections in IVCs were attributed to smaller grain sizes in IVCs
arising from dust shattering in the Galactic halo. This
interpretation was also considered by Planck Collaboration
(2014) to explain the lower dust specific luminosity found in
Galactic polar regions with IVCs. In this work we noted two
additional pieces of evidence that point to the different dust
properties of IVCs compared to LVCs. One is a morphological
correlation between the column density of some IVCs and the
map of reduced x* from the modified blackbody fit to the dust
emission SED performed by Planck Collaboration (2016b).
The elevated values of x? in regions with (primarily molecular)
IVCs imply that the single-component modified blackbody
yields a significantly poorer fit to the dust SED. The second is a
systematic increase in the dust temperature fit parameter, 7, for
pixels where IVCs contribute more to the column density than
LVCs. This correlation is true for a given column density. The
correlation is therefore not driven by the fitting degeneracy
between T, and dust amplitude at low signal-to-noise ratio
regions that was discussed in Hensley et al. (2019).

Some evidence for differences in magnetic field properties
between IVCs and LVCs exists in the literature. To the best of
our knowledge there are two indications of such variations
based on analysis of starlight polarization. Clark et al. (2014)
note a possible loss of alignment between starlight polarization
and H I morphology toward parts of the IV Arch. Panopoulou
et al. (2019) perform a tomographic decomposition of stellar
polarization as a function of distance toward a sight line at
intermediate Galactic latitude that intercepts LVC and IVC gas.
They find that the inferred plane-of-sky magnetic field
orientation differs by 60° between the LVC and the IVC.
Additional evidence comes from the Faraday rotation map of
Oppermann et al. (2012). The IV Arch is found to correlate
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Figure 13. Maps of Ny ; (left) and dust emission x? (middle) in the BICEP/Keck field and their 2D distribution (right). In the middle panel, white lines encircle two
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middle panel.

with a large region of positive Faraday depth, which could
point to a systematic difference in the line-of-sight component
of the magnetic field compared to local gas. Tritsis et al. (2019)
apply a novel method to estimate the plane-of-sky magnetic
field strength in LVCs and IVCs toward Ursa Major. They find
magnetic field strengths that vary both on the plane of the sky
and along the line of sight. These results are not surprising, as
the distance to most IVCs (of order 1 kpc) is much larger than
the correlation length of the Galactic magnetic field (~200 pc;
e.g., Beck et al. 2016).

In Section 4.1.2 we find tentative evidence that IVCs may be
contributing to the polarized dust emission at 353 GHz (by
adding a depolarizing effect). This is in apparent contrast with
the finding of Skalidis & Pelgrims (2019) that at high latitudes
the Planck polarized intensity is dominated by dust in the Local
Bubble wall. These authors compared the Planck polarized dust
emission with starlight polarization at different distances. They
found that the match between the two tracers at high Galactic
latitude is best at distances of 200-300 pc. However, as noted
by the authors, the stellar polarization sample does not
uniformly cover the high-latitude sky. In particular, there is a
lack of stellar measurements at distances farther than 400 pc
toward the general area occupied by IVCs (see Figure D.1 in
Skalidis & Pelgrims 2019). Future stellar polarization surveys
at high latitude (e.g., Tassis et al. 2018) will help clarify what
fraction of the polarized dust emission arises from farther than
the Local Bubble wall.

The large angular scale coverage of IVCs, combined with their
common astrophysical origin (likely a Galactic fountain process;
Kuntz & Danly 1996), may act to produce a systematic effect in
the polarized dust SED (in the form of frequency decorrelation).
So far, frequency decorrelation remains undetected in the Planck
data (Planck Collaboration 2020b; Sheehy & Slosar 2018).
However, if such a signal is to be searched for in the high Galactic
latitude sky, the regions with significant IVC contribution to the
column density would present a prime target. The maps of IVC
column density presented in this work could serve as templates for
forward modeling the polarized dust emission SED in order to
predict the level of decorrelation that is to be expected owing to
their presence. Another possible avenue of investigation would be
to perform parametric fits to the polarization data that explicitly
take into account contributions from IVCs and LVCs separately,
as has been done for total intensity (Planck Collaboration 2011).
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As the required accuracy of polarized foreground modeling
increases, analyses that take into account IVCs may also serve for
testing/improving modeling of Galactic synchrotron emission (the
dominant low-frequency CMB foreground). Current models
assume a single correlation parameter between the synchrotron
and dust emission polarized signals (BICEP2 Collaboration &
Keck Array Collaboration 2018; Planck Collaboration 2020b).
However, this assumption would not be accurate if the detected
synchrotron emission and dust emission did not probe the same
path length over all sight lines. For example, while dust emission
from IVCs might dominate that of local gas in some sight lines,
synchrotron emission from the Galactic halo could be suppressed
compared to local emission. It is known that the cosmic-ray
density is significantly lower toward certain IVCs compared to the
Galactic plane (Tibaldo et al. 2015). The magnetic field in the
Galactic halo is also observed to be lower than in the Galactic
plane (specifically, the line-of-sight component of the field; Sobey
et al. 2019). Determining whether the polarized synchrotron
emission at the location of IVCs is detectable (and if so, at what
frequency) would help inform choices in combined dust—
synchrotron foreground models.

5.3. Limitations of the Current Work
5.3.1. Spatial Coherence

Treating HEALPix superpixels independently means that
there is no imposed spatial coherence at scales larger than the
superpixel size. This can lead to abrupt changes between
pixels. Discontinuities can arise when, for example, two
components that are nearby in velocity appear distinct in one
pixel but are blended in a neighboring pixel. The method has
no way of distinguishing the two in the latter case. The fact that
our maps do show large-scale continuity in the number of
identified clouds per pixel indicates that there exist multiple
distinct velocity components that are separate enough in
velocity for the algorithm to identify them individually.

In Figure 9 the IVC column density map shows disconti-
nuities toward certain pixels. These discontinuities arise from
the selection of the LVC/IVC velocity boundary. It happens
that in these regions a cloud is peaked very near the boundary
of —12kms™'. In some pixels the velocity centroid of the
cloud falls in the IVC range, and in neighboring pixels it is
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found in the LVC range. An improved IVC column density
map could be constructed by iteratively finding the IVC/LVC
boundary by considering not only the global statistics of clouds
(Figure 5) but also the local properties of clouds in a region.
Methods that take into account solutions in neighboring pixels
could be adjusted for this (e.g., Green et al. 2019).

5.3.2. Confusion in Velocity

As explained in Section 3, we smooth the spectral
information of the original data during the construction of the
pdf of GC velocities with a KDE. This means that we are losing
the ability to identify clouds that are separated in velocity by
less than 2.5 x 4 channels (~12kms™ ). Pixels with distinct
peaks that differ by less than the bandwidth will be identified
by the method as a single cloud. An example is shown in
Figure 14 (bottom panel). A single peak in the pdf is made of
Gaussians with a bimodal distribution of velocity, leading to a
double-peaked spectrum for the “cloud.” This effect can be
mitigated by using a smaller KDE bandwidth, at the expense of
introducing more spurious cloud identifications (Section B).

A small fraction of the fainter clouds identified by the method
are subject to certain systematics. First, in the north, there exists
emission from residual stray radiation. Even though this issue is
addressed by our preprocessing routine (Appendix A), it is likely
that some part of this spurious signal remains and is attributed to
clouds. Second, a problem occurs when a strong peak in the pdf is
located near a fainter peak (e.g., Figure 14, top). Gaussians that
belong to the stronger peak may lie at a velocity that has been
assigned to the weaker peak. As a result, the fainter cloud may
show a skewed mean spectrum. This affects mostly faint clouds
that are adjacent to very bright ones in velocity space. This does
not affect our estimates of the number of clouds per pixel. Its main
effect is on the estimate of Ny of fainter clouds, biasing it to
slightly higher values.

We quantify the percentage of clouds that are affected by the
latter issue by calculating a measure of skewness of the spectrum
of each cloud. We calculate the difference 6 between the centroid
velocity and the peak velocity of the mean spectrum of each
cloud. The values of § are in the range [—12, 12] channels, with
the 10th and 90th percentiles being —2 and —1.9 channels. The
most extreme values of § (6] > 5 channels) are found in 80% of
cases in clouds with Ny; < 8 x 10" cm~2. Clouds of even
lower column density Ny; < 1 x 10! cm~2 make up 65% of
extreme-0 cases.

Our method can identify components of emission that are
kinematicaly distinct. It is worth noting that the velocity
differences found in this work are much larger (typically tens
of kilometers per second) than what is expected to arise from
natural velocity dispersion (thermal/turbulence) within indivi-
dual clouds. For gas temperatures of 100-1000K, the
isothermal sound speed is 1-3 kms~'. While different velocity
components do not necessarily map to discrete structures along
the line of sight (Beaumont et al. 2013; Clarke et al. 2018), any
velocity substructure is smoothed out owing to (a) the spectral
resolution of the HI4PI data (~1kms™') and (b) our KDE
smoothing kernel (5 km sh.

It is possible that multiple clouds exist within one pixel that
cannot be separated in velocity. Because of this, our estimate of
the number of clouds per pixel is a lower limit. This limitation
can be surpassed by using complementary methods and data,
for example, by mapping stellar reddening as a function of
distance (see references in the Introduction), or by searching for
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Figure 14. Top: example of mean spectrum of a cloud that suffers from
confusion with signal from a nearby bright peak (cloud spectrum, leftmost
black line) Bottom: example of mean cloud spectrum with substructure that has
not been detected by the method (second-from-the-right black line). The
dashed red line shows the pdf of GC velocities in the specific superpixel.
Vertical gray lines mark the centroid velocity of each cloud. The boxes in the
upper right corner show the coordinates of the superpixel.

HT filaments with different orientations in different velocities
(Clark 2018). The present method can be used in conjunction
with such approaches in order to improve reconstruction of the
3D ISM.

5.4. Future Directions

The data presented here can be used to improve 3D maps of
reddening at high Galactic latitude. For example, the number of
clouds per pixel can be used as a prior in fitting the line-of-sight
reddening profile in models like that of Zucker et al. (2019).
Additionally, the IVC and LVC column density maps can be
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used as spatial templates, extending the analysis used for
molecular cloud data to the diffuse ISM (Zucker et al. 2018).
Knowledge of the number of components along the line of
sight and their properties in combination with starlight
polarization can also facilitate 3D mapping of the ISM
magnetic field (Panopoulou et al. 2019).

Given the increasing sensitivity of ongoing and upcoming
CMB experiments, there is an urgent need for modeling dust
foregrounds with unprecedented precision (at the nanokelvin
level; Sugai 2020; Abazajian et al. 2019). Our results can be
used to inform more realistic models of polarized dust emission
in the near future. For example, the number of clouds per line
of sight can serve as an informative prior for parametric
component separation methods (e.g., Eriksen et al. 2008),
where the foreground signal is modeled independently in each
pixel of the sky.

6. Data Products
We provide data® in the following forms:

1. We provide two HEALPix FITS files for the polar areas
studied in Section 4.1 and two HEALPix FITS files for
the BICEP/Keck region (Section 4.2). For each region,
one file contains the column density maps: Ny, Nﬁlv ¢
NIYC. The other file contains maps of the number of
cloud statistics: N¢jougs and N,. The maps are given at a
resolution of Nyg. = 128, corresponding to a pixel size of
0246 on each side.

2. For each of the studied regions, we provide a file in hdf5
format that holds properties of the entire sample of clouds
(including velocities that were excluded for the analysis
in Section 4). The reported properties are the cloud’s
column density (NJ°"9), the superpixel index in which it
belongs, the centroid velocity (v€'*"Y) and second

moment (6v<'*"?) of the cloud spectrum, the number of

Gaussians that make up the cloud, and the number of

maxima in the cloud spectrum.

The data are provided for the optimal choice of bandwidth
parameter (four channels, or 5kms~'). A Python implementa-
tion of the method discussed in Section 3 is publicly available
on github.” The data are accompanied by a Python tutorial for
using the data products.

We caution against smoothing the N jouqs and A, maps to
obtain lower-resolution versions. The reason is simply
illustrated with the following example. Let us suppose that
one pixel is occupied by a single cloud (c;), while its
neighboring pixel contains two clouds (¢, c;). The value for
the number of clouds in the area that covers both pixels would
be 1.5 if we naively averaged N.jougs in the region, which is
clearly in error. An alternative would be to assign the value of
Nciougs that is maximum among the superpixels that make up
the area (giving two clouds in this case). This would give the
correct result if ¢, is the same cloud as either ¢ or ¢y, but an
incorrect result if the three clouds are all distinct from each
other. Lower-resolution products are created by repeating the
analysis of Section 3 with a different choice of Nj;4. and can be
made available upon request.

8 doi: 10.7910/DVN/SDASLH.
? https: //github.com/ginleaf /cloudcount.
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7. Summary

We have developed a method to identify clouds of HI,
defined as kinematicaly distinct components of emission. The
method uses a Gaussian decomposition of HI spectra and
searches for overdensities in the pdf of GC velocities within
HEALPix superpixels of size ~0%5 (Nyq. 128). The value of
the main parameter of the method, the kernel bandwidth, is
optimized through tests with real and mock data. These tests
show that the method identifies clouds at the correct velocity
for over 85% of cases with a false-positive rate of less than
10% (Appendix B).

We implemented this method for the high Galactic latitude
sky. The method does well in assigning the majority of the
emission to clouds, with very little residual signal left out
(median relative residuals of 0.5%; Appendix B). We present
maps of the number of components along the line of sight and
statistical properties of the identified clouds. We analyze clouds
in the velocity range [vsg] < 70 kms~'. Throughout the high-
latitude sky, the number of clouds per pixel is small: less than
six clouds per pixel are found to contribute to the HI column.
The northern sky has on average a larger number of clouds per
pixel (3) than the southern (2.5). This is mostly due to the
prominence of IVCs in the north.

We introduced a measure of the number of clouds that takes
into account the column density of different clouds along the
line of sight. This quantity, /N, is more robust to uncertainties
in the method. We find that the majority of pixels at high
latitude have a low value of N, < 1.5 (60% in the north and
90% in the south). The statistics of the number of clouds per
pixel are dominated by IVCs, which show large-scale spatial
coherence, especially over the northern sky. We find that the
presence of IVCs affects the fit to the dust emission SED by
Planck.

We also implemented the method on the region targeted by
the BICEP/Keck CMB experiment. We find evidence for
multiple components along the line of sight. However, for most
of the area the column density is dominated by a single
component in each pixel. We find that regions with elevated x>
from the fit to the dust SED show evidence for more complex
kinematics in the HI gas.

We discuss our results in the context of CMB foreground
modeling and highlight the potential importance of IVCs. Our
results can aid in informing future 3D dust mapping efforts, as
well as CMB foreground analyses. The data are made publicly
available as described in Section 6.
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Facilities: Effelsberg, Parkes, Planck.
Software: astropy (Astropy Collaboration et al. 2013),
healpy (Zonca et al. 2019).

Appendix A
Removing Contamination from Uncorrected Stray
Radiation

The part of the HI4PI survey that was conducted from the
northern hemisphere (Effelsberg-Bonn HI Survey, EBHIS)
contains low-amplitude artifacts that originate from residual
uncorrected stray radiation. These artifacts appear as faint
increases in brightness with a distinctive square pattern
(approximately 5° x 5°, reflecting the scanning pattern). They
are usually visible at velocities where Galactic emission is very
faint or absent. See also Martin et al. (2015) for more details.

These artifacts have not been removed prior to performing
the Gaussian decomposition in D. Lenz et al. (2020, in
preparation). Gaussians associated with these artifacts will
result in detections of spurious “clouds” by our method. To
avoid this, we preprocess the Gaussian decomposition in order
to remove as much contamination as possible.
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The artifacts were identified by eye in the spectral channel
maps of the EBHIS part of the survey. We removed GCs that
were associated with artifacts by the following process:

1. For each noise square, we create a list of all pixels within
a circular region of 6° in diameter.

2. We flag any GC in the decomposition if (a) it is within a
region affected by noise (defined as above) AND (b) its
mean is within 0.5¢ of the velocity channel where a noise
square was identified.

3. All flagged GCs are removed before proceeding with the
analysis.

Figure 15 compares the results of the cloud identification method
before and after performing the preprocessing step. We compare
the map of the mean velocity of clouds identified in a region
centered on the north Galactic pole (with a radius of 30°). The map
shows only clouds within a range of velocities where artifacts are
prominent (40-50kms~"). The run with preprocessing (right
panel) effectively eliminates the square-patterned residuals present
when no preprocessing is applied (left panel). We are confident that
our method removes all artifacts with maximum amplitude more
than 0.19 K and rms (within the square) of 0.12 K or higher.
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Figure 15. Effect of removing stray radiation patterns. Map of cloud velocity in north Galactic polar cap (b > 60°) without (left) and with (right) removal of patterns

(only showing velocity channels where the patterns appear).
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Appendix B
Validation Tests and Parameter Optimization

B.1. The KDE Bandwidth Parameter

The method presented in Section 3 constructs the pdf of GC
velocities by use of a KDE. The choice of KDE size
(bandwidth) determines the resolution of the cloud identifica-
tion in velocity. Figure 16 shows the effect of varying the value
of this parameter (from two to four channels) on the resulting
clouds. For the finest resolution, there are spurious features in
the pdf. Since the method locates clouds as separate peaks in
the pdf, the spurious local maxima found when using a small
bandwidth lead to the “detection” of many peaks. However, the
slightly larger bandwidths of three and four channels produce
smoother pdf’s that lack these spurious detections. The cloud
identification for the bandwidth of three channels is in
agreement with that of four channels for this selected pixel.

We investigate the optimal choice of KDE bandwidth
through the following test. We generate mock data of Gaussian
velocities for 10* superpixels. Each 1D distribution of
velocities has properties similar to what can be found in a
superpixel of the HI4PI data set at high Galactic latitude. For
each superpixel, we first determine the number of peaks in the
distribution of Gaussian velocities (clouds) by drawing from a
skewed-normal distribution that peaks at two components, with
a tail out to eight components. The number of Gaussians that
belong to each cloud is drawn from a normal distribution
centered on 10, with a standard deviation of 400. We take the
absolute value of the distribution to ensure positive-definite
numbers. We assume that each cloud has a distribution of GC
velocities that is normal. The mean velocity for each cloud is
drawn from a normal centered on —30 km s~!, with a standard
deviation of 40km ™', covering the entire range of velocities
observed in the high-latitude sky, with the exception of HVCs.
The standard deviation is drawn from a uniform distribution in
the range [4,13] km s We repeat this process 10* times, thus
generating mock data for 10* superpixels.

We then run the cloud identification code with different
values of KDE bandwidth (from two channels to six channels
in steps of one). One way of evaluating the method’s success is
to compare the number of peaks it has identified in a single
pixel with the true number of peaks (input in generating the
mock data for that pixel). Figure 17 shows the difference
between the recovered number of peaks (Npung) and the true
number of peaks (M) as a function of the latter, for all pixels
in the test. When a bandwidth of 2 is used, the code finds more
peaks than were originally input. These are spurious peaks
owing to the noisiness of the pdf. As the bandwidth increases,
fewer and fewer of such spurious peaks are found. At the same
time, however, the reduced spectral resolution when using
larger bandwidths means that some peaks that were nearby in
velocity space cannot be separated and are counted as a single
peak. This is why at a bandwidth of 6 there are many pixels in
which the method finds less peaks than were input. There is a
trade-off in the choice of bandwidth. We opt for an
intermediate bandwidth: one that minimizes the amount of
spurious peaks, while at the same time not significantly
compromising the spectral resolution.

A second way of evaluating the method’s success is by
measuring how well the peak velocities of recovered clouds
compare to the input peak velocities. For this we calculate the
difference between the mean velocity of each recovered cloud
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and its nearest (in velocity) counterpart in the original input of
the test. We find that there is no bias; the distribution of
velocity differences has a mean of zero channels for all
bandwidths used. However, the distribution shows wide wings
for a bandwidth of two channels, something that is reduced for
larger bandwidths. The 38th percentile of the distribution of
velocity differences is four channels for a bandwidth of 2. For
larger bandwidths (3, 4, 5, 6) four channels corresponds to the
64th, 85th, 93th, and 96th percentile. Thus, by choosing a
bandwidth of 4 or larger, more than 85% of clouds will be
identified by the method within four channels of their true
value. The percentage of clouds that will be identified within
two channels of their true value is 75% for the same choice of
bandwidth.

We also examine the false-positive rate, that is, the fraction
of peaks that have no true peak within their assigned range of
velocities. This fraction is 70%, 30%, and 10% at bandwidths
of two, three, and four channels and drops to 3% and 1% at
bandwidths of five and six channels, respectively.

From the above tests, we conclude that a bandwidth of 4 is
optimal: it combines high enough spectral resolution for
identifying separate peaks while minimizing spurious detec-
tions and ensures that the recovered clouds will be located
within a few channels of their true value.

B.2. The Ny;;, Parameter

The maps presented in the main text were created by
applying the method to superpixels of Ngq. = 128. Here we
repeat the analysis of the high Galactic latitude sky to
investigate the effect of changing the N4 to 64 (the
immediately lower resolution in a HEALPix pixelization).

We expect our method to work well as long as there is a
statistically large enough sample of Gaussians per pixel that are
used to create the velocity pdf. This is true for both resolution
choices. For N4, = 64, the number of Gaussians per pixel
ranges from 300 to 2480 for the southern Galactic cap. In 80%
of pixels more than 880 Gaussians are used to construct the
pdf. For the higher resolution of Ngg. = 128, the minimum
number of Gaussians per pixel is 68 and the maximum is 664.

First, we compare the distributions of Nj,uqs that result from
applying the method with a superpixel N4 of 64 and 128. The
mean, 10th percentile, and 90th percentile are 2.8, 2, and 4,
respectively, for Nyige = 128. These values change to 3.3, 2,
and 5 for N;;qc = 64. The main reason for these differences is
that small changes in the pdf (that can arise from different
superpixel size choices) can easily affect the detection (or not)
of low-Ny ; clouds. By imposing a threshold on the cloud Ny ¢
we find improved agreement between the distribution of N¢jougs
at different Ng;q.. This is shown in Figure 18 (left).

Next, we compare the distribution of A, for the two
resolutions (Figure 18, right). The distributions at different
resolution agree for all values of the Ny threshold. This is to
be expected, as N, down-weighs low column density clouds,
which are sensitive to the choice of superpixel size. Visual
inspection of the A, maps shows the same large-scale features
arising for both choices of superpixel size.

B.3. Evaluation of Residuals

The final step in validating our method is to examine whether
there is emission that is not picked up by our cloud identification.
Figure 19 shows the difference between the integrated emission of
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Figure 17. Evaluation of the KDE bandwidth from tests on mock distributions of Gaussian parameters. The difference is between the number of peaks found by the
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distribution of Nipung — Nire (for bandwidth = 2 the 99th percentile is outside the shown range). Larger bandwidths result in less spurious detections of clouds at the

cost of reduced spectral resolution.

the HI4PI data and the integrated emission from the GCs assigned
to clouds for pixels in the north and south sky regions. We find
very small residuals, with a median of —0.8%. Only 1.2% of
pixels have a relative residual Ang e < —10%, and 0.005%
have Anp.ret > 10%. This shows that the clouds we identified are
responsible for all but a negligible fraction of the total extinction.
In the residual map, the regions where there is subtraction of stray

20

light radiation residuals (Appendix A) appear as patches of
underestimated column density (by 10%-20%). Regions where
cloud Ny overestimates the total column by more than 20% are
associated with point sources or the Magellanic system, where
there is significant signal outside the range of velocities used in the
Gaussian decomposition. Additionally, the Ny calculated by
integrating the H T spectra may in rare cases include summation
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Figure 19. Relative residual NH map, showing the excess at the locations of the removed noise squares (projection as in Figure 4).

over negative values, due to presumably improper baseline
subtraction. The GCs are forced to have positive amplitude, and
this causes, by default, overestimation. This effect is minor.
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