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Because an array of interesting target molecules include ketones that bear an α-aryl substituent,
the development of methods for the synthesis of this structural motif has been an active area
of investigation.[1] For example, extensive effort has recently been devoted to the discovery
of palladium catalysts for the cross-coupling of ketones with aryl halides in the presence of a
Brønsted base (path A in eq 1; via an enolate).[2] Furthermore, in the case of α, α-disubstituted
ketones, catalytic asymmetric α-arylations have been described wherein quaternary
stereocenters are generated with excellent enantioselectivity.[3,4] Unfortunately, these
methods cannot be applied to the asymmetric synthesis of more commonly encountered tertiary
stereocenters, due to the propensity of α-arylketones such as 1 to enolize under the reaction
conditions.[5,6]
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(1)

Alternatively, an umpolung arylation process, whereby a ketone that bears an α leaving group
reacts with an arylmetal reagent, could provide the target α-arylketone (path B in eq 1). Until
recently, there were no examples of palladium- or nickel-catalyzed cross-couplings between
secondary α-halocarbonyl compounds and arylmetals (metal = B, Si, Sn, or Zn). In 2007, we
reported that a nickel catalyst can achieve Hiyama arylation reactions with a wide array of
electrophiles, including secondary α-halocarbonyl compounds (and Lei later described a
nickel-based method for Suzuki couplings).[7] In the case of α-haloesters, we were able to
subsequently develop a catalytic asymmetric α-arylation process that furnishes tertiary
stereocenters (eq 2; TBAT = [F2SiPh3]−[NBu4).[8] However, we could not apply this method
to corresponding Hiyama arylations of α-haloketones, presumably due to the Brønsted-basic
reaction conditions.[9,10]

(2)
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Unlike cross-coupling processes such as the Hiyama and Suzuki reactions, which often employ
Lewis/Brønsted-basic activators, the Negishi reaction typically proceeds without an additive,
[11,12] thereby making it an attractive starting point for the development of a method for the
catalytic asymmetric α-arylation of ketones to generate (potentially labile) tertiary
stereocenters. In this report, we establish that a nickel/pybox catalyst can indeed achieve
enantioselective cross-couplings of racemic α-bromoketones with arylzinc reagents under very
mild conditions in good ee and yield (eq3).[13,14]

(3)

The data in Table 1 illustrate the role that various reaction parameters play in determining the
efficiency of this stereoconvergent Negishi α-arylation of ketones. Thus, no cross-coupling
occurs if NiCl2·glyme is omitted (Table 1, entry 2), whereas carbon-carbon bond formation
does proceed in the absence of ligand 2[15] (Table 1, entry 3). Pybox ligands other than 2
furnish lower ee and yield (Table 1, entries 4 and 5), as do solvents other than a glyme/THF
mixture (Table 1, entries 6–8). At room temperature, the catalyst system is somewhat less
effective than at −30 °C (Table 1, entry 9).

With our optimized method, we can achieve Negishi cross-couplings of racemic 2-
bromopropiophenone with an array of arylzinc reagents in excellent ee and good yield (Table
2)[16] although the efficiency of the process is sensitive to the steric demand of the nucleophile
(Table 2, entry 2). The organozinc can include a range of functional groups, such as OR,
halogen, NR2, and SR. Diarylzinc reagents (Ar2Zn) and arylzinc iodides (ArZnl) generally
furnish similar enantioselectivities and yields (e.g., Table 2, entry 1)[17] The α-arylated ketone
is stable to racemization under these conditions.
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We have examined the scope of this method for the catalytic asymmetric α-arylation of ketones
not only with respect to the nucleophile (Table 2), but also the electrophile (Table 3). Very
good ee’s and useful yields are observed with a variety of α-alkyl substituents, including those
that are functionalized (Table 3, entries 2 and 3) and β-branched (Table 3, entry 4); however,
if R is large, little of the cross-coupling product is formed (Table 3, entry 5). If the aryl group
of the ketone is bulky, the reaction proceeds with moderate enantioselectivity (Table 3, entries
6 and 7). On the other hand, good ee’s are observed regardless of whether the group is electron-
rich (Table 3, entry 8) or electron-poor (Table 3, entry 9). A thiophene is compatible with this
nickel-based coupling process (Table 3, entry 10).[18]

In conclusion, we have developed the first catalytic asymmetric method for cross-coupling
arylmetal reagents with α-haloketones, specifically, the NiCl2·glyme/2-catalyzed reaction of
arylzincs with racemic secondary α-bromoketones. This stereoconvergent carbon–carbon
bond-forming process occurs under unusually mild conditions (−30 °C and no activators),
thereby allowing the generation of potentially labile tertiary stereocenters. Ongoing efforts are
directed at further expanding the scope of cross-coupling reactions of alkyl electrophiles.

Experimental Section
General Procedure

A solution of the arylmagnesium bromide (1.6 mmol; 1.6 equiv) was added to a solution of
ZnI2 (510 mg, 1.6 mmol; 1.6 equiv) in THF (final concentration of ArZnI = 0.20 M) under
argon. The mixture was stirred for 40 min at room temperature (a precipitate is immediately
observed), and then it was cooled to −30 °C. NiCl2·glyme (11.0 mg, 0.050 mmol; 0.050 equiv)
and (+)-2 (29.9 mg, 0.065 mmol; 0.065 equiv) were added to an oven-dried 50-mL flask. The
flask was purged with argon, and the α-bromoketone (1.0 mmol; 1.0 equiv) was added,
followed by glyme (13.5 mL). This solution was allowed to stir at room temperature for 20
min, and then it was cooled to −30 °C. The suspension of ArZnl (6.5 mL, 1.3 mmol; 1.3 equiv)
was added dropwise over 3 min, and the reaction mixture was stirred at −30 °C for 4 h. Then,
the reaction was quenched with saturated ammonium chloride (10 mL). The reaction mixture
was diluted with Et2O (50 mL), washed with distilled water (10 mL) and brine (10 mL), dried
over magnesium sulfate, and concentrated. The product was purified by flash chromatography.
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Table 1

Catalytic asymmetric arylations of racemic α-bromoketones: Effect of reaction parameters

entry variation from the “standard” conditions ee (%) yield (%)a

1 none 94 87
2 no NiCl2·glyme - <5
3 no (+)-2 - 55
4 Ph-pybox, instead of (+)-2 71 54
5 i-Pr-pybox, instead of (+)-2 73 6
6 glyme only - <5
7 THF only 87 52
8 DMF, instead of glyme/THF - <5
9 r.t. 89 81

a
The yield was determined by GC versus a calibrated internal standard.
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Table 2

Catalytic asymmetric arylations of racemic α-bromoketones: Variation of the nucleophile

entry Ar ee (%) yield (%)a

1 Ph 96(95b) 86 (88b)
2 2-(MeO)C6H4 - <5
3 3-MeC6H4 94 88
4b 3-(MeO)C6H4 94 87
5 4-FC6H4 96 74
6 4-(MeO)C6H4 96 93
7 4-(Me2N)C6H4 93 85
8 4-(MeS)C6H4 96 71

All data are the average of two experiments.

a
Yield of purified product.

b
Ar2Zn (1.1 equiv) was used, rather than ArZnl.
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Table 3

Catalytic asymmetric arylations of racemic α-bromoketones: Variation of the electrophile

entry Ar R ee (%) yield (%)a

1 Ph Et 94 86
2 Ph CH2Ph 95 76
3b Ph CH2CH2Cl 92 90
4c Ph iBu 95 89
5 Ph iPr - <5
6 2-FC6H4 Me 72 80
7b 2-(Et)C6H4 Me 75 79
8 4-(MeO)C6H4 Me 96 90
9 4-(F3C)C6H4 Me 87 (89c) 76(82c)
10 2-thienyl Me 96 81

All data are the average of two experiments.

a
Yield of purified product.

b
Run at −20 °C.

c
Ar2Zn (1.1 equiv) was used, rather than ArZnl.
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