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Characterizing Safety: Minimal Control Barrier
Functions from Scalar Comparison Systems

Rohit Konda, Aaron D. Ames, and Samuel Coogan

Abstract—Verifying set invariance has classical solutions stem-
ming from the seminal work by Nagumo, and defining sets via
a smooth barrier function constraint inequality results in com-
putable flow conditions for guaranteeing set invariance. While
a majority of these historic results on set invariance consider
flow conditions on the boundary, this paper fully characterizes
set invariance through minimal barrier functions by directly
appealing to a comparison result to define a flow condition
over the entire domain of the system. A considerable benefit
of this approach is the removal of regularity assumptions of the
barrier function. This paper also outlines necessary and sufficient
conditions for a valid differential inequality condition, giving the
minimum conditions for this type of approach. We also show
when minimal barrier functions are necessary and sufficient for
set invariance.

Index Terms—Constrained control, Optimization

I. INTRODUCTION

IN the context of dynamical systems, safety has become
synonymous with set invariance, the property that state

trajectories of a system are contained within a given subset of
the state space; e.g., see the textbook [1]. Intuitively, invariance
can be established by ensuring that a system’s vector field
evaluated on the boundary of the candidate invariant set is
always sub-tangent to the set so that trajectories cannot escape.
The main technical challenge of this approach is in defining an
appropriate notion of sub-tangency applicable to general sets
and finding conditions that extend over the entire set so they
can be used for controller synthesis. Recent work on (control)
barrier functions provided conditions for set invariance [2], [3],
subject to regularity assumptions on the set. The question this
paper addresses is: Are these the strongest possible conditions
for set invariance?

The main result of this paper is necessary and sufficient
conditions on set invariance that are minimal in that they are
the least restrictive conditions needed to ensure set invariance.
To obtain this result, we begin considering comparison results
for scalar systems which lead to a notion of a minimal
solution. This motivates the introduction of a minimal barrier
function which leverages a comparison result for scalar sys-
tems. Minimal barrier functions are necessary and sufficient
for set invariance and, importantly, they do not require the
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regularity conditions imposed by the original formulation of
barrier functions. Finally, minimal control barrier functions
are introduced wherein state dependent input constraints and
controller synthesis are considered.

There is a long and rich history of establishing conditions
for set invariance, starting with the seminal work by Nagumo
[4] continuing with Bony [5], Brezis [6], and others [7], [8].
The modern literature has predominately focused on extending
these classical results to when S = {x : h(x) ≥ 0}, a
subset of the domain D ⊂ Rn, is defined by a smooth output
function h : D → R. The most visible example of this
is barrier certificates, which were first introduced to verify
safety properties of hybrid systems in [9]. Directly invoking
Nagumo’s theorem gives the familiar condition : ∂h

∂xf(x) ≥ 0
on the boundary of S implies invariance of S, for the state
flow f . Extensions of barrier certificates have been plenty,
see e.g. [10], [11], but a major assumption is regularity of
h: specifically that the gradient ∂h

∂x on the boundary does not
vanish and corresponds to the exterior normal vector of S.
This assumption is necessary, as a simple counterexample is
given by h(x) = x3 and ẋ = −1. This example is further
detailed in Example 1 and also appears in [9].

The alternative approach is to enforce a flow constraint over
the entire domain: ∂h

∂xf(x) ≥ −φ(h(x)) ∀x ∈ D for a scalar
function φ. From the conception of the Lyapunov-like flow
constraint with φ ≡ 0, as in [9], significant work has been
undertaken to expand the class of functions φ sufficient to
guarantee invariance of S, e.g. see [12], [13]. With a view
towards obtaining tighter conditions for φ, a new form of
(control) barrier functions was recently introduced in [3],
where φ is required to be an extended class K function,
i.e., it is strictly increasing and φ(0) = 0. Importantly, these
conditions are necessary and sufficient for set invariance in the
case when S is compact and 0 is a regular value of h.

Yet the question remains: can these assumptions, especially
with respect to the regularity of h, be relaxed further and still
guarantee set invariance? Answering this question is important
as it allows for the verification of a larger set of invariance
specifications for a given system including significant classes
of non-regular sets, such as points, limit cycles, subspaces, etc.
This leads to the main contribution of the paper: the largest
possible set of functions, µ, in which to lower bound the flow
via ∂h

∂xf(x) ≥ −µ(h(x)) ∀x ∈ D.
Complete proofs of all results are contained in the extended

version1. Proofs are presented below for a few main results.
The extended version also contains several appendices that

1The extended version is available at arxiv.org/abs/1908.09323
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extend the basic results here to time-varying systems, present
stability results using minimal barrier functions, compares
to other boundary conditions for invariance in the literature,
and presents further details regarding necessary conditions to
guarantee the existence of a continuous comparison function.

II. MINIMAL BARRIER FUNCTIONS

We study the system

ẋ = f(x) (1)

with state x ∈ D where D ⊆ Rn is assumed to be an open
set and f : D → Rn is assumed to be continuous. Under this
assumption, for any initial condition x(0) = x0, there exists a
maximum time interval of existence I[x(·)] = [0, τmax[x(·)])
with τmax[x(·)] > 0 in which the solution x(t) is guaranteed
to exist.

The Lie derivative of h along the vector field f is denoted
Lfh : D → R and defined by Lfh(x) := ∂h

∂x (x)f(x). We
denote standard Euclidean norm by ‖ · ‖.

Throughout this paper, we will study invariance of sets
defined as S = {x ∈ D : h(x) ≥ 0} for a continuously
differentiable function h : D → R.

A set S ⊆ D is positively invariant for (1) if, for any x0 ∈
S, all solutions x(t) with x(0) = x0 satisfy x(t) ∈ S for all
t ∈ I[x(·)].

By studying sets S defined by inequality constraints of a
smooth function h, we can develop Lyapunov-like conditions
on the time evolution of the scalar value h over the whole
domain D. In particular, we observe that if h(x(t)) ≥ 0 can be
assured for all t ∈ I[x(·)] and for all initial conditions x0 ∈ S,
then S is positively invariant. In contrast, previous results
on barrier functions (for example, [9]) focus on extending
Nagumo’s Theorem, directly verifying that the flow of the
system is sub-tangent to the set S.

First we define a minimal solution w̃(t) defined on [0, τ)
for the scalar initial value problem

ẇ = g(w), w(0) = w0 ∈ R, (2)

with g : R→ R a continuous function, as a solution such that,
for any other solution w′(t) defined on [0, τ), w̃(t) ≤ w′(t)
for all t ∈ [0, τ).

Minimal solutions will be fundamental in characterizing
differential inequalities for systems that do not necessarily
have unique solutions. Relaxing uniqueness assumptions is
critical, as even systems and barrier functions defined by
polynomials can induce nonunique solutions in the differential
inequality, as seen in Example 1. With this, we recall the
following differential inequality.

Proposition 1. [14, Thm 6.3] Let w̃(t) be a minimal solution
to the the initial value problem (2) with domain [0, τ) and g
being continuous. If η(t) is any differentiable function defined
on [0, τ) such that η̇(t) ≥ g(η(t)) for all t ∈ [0, τ) and
η(0) ≥ w0, then η(t) ≥ w̃(t) for all t ∈ [0, τ).

Motivated by our interest in using scalar differential equa-
tions as barrier functions, we are especially interested in scalar
systems for which minimal solutions remain nonnegative when
initialized at the origin.

Definition 1. A continuous function µ : R→ R is a minimal
function if the minimal solution w̃(t) defined on t ∈ [0, τ)
for the initial value problem ẇ = −µ(w), w(0) = 0 satisfies
w̃(t) ≥ 0 for all t ∈ [0, τ).

With minimal functions introduced, we can now describe a
corresponding barrier function condition.

Definition 2. For the system in (1), a continuously differ-
entiable function h : D → R is a minimal barrier function
(MBF) if there exists a minimal function µ that satisfies

Lfh(x) ≥ −µ(h(x)) ∀x ∈ D, (3)

where Lfh(x) = ∂h
∂x (x)f(x) denotes the Lie derivative.

The notion of a minimal barrier function allows us to then
establish invariance of S.

Theorem 1. Consider the system (1) and a nonempty S =
{x ∈ D : h(x) ≥ 0} for some continuously differentiable
h : D → R. If h is a MBF as in Definition 2, then S is
positively invariant.

Let x(t) be a solution defined on [0, τmax) to (1) with any
x(0) = x0 ∈ S. Observe that h(x(0)) ≥ 0. Consider the
comparison system ẇ = −µ(w) with w(0) = 0. We first
show that w̃(t) is defined on [0, τmax) as well. Suppose that
w̃(t) is only defined on [0, τ∗) for τ∗ < τmax. Since µ is
a minimal function, w̃(t) ≥ 0 and limt→τ∗ w̃(t) = ∞ [15,
Corollary 1.1.2]. By Proposition 1, h(x(t)) ≥ w̃(t) for t ∈
[0, τ∗), implying limt→τ∗ h(x(t)) = ∞ and diverges. Since
x(t) ∈ D for t ∈ [0, τ∗], h(x(t)) is a well-defined continuous
map from t ∈ [0, τ∗] to R. Contradiction ensues, as the image
of [0, τ∗] under the continuous map h is compact and therefore
bounded, and the claim is shown. Now, Proposition 1 gives
that h(x(t)) ≥ w(t) ≥ 0, implying that x(t) ∈ S for all
t ∈ [0, τmax). Therefore S is positively invariant.

The main theoretical component for Theorem 1 comes
directly from the differential inequality in Proposition 1, rather
than using the classical argument by Nagumo. In this regard,
MBFs highlight the strong connection between set invariance
and differential inequalities. Furthermore, if the additional
assumption that µ(w) ≤ 0 (< 0) for w ≤ 0 holds, then
the utility of the MBF is similar to a set-based Lyapunov
function for guaranteeing stability (asymptotic stability). A
more detailed discussion can be found in the Appendix B of
the extended version.

A. Necessary and sufficient conditions for minimal functions

Relaxing the standard Lyapunov condition Lfh ≥ 0 for
all x ∈ D has been studied in a number of works, see
e.g. [13], [3]. By considering a larger class of comparison
functions to lower bound the flow, i.e. Lfh(x) ≥ −φ(h(x)),
it becomes possible to ensure invariance without requiring
stability, allowing for a larger design space when constructing
valid barrier functions.

We remark that minimal functions, by definition, represent
the largest possible class of comparison functions, and in a
certain sense, are the most general class of functions that
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can be used in a barrier function condition. However, since
minimal functions are implicitly defined through the resulting
nonnegative solutions, checking if a function is indeed minimal
is not immediately apparent. Thus the next theorem presents
verifiable conditions on µ to ensure that it is a minimal
function. It is important to note that since the next theorem
is necessary and sufficient, it represents the tightest possible
conditions for a minimal function. The crux of the theorem
comes from uniqueness results in [16].

Theorem 2. A continuous function µ : R → R is a minimal
function if and only if one of the following cases is satisfied:

1) µ(0) < 0
2) µ(0) = 0 and there exists ε > 0 such that µ(w) ≤ 0 for

all w ∈ [−ε, 0)
3) µ(0) = 0 and for every ε > 0, there exists some w′, w′′

in [−ε, 0] such that µ(w′) > 0 and µ(w′′) < 0
4) µ(0) = 0 and there exists k > 0 such that for all ε with

0 < ε < k, µ(w) ≥ 0 on [−ε, 0] and −1/µ(w) is not
integrable on [−ε, 0], i.e.

∫ −ε
0
− dw
µ(w) is divergent

Case 1 and Case 2 are similar in vein to the standard
Lyapunov condition, as Lfh ≥ −µ(h) ≥ 0 on h ∈ [−ε, 0]
for some ε > 0. Case 3 considers the case when µ changes
sign infinitely often. Case 4 relaxes the usual locally Lipschitz
condition to a one-sided nonintegrability condition to handle
a more general class of comparison functions.

Uniqueness functions have also appeared in the literature
as a means for establishing invariance [17]–[19]. Essentially,
g is a uniqueness function if any continuously differentiable
η(t) satisfying η(0) = 0 and η̇(t) = g(η(t)) for all t must
necessarily be the unique solution η(t) ≡ 0 [7].

It can be seen that all continuous uniqueness functions are
minimal functions, but µ(w) = −w 2

3 is an example of a
minimal function that is not a uniqueness function. In this
way, the definition of minimal functions captures the essential
philosophy of barrier functions: invariance is certified by the
nonexistence of solutions to the comparison system in (2) that
become strictly negative, and nonunique nonnegative solutions
are not relevant to establishing invariance.

We also remark that there are other notions of uniqueness
functions used in [7], [19] which are of the same form as
minimal functions, but are not used in a comparison frame-
work. In this paper, we directly invoke comparison systems
induced by minimal functions to establish invariance in the
least restrictive sense.

If a minimal function is a priori known to induce unique
solutions, then only the condition that µ(0) ≤ 0 needs to be
checked. More specifically, it can be verified that all locally
Lipschitz minimal functions with µ(0) ≤ 0 do indeed satisfy
the hypotheses of Theorem 2.

Corollary 1. Any locally Lipschitz continuous function µL :
R→ R with µL(0) ≤ 0 satisfies the hypotheses of Theorem 2
and therefore is a minimal function.

B. Examples

The following examples and anti-examples demonstrate
the utility of the proposed formulation of minimal barrier

functions. We begin with an anti-example that highlights the
importance of considering minimal solutions to differential
inequalities when constructing comparison systems.

Example 1. Consider ẋ = f(x) = −1 for x ∈ R and
let h(x) = x3. Take µ(w) = 3(w1/3)2. Then Lfh(x) =
−µ(h(x)) for all x ∈ R.

Although the function µ satisfies µ(0) ≤ 0, it is not locally
Lipschitz and Corollary 1 does not apply. Moreover, µ does not
satisfy any of the conditions of Theorem 2. Indeed, S = R≥0
is not positively invariant on R.

Further, even though the comparison system ẇ = −µ(w)
with the initial condition w(0) = 0 has a solution w(t) ≡ 0,
it also has the minimal solution w̃(t) = −t3. Considering
x(t), the solution to ẋ = f(x) with x(0) = 0, we see that
h(x(t)) = w̃(t), i.e., the barrier function h evaluated along
solutions of the system ẋ = f(x) just match the minimal
solution of the comparison system.

The following example examines the case where the set S
has corners, but still can be verified using a minimal barrier
function.

Example 2. Consider the system

ẋ1 = −ax1 + bx2 (4)
ẋ2 = cx1 − dx2 (5)

where a, b, c, d ≥ 0. Let a barrier function be h(x) = x1x2 so
that S is the union of the first and third quadrants of the plane.
Lfh(x) = −ax1x2+bx22+cx21−dx1x2 ≥ −ax1x2−dx1x2 =
(−a − d)h(x) so that (3) is satisfied with µ(w) = (a + d)w
and S is positively invariant.

In the next example, it is necessary to consider a non-
Lipschitz minimal function to establish forward invariance
with a given barrier function. Even though the vector field of
the system is Lipschitz, and the barrier function h is smooth,
the resulting dynamics for Lfh, as a function of h, may not
be Lipschitz.

Example 3. Consider ẋ = −|x| for x ∈ R and let

h(x) =

{
exp(−1/x) if x ≥ 0

− exp(1/x) if x < 0
(6)

so that S = {x : h(x) ≥ 0} = R≥0 is indeed invariant. Define
a minimal function candidate

µ(w) =

{
−w ln(w) if 0 ≤ w < 1

w ln(−w) if −1 < w < 0
(7)

and observe that Lfh(x) = −µ(h(x)). We check that µ is a
minimal function. Indeed, µ(h) is continuous with µ(0) = 0
and µ(h) > 0 over D \ {0}. Corresponding to Case 4 in
Theorem 2, we check that the improper integral∫ −a

0

−1/µ(w)dw = − ln(‖ ln(−w)‖)|−a0 (8)

diverges to ∞ for any a ∈ (0, 1). Therefore µ is a valid
minimal function. Observe that µ is not locally Lipschitz at
0. Indeed, it can be established that there exists no locally
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Lipschitz minimal function satisfying (3) since any such
function must be lower bounded by µ constructed above and
be non-positive at the origin. Explicit calculations are shown
in the extended version.

C. Comparing to Zeroing Barrier Functions

In this section, we compare MBFs to zeroing barrier func-
tions (ZBFs) in [20], which use extended class K functions for
the class of comparison functions, and is a major inspiration
for the work in this paper. A function α : R→ R is extended
class K if it is strictly increasing with α(0) = 0. We remark
that if α is an extended class K function, then α is a minimal
function, as guaranteed by Case 2 in Theorem 2.

In [20], the development of ZBFs requires utilizing
Nagumo’s Theorem and therefore requires the assumption that
∂h
∂x does not degenerate to a zero vector on the boundary of
the set. By directly invoking a differential inequality, as in
Proposition 1, we can dispense with this assumption, which is
discussed further in Section III.

However, restricting to extended class K functions imposes
the barrier condition Lfh(x) ≥ −α(h(x)) ≥ 0 for all x ∈ D,
even when h(x) ≤ 0. This requires stability of each level set
{x ∈ D : h(x) = w} for any w < 0. While this robustness is
desirable in some instances, it does not hold for a large class
of systems and sets S. For example, considering the simple
system ẋ = x, it can be shown that there does not exist a class
K function α and a ZBF h(x) such that Lfh(x) ≥ −α(h(x))
holds on all of D = R to verify that S = R≥0 is invariant
(see Example 5 in the extended version for more details).

Moreover, it is not possible to simply restrict the ZBF to
be defined only on {x ∈ D : h(x) ≥ 0} = S. Indeed, this
contradicts the hypotheses in Theorem 1 that requires (3) to
hold for all x ∈ D, and ignoring this requirement can result
in the following scenario.

Example 4. Consider again Example 1, and take

α(w) =

{
3w2/3 if w ≥ 0

−3w2/3 if w < 0
(9)

so that Lfh(x) = −α(h(x)) for all x ∈ S, although notably
the equality does not hold for x ∈ R\S. and thus Theorem 1
is not applicable since it requires (3) to hold for all x ∈ D.
Notice that α is an extended class K function on R and that −α
is a minimal function. While it is tempting to use ẇ = −α(w)
as a comparison system with w(0) = h(x(0)), we obtain the
false conclusion that S is positively invariant.

III. DISCUSSION ON REGULARITY

Arguably, the most common approach for establishing pos-
itive invariance of a set S is to verify, in some appropriate
sense, that the velocity field of the system points inwards
to S at each point on the boundary of S . First formalized
by Nagumo in [4] and independently discovered by others,
there has since been a volume of work dedicated to making
this basic approach precise in various contexts, e.g. [19], [1],
[12]. We consider the important specialization of Nagumo’s

Theorem to the case where S = {x : h(x) ≥ 0} for a smooth
function h : D → R.

For a continuously differentiable function h : D → R for an
open set D ⊆ Rn, λ ∈ R is a regular value of h if ∂h

∂x (x) 6= 0
for all x ∈ {x ∈ D : h(x) = λ}.

We now recall a version of Nagumo’s Theorem, vital to the
construction of barrier functions in [9], [20], etc.

Proposition 2 ( [1, Sec 4.2.1]). Consider the system (1)
under the added condition that solutions are unique, and a
nonempty set S = {x ∈ D : h(x) ≥ 0} for some continuously
differentiable h : D → R. Further assume that 0 is a regular
value of h. Then S is positively invariant if and only if

Lfh(x) ≥ 0 (10)

for all x ∈ {x ∈ D : h(x) = 0}.

Proposition 2 provides a powerful result for establishing
invariance of S provided that 0 is a regular value of h. In this
case, we can equivalently state the condition in (10) as

Lfh(x) ≥ −φ(h(x)) ∀x ∈ D (11)

where φ : R → R is any function with φ(0) ≤ 0. Notice
that 0 being a regular value allows us to discount much of the
structure of µ defined for Theorem 2. However, as shown in
the next theorem, under further mild conditions, the existence
of a locally Lipschitz comparison function is guaranteed.

Theorem 3. Let h : D → R be a twice continuously
differentiable function, assume f in (1) is locally Lipschitz,
and suppose Λδ := {x ∈ D : −δ ≤ h(x) ≤ δ} is compact
for all δ ≥ 0. Further assume that 0 is a regular value of
h. Then there exists a locally Lipschitz function µL such that
µL(0) ≤ 0 and

Lfh(x) ≥ −µL(h(x)) ∀x ∈ D. (12)

Ensuring smoothness properties of the comparison function
is useful in generating constraint-based controllers, which is
further discussed in Section IV.

Moreover, we have the following immediate corollary.

Corollary 2. Given the assumptions in Theorem 3, S = {x ∈
D : h(x) ≥ 0} is positively invariant if and only if h is a
minimal barrier function.

Notice that no regularity assumption is made on h in
Theorem 1. Removal of this assumption is due to the structural
conditions on µ. On the other hand, Corollary 2 shows that
essentially any candidate barrier function h with 0 a regular
value and S being compact has a locally Lipschitz comparison
function. Therefore we can use Theorem 1 without loss of
generality from Proposition 2 for compact sets, and this allows
for considering a significant class of sets S that are not
regular. For example, proving invariance of points, cycles, or
any other lower dimensional manifold is possible with the
theory of minimal barrier functions. In such cases, 0 cannot
be a regular value of the barrier function h because the set
S = {x : h(x) ≥ 0} has measure zero. In addition, Examples
2 and 3 provide other cases that can be considered with MBFs
for which 0 is not a regular value.
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IV. MINIMAL CONTROL BARRIER FUNCTIONS

A major benefit for using differential inequalities defined
over the whole domain rather than just a boundary-type
condition is that it is more amenable to controlled invariance.
In constraint-based control, it is desirable to have constraints
on the controller that are applied at every point on the
domain rather than just a condition on the boundary of S.
If a boundary-type condition is directly applied for controlled
invariance, the constraints are only active on a measure zero
set, which may introduce discontinuities in the controller and
render it sensitive to model and sensor noise.

Extensions of minimal barrier functions to control formu-
lations is direct. In this section, we instead consider a control
affine system of the form

ẋ = f(x) + g(x)k(x) (13)

with state x ∈ D, where D ⊆ Rn is assumed to be an open
set, a feedback controller k : D → Rm, and f : D → Rn and
g : D → Rn×m are both assumed to be continuous. We also
assume that k(x) ∈ U(x) for all x ∈ D, where U : D ⇒ Rm
is a point-to-set map defining state-based input constraints.
Point-to-set maps are denoted with ⇒ for ease of notation.
Further define U as the viable set of continuous controllers

U = {k continuous : k(x) ∈ U(x) ∀x ∈ D}. (14)

In the rest of the section, we assume U(x) defines a set of
state-based affine input constraints of the form

U(x) = {u ∈ Rm : A(x)u � b(x)} (15)

where A : Rn → Rk×m and b : Rn → Rk are both assumed
to be continuous in x and A(x)iu ≤ b(x)i holds elementwise.
General convex input constraints with more detailed proofs are
treated in the extended version.

A set S ⊆ D is positively controlled invariant if there
exists a continuous controller k within the possible class of
controllers U such that S is positively invariant with respect
to the closed loop system ẋ = f(x) + g(x)k(x) [1, Def 4.4].

We now state the corresponding definition of minimal
barrier functions for control affine systems.

Definition 3. For the control affine system in (13), a continu-
ously differentiable function h : D → R is a minimal control
barrier function (MCBF) if there exists a minimal function µ
such that for all x ∈ D,

sup
u∈U(x)

[Lfh(x) + Lgh(x)u] ≥ −µ(h(x)) (16)

where Lfh(x) = ∂h
∂xf(x) and Lgh(x) = ∂h

∂xg(x) denote
corresponding Lie derivatives.

The set of viable controls is described by the point-to-set
map K : D ⇒ Rm given by

K(x) = {u ∈ U(x) : Lfh(x) + Lgh(x)u ≥ −µ(h(x))}.
(17)

Verification of the existence of controllers with certain
properties can be treated as a selection problem, which has
been extensively studied in topology [21]. Specifically, the
feedback controller k is a selection of K if k(x) ∈ K(x)

for all x ∈ D. Note that for a controller k to render the set S
invariant, it must necessarily be a selection from the point-to-
set map K.

Additionally, the controller k must come from the set of
continuous viable controllers U in order to guarantee existence
of solutions for the closed loop system. Furthermore, continu-
ity of k is also necessary to apply the differential inequality in
Proposition 1 and to satisfy the proposed definition of positive
controlled invariance.

Theorem 4. Given the control affine system (13), consider a
nonempty S = {x ∈ D : h(x) ≥ 0} for some continuously
differentiable h : D → R. If h is a MCBF as in Definition 3
and there exists a continuous controller k ∈ U such that k is
a selection of K, then S is positively controlled invariant.

To guarantee existence of a continuous controller k, K being
nonempty is not sufficient, and additional conditions on K
must be assumed. The next theorem gives sufficient conditions
on the existence of a continuous controller k that is a selection
of K and therefore can be used to satisfy Theorem 4 to render
S positively invariant.

With U characterized as in (15), we also denote the strict
interior KI : D ⇒ Rm as

KI(x) = {u ∈ Rm : A(x)u ≺ b(x)

Lfh(x) + Lgh(x)u > −µ(h(x))}. (18)

where the input constraints are described with a strict inequal-
ity.

Proposition 3. Given U is defined as in (15), if KI(x) as
defined in (18) is nonempty for each x, then there exists a
continuous controller k that is a selection of K.

Proposition 3 is based on the well known Michael’s se-
lection theorem [21]. Proposition 3 considers the converse
direction of Theorem 4, namely what conditions on h are
necessary for there to exist a controller to render S invariant.

Usually, a controller k is selected from K based on some
optimality criteria. A common approach for safety based con-
trol is to first obtain a nominal controller knom : D → Rm that
is not verified for either guaranteeing invariance or satisfying
input constraints. The nominal controller is then used within
a quadratic optimization program (QP) in which k̂ is selected
from K, while minimizing the distance from knom(x) at each
x, that is,

k̂(x) = argmin
u∈K(x)

‖u− knom(x)‖2 (19)

Synthesizing controllers in this fashion can allow for real-
time control synthesis that satisfies both performance objec-
tives and safety constraints. For a review of applications of
this framework, see [20].

Properties of the controller k̂ can be analyzed as a selection
of K, and conditions on K can be formulated to guarantee
continuity of k̂. In [22] and [23], Lipschitz continuity of
controllers for quadratic programs regarding a minimum norm
controller of knom ≡ 0 for all time was explored. In [23],
conditions for pointwise continuity were given, but in this
paper, we show continuity of the controller over the whole
domain.
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The next theorem gives practical conditions on when the
quadratic program in (19) gives a continuous controller.

Theorem 5. Given U is defined as in (15) with
⋃
x∈D U(x)

being compact and knom is continuous in x, if KI(x) as
defined in (18) is nonempty for each x, the controller k̂ defined
by the quadratic program in (19) is continuous.

We first claim that K is upper (u.s.c) and lower semicon-
tinuous (l.s.c) and thus a continuous point-to-set map (see
section III in the extended version for definitions). Let K(x)
be written as the inequality constraint G(x, u) ≤ 0 with
G(x, u) = [A(x);−Lgh(x)]u − [b(x);−µ(h(x)) − Lfh(x)].
As G is continuous in both x and u, K is a closed map [24,
Thm 10] and since K is assumed to map into the compact
set

⋃
x∈D U(x), K is u.s.c [25, Sec 6.1 Thm 7]. Furthermore,

KI(x) is assumed to be nonempty for each x and K is affine
in u for each fixed x. Therefore, the closure of KI(x) = K(x)
[24] and then K is l.s.c [24, Thm 13] as well, and the claim
is shown.

The induced point-to-set map k′nom(x) = {knom(x)} is
continuous by assumption of continuity of knom. Thus, the
product map K × k′nom is continuous [25, Sec 6.4 Thm 4].
Since K(x) × k′nom(x) ⊂ Rm × Rm is convex and compact
and ||u− knom(x)||2 is strictly convex in u for a fixed x,
there is a unique minimizer of K × k′nom for each x. So
argminu∈K(x) ||u− knom(x)||2 × knom(x) is a continuous
function [25, Sec 6.3 Max Thm ]. Projecting down to the first
argument preserves continuity, and therefore, by definition, k̂
is continuous.

If our viable control set K(x) is compact and strictly feasi-
ble everywhere, Theorem 5 ensures that the optimal controller
k̂ is continuous. Since k̂(x) ∈ K(x) for all x ∈ D as well, k̂ is
applicable to Theorem 4, guaranteeing S is positively invariant
with respect to the closed loop system ẋ = f(x) + g(x)k̂(x).

V. CONCLUSION

This paper presents minimal barrier functions, which stem
from scalar differential inequalities, to give the minimum
assumptions for utilizing a continuously differentiable barrier
function. We have characterized a class of comparison systems
viable for verifying invariance of sets defined via a barrier
function inequality and have proposed equivalent computable
conditions. By formulating necessary and sufficient condi-
tions for minimal barrier functions, the relation to Nagumo’s
theorem is also elucidated. We then directly extend minimal
barrier functions to control formulations and propose relevant
conditions for the existence of valid continuous controllers. By
characterizing this relationship with the classical approach of
verifying set invariance and rooting the proposed formulation
directly in differential inequalities, this paper aims to provide a
theoretical foundation for minimal barrier functions. Possible
extensions include generalizing minimal barrier functions to
hybrid systems.
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