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ABSTRACT

We present a transmission spectrum for the Neptune-sized exoplanet HD 106315 c from optical to

infrared wavelengths based on transit observations from the Hubble Space Telescope/Wide Field Cam-

era 3, K2, and Spitzer. The spectrum shows tentative evidence for a water absorption feature in the

1.1 − 1.7µm wavelength range with a small amplitude of 30 ppm (corresponding to just 0.8 ± 0.04

atmospheric scale heights). Based on an atmospheric retrieval analysis, the presence of water vapor is

tentatively favored with a Bayes factor of 1.7 - 2.6 (depending on prior assumptions). The spectrum

is most consistent with either enhanced metallicity, high altitude condensates, or both. Cloud-free

solar composition atmospheres are ruled out at > 5σ confidence. We compare the spectrum to grids of

cloudy and hazy forward models and find that the spectrum is fit well by models with moderate cloud

lofting or haze formation efficiency, over a wide range of metallicities (1 − 100× solar). We combine
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the constraints on the envelope composition with an interior structure model and estimate that the

core mass fraction is & 0.3. With a bulk composition reminiscent of that of Neptune and an orbital

distance of 0.15 AU, HD 106315 c hints that planets may form out of broadly similar material and

arrive at vastly different orbits later in their evolution.

Keywords: Exoplanet atmospheres — Extrasolar ice giants

1. INTRODUCTION

The origins of Uranus and Neptune remain mysteri-

ous. Based on current data, it is not known if they

formed by core accretion or gravitational instability,

whether they grew in their current locations or un-

derwent migration, or how long it took them to form

(Atreya et al. 2020, and references therein). One of the

challenges in modeling these planets’ origin is that their

bulk composition is poorly constrained. Uranus and

Neptune are so cold that many of the dominant carbon,

nitrogen, and oxygen-bearing molecules have condensed

out of the observable atmosphere, leaving only methane

accessible by remote observation (Helled et al. 2020).

There are calls for a space mission to explore one of the

ice giants in situ and measure their atmospheric abun-

dances directly with a probe; however, such a mission is

over a decade away (Simon et al. 2020).

Meanwhile the search for extrasolar planets has

revealed an abundance of Neptune-size worlds (e.g.

Coughlin et al. 2016). Many of these have short or-

bital periods and correspondingly high equilibrium tem-

peratures (up to 2000 K), meaning that major volatile

species are expected to be in the gas phase in the ob-

servable part of the atmosphere (Moses et al. 2013). At-

mosphere characterization of these hotter exo-Neptunes

provides an opportunity to determine their chemical

compositions, well in advance of in situ measurements

of the Solar System ice giants.

Precise near-infrared transmission spectra are avail-

able for fewer than a dozen exoplanets in the Neptune-

mass range, 10 − 40M⊕ (Crossfield & Kreidberg 2017;

Kreidberg et al. 2018b; Spake et al. 2018; Mansfield et al.

2018; Benneke et al. 2019a,b; Libby-Roberts et al. 2020;

Guo et al. 2020; Chachan et al. 2019). Planets of this

size are expected to have modest H/He envelopes (& 1%

by mass), with a diversity of atmospheric metal enrich-

ment (e.g. Fortney et al. 2013; Wolfgang & Lopez 2015).

The transmission spectra measured to date have a wide

range of properties that match the diversity expected

from theoretical models. Some planets appear to have

very high metallicity envelopes (e.g. the ∼ 1000× solar

composition inferred for GJ 436b; Morley et al. 2017).

Others have lower metallicity, more akin to Jupiter’s

< 10× solar composition (HAT-P-26b; Wakeford et al.

2017). The planets also have a wide range of cloud

and haze properties, from cloud-free to very high al-

titude condensates, which complicate the interpretation

of the measured spectra (Kreidberg et al. 2014; Cross-

field & Kreidberg 2017). To fully explore the diversity

of the exo-Neptune population and identify cloud-free

atmospheres, a larger sample size is needed, which is

the goal of the ongoing large HST program GO 15333

(PIs I. Crossfield and L. Kreidberg). In total this pro-

gram will obtain transmission spectra for five additional

Neptune-size exoplanets, including the subject of this

work, HD 106315 c.

First observed by the K2 mission (Crossfield et al.

2017; Rodriguez et al. 2017), HD 106315 c has a radius

of 4.0 ± 0.4R⊕ and a mass of 15.2 ± 3.7R⊕ (Barros

et al. 2017)1. The planet has a 21.06 day orbit around

its F5-type host star, and an equilibrium temperature of

870 ± 20 K (assuming full heat redistribution and zero

Bond albedo). Thanks to the bright host (H magnitude

= 8.0), HD 106315 c is one of the most accessible candi-

dates for atmosphere characterization with transmission

spectroscopy, with a Transmission Spectroscopy Metric

equal to 119 (this metric is a proxy for the expected

signal-to-noise of the transmission spectrum; Kempton

et al. 2018). Compared to other exo-Neptunes with pre-

cise spectra, HD 106315 c has a longer period and a more

massive host star (Crossfield & Kreidberg 2017). It

is also part of a multi-planet system, with an interior

2.6R⊕ planet orbiting the star every 9.6 days.

2. OBSERVATIONS

We observed four transits of HD 106315 c with the

Wide Field Camera 3 instrument on the Hubble Space

Telescope (HST/WFC3) as part of Program GO 15333

(Co-PIs: I. Crossfield and L. Kreidberg). The dates

of the observations were 3 December 2018, 21-22 De-

cember 2018, 2 February 2019, and 21 November 2019.

There was also an observation on 15 June 2018 that

failed due to lost guiding. Each transit observation con-

sists of time series exposures over six continuous HST

orbits. The first exposure of each orbit was a direct im-

1 We note that the planet mass and radius are being revised in a
companion paper. We use the updated values in our analysis and
will add them to the arXiv version of this paper upon submission
of Kosiarek et al., in prep.
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age with the F126N filter. Subsequent exposures used

the G141 grism, which covers the wavelength range from

1.1 − 1.7µm. The exposures used the SPARS25, NSAMP

= 8 readout mode which has a total integration time of

138.4 s. The observations used spatial scanning mode,

which spreads the light in the cross-dispersion direction

during the exposure, enabling longer integration times

before saturation (Deming et al. 2013). The scan rate

was 0.213”/sec, yielding a total scan height of 31” (238

pixels). We observed 14 exposures per orbit, for an ob-

serving efficiency of 73%.

A single transit was also observed by the Spitzer Space

Telescope (Werner et al. 2004; Fazio et al. 2004) with

the IRAC2 4.5 µm photometric channel on 2017 April

19 - 20 as part of Program 13052 (PI: M. Werner). The

observations used PCRS peak-up mode, which positions

the target precisely on a pixel with minimal sensitivity

variations2. The observation began with a 30-minute

stare to allow the spacecraft to thermally settle, followed

by 32168 s (8.9 hours) of science data with an exposure

time of 0.4 seconds. Two transits were also observed

by K2 (previously described in Crossfield & Kreidberg

2017; Rodriguez et al. 2017).

3. DATA REDUCTION AND ANALYSIS

3.1. HST/WFC3

We used a custom data reduction pipeline to pro-

cess the HST transit observations (described in detail

in Kreidberg et al. 2018b). The starting point for our

reduction was the ima data product provided by the

Space Telescope Science Institute. These images have

an intermediate level of processing, with corrections ap-

plied for dark current, linearity, and flat fielding. To

extract spectra from the images, we used the optimal

extraction routine of (Horne 1986). This algorithm it-

eratively masks bad pixels in the image, and provides

a convenient method to reject cosmic rays from spatial

scan data. To estimate the background, we identified a

region of pixels that was not contaminated by flux from

the target or any nearby stars (rows 10−70 and columns

400− 500) and calculated the median count rate in this

region. We subtracted the background and extracted

the spectra from each up-the-ramp sample separately,

and summed them to produce a final spectrum from the

exposure. To account for spectral drift, we interpolated

each spectrum to the wavelength scale of the first expo-

sure of the first visit. We generated spectroscopic light

curves by binning the spectra into 22 wavelength chan-

2 https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
pcrs obs.shtml

nels over the wavelength range 1.125 − 1.65µm. This

binning corresponds to roughly five pixels in the spec-

tral direction. The binning is about twice as coarse as

the native resolution of the grism, and was chosen to

average over variations in sensitivity between individual

pixels. Figure 1 shows the band integrated light curve,

the background counts, and the spectral shifts for each

visit.

We fit the light curves with a joint model of the tran-

sit and the instrument systematic trends. In agreement

with previous work, we found that the first orbit of every

visit and the first exposure in each orbit were strongly

affected by a ramp-like systematic (caused by charge

traps filling up in the detector; Zhou et al. 2017). This

systematic is visible in the raw data, shown in Figure 1.

Following past studies, we removed the first orbit of the

visit and the first exposure of the remaining orbits in our

analysis (e.g. Kreidberg et al. 2014). The trimmed data

had three full orbits per visit of out-of-transit baseline,

which is sufficient to fit for visit-long trends.

To model the transit signal, we used the batman pack-

age (Kreidberg 2015). For the broadband light curve fit,

the free parameters for the transit model were the ratio

of planet to stellar radius Rp/Rs, the time of central

transit Tc, the orbital inclination i, the ratio of semi-

major axis to stellar radius a/Rs. We fixed the eccen-

tricity to zero. We ran an initial fit with free parameters

for a linear limb darkening coefficient, and found excel-

lent agreement with predictions from a Kurucz ATLAS9

stellar model with Teff = 6250K, log g = 4.5 (cgs), and

[Fe/H]=−0.2 (Castelli & Kurucz 2003). We therefore

fixed the limb darkening on the predicted quadratic co-

efficients from the model for the remainder of the analy-

sis3. For the spectroscopic channels, we fixed Tc, a/Rs,

and i on the best-fit values from the broadband light

curve.

To model systematic noise from the instrument, we

multiplied the model transit light curve by the analytic

model-ramp function, previously used for WFC3 data

analysis (Equation 3; Kreidberg et al. 2018b). Briefly,

this function fits an exponential ramp to each orbit, and

a visit-long trend. For the HD 106315 c data, there was

no significant improvement to the light curve fit for a

quadratic term in the visit-long trend, so we used a lin-

ear term only. The light curves and best-fit models are

shown in Figure 2. To test for correlated noise in the

light curve, we binned the data in time over a range of

bin sizes from 2 − 20 points and calculated the rms for

3 calculated with the ExoCTK Limb Darkening Calculator; https:
//exoctk.stsci.edu/

https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/pcrs_obs.shtml
https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/pcrs_obs.shtml
https://exoctk.stsci.edu/
https://exoctk.stsci.edu/
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Figure 1. Diagnostic information from the HST data reduction. From top to bottom, the rows show the band-integrated raw
flux, the background counts, and the wavelength shift of the spectrum relative to the first exposure of the first visit. From left
to right, the columns show the four HST visits in chronological order. The open circles in the raw flux correspond to data points
that we did not include in our light curve fits due to larger amplitude instrumental ramps. The vertical offset in the top row is
due to spatial scanning, which alternates between forward and reverse directions on the detector. The total counts are higher
when the detector is read out in the same direction as the spatial scan.

each bin size (see Figure 3). The rms decreases with the

square root of the number of points per bin, indicating

that the noise is uncorrelated in time.

We used the dynesty package to estimate parameter

uncertainties for our model (Speagle 2020). The pack-

age uses dynamic nested sampling to evaluate constant

likelihood contours over the full prior volume. To en-

sure that we did not underestimate the uncertainties,

we rescaled the per point errors on the data such that

the reduced χ2 of the best fit model was unity. The error

bars increased by a median (mean) of 9% (12%). The

dynesty runs were halted when the remaining contri-

bution to the evidence was estimated to be below 0.01

of the total. The resulting median and 68% credible

intervals for the transit depths are listed in Table 1.

3.1.1. Independent Analysis of the WFC3 Data

We also carried out an independent data reduc-

tion and analysis. The data were reduced follow-

ing the methodology previously described by Evans

et al. (2016, 2017). Briefly, the spectra are extracted

from each ima frame by summing the difference of

successive up-the-ramp samples while masking cross-

dispersion regions away from the target to reject cosmic

rays and nearby contaminating sources. A wavelength-

independent background value was subtracted from each

spectrum by taking the median pixel value in a 30×250

pixel box away from the target. Broadband light curves

were produced for each visit by summing each spec-

trum along the full dispersion axis. The broadband light

curves were fit jointly, with the systematics and transit

mid-times allowed to vary separately, and Rp/Rs shared

across visits. Other transit parameters such as a/Rs
and i were fixed to the median values reported in Cross-

field et al. (2017). For the systematics, we adopted the

double-exponential ramp treatment described in de Wit

et al. (2018) and also allowed the white noise to vary as

a free parameter, implemented as an increase above the

formal photon noise value.

Following the broadband light curve fit, we pro-

duced spectroscopic light curves in 14 channels span-

ning the 1.122 − 1.642µm wavelength range, following

the methodology described in Evans et al. (2016), which

is based on an original implementation of Deming et al.

(2013). This procedure effectively removes the common-

mode component of the systematics in each wavelength

channel, which is dominated by the ramp systematic.

As such, for our spectroscopic light curve fits, a simple

linear time trend and variable white noise level were ad-

equate for modeling the systematics. We also allowed

Rp/Rs to vary, while holding all other transit parame-

ters fixed to the white light curve values. In both the

white light curve and spectroscopic light curve fits, a

quadratic limb darkening law was adopted with coeffi-

cients held fixed to values determined by fitting the limb

darkened profiles of an ATLAS9 stellar model with the

same parameters listed in 3.1.

The resulting transmission spectrum is compared to

the first analysis in Figure 4. The two spectra agree

to well within 1σ, and the uncertainties on the transit

depths are consistent after accounting for the difference

in wavelength bin size. The model-ramp fit has a me-
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Wavelength (Rp/Rs)2 u1 u2

(µm) (ppm) (fixed) (fixed)

0.42− 0.9 1030± 26 0.365 0.244

1.125− 1.150 1014± 26 0.180 0.214

1.150− 1.175 995± 26 0.177 0.214

1.175− 1.200 1022± 23 0.171 0.214

1.200− 1.225 1023± 23 0.169 0.215

1.225− 1.250 1006± 22 0.166 0.215

1.250− 1.275 976± 23 0.162 0.215

1.275− 1.300 999± 23 0.155 0.217

1.300− 1.325 995± 21 0.132 0.230

1.325− 1.350 1004± 23 0.148 0.218

1.350− 1.375 1051± 23 0.145 0.216

1.375− 1.400 1011± 23 0.140 0.217

1.400− 1.425 1018± 24 0.136 0.216

1.425− 1.450 1055± 24 0.132 0.215

1.450− 1.475 1048± 23 0.129 0.213

1.475− 1.500 1021± 24 0.123 0.214

1.500− 1.525 1015± 25 0.116 0.214

1.525− 1.550 1009± 23 0.112 0.212

1.550− 1.575 1040± 27 0.108 0.208

1.575− 1.600 997± 33 0.102 0.205

1.600− 1.625 970± 32 0.096 0.204

1.625− 1.650 980± 38 0.091 0.201

4.0− 5.0 1070± 72 0.079 0.089

Table 1. Transit depths and limb darkening coefficients for
the K2, HST, and Spitzer data. The transit depth values
are the median and 68% credible interval from the poste-
rior distributions. The limb darkening parameters are pre-
calculated from stellar models and fixed in the analysis.

dian uncertainty on the transit depth of 23 ppm (for

0.025µm bins), and the common-mode fit has a median

uncertainty of 17 ppm (for 0.037µm bins). Given the

good agreement between the two independent analyses,

we use the model-ramp results (listed in Table 1) for the

remainder of the analysis.

3.2. Spitzer

In addition to the HST and K2 data, we also analyzed

a single transit of HD 106315 c observed with Spitzer in

the 4.5 µm bandpass. We follow a similar approach

as the one described in Berardo et al. (2019), which

detrends the data using the Pixel Level Decorrelation

method outlined in Deming et al. (2015). We first ap-

plied a median filter to each pixel in the image and

calculated a background level for each frame by tak-

ing the median of the flux in an annulus centered on

the point spread function. We estimated the centroid of

each frame by fitting a two dimensional Gaussian to the
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Figure 4. HST/WFC3 transmission spectra from two inde-
pendent pipelines. The black circles are from the model-ramp
analysis used by L. Kreidberg, whereas the red squares
come from the common-mode error correction from T. Mikal-
Evans.

image, and obtained a light curve using a fixed radius

aperture.

We modeled systematics in the light curve by weight-

ing the nine brightest pixels individually as well as fit-

ting for a quadratic time ramp. We then chose the com-

bination of pixel coefficients, aperture size, and time-

series binning that resulted in the smallest root mean

square (rms) deviation. The optimal aperture radius

was found to be 2.4 pixels. We used an MCMC sampler

to estimate uncertainties, and fit the systematic model

simultaneously with a transit model from batman (Krei-

dberg 2015). We kept the period, inclination, and dis-

tance a/R? fixed to the values 21.0564 days, 88.501◦,

and 26.769, respectively (based on the HST white light

curve fit), and allowed the depth and transit center to

vary. We also left the uncertainty of the data points as

a free parameter, which we found converged to the rms
scatter of the raw light curve. We also held fixed the

quadratic limb darkening parameters, which were also

estimated from a Kurucz ATLAS9 stellar model. The

transit light curve and best fit model are shown in Fig-

ure 5, and the fit results are summarized in Table 2.

3.3. K2

To provide a broadband, optical-wavelength transit

depth for comparison with our infrared observations,

we reanalyzed the 30-minute-cadence K2 photometry of

HD 106315. Although several analyses of these K2 data

have already been published (Crossfield et al. 2017; Ro-

driguez et al. 2017), our reanalysis takes advantage of

the tighter constraints on orbital parameters (a/Rs and

i) provided by the higher-cadence Spitzer and HST ob-

servations. Our analysis used largely the same approach

described by (Crossfield et al. 2017), but with a few
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Figure 5. The light curve of HD 106315 c observed with the 4.5 µm filter of Spitzer. The left panel shows the best fit transit
model to the binned light curve after removing detector systematics. The blue points with error bars are the data points binned
further for visual clarity. The right hand panel shows the residuals of the best fit model from the data.

changes. First, we used a different set of K2 photom-

etry4 which had a substantially lower rms. Second, we

fixed two key orbital parameters to the following values:

a/Rs = 26.769, and i = 88.501◦. Third, in contrast with

the analysis of Crossfield et al. (2017) we allowed no dilu-

tion that would potentially decrease the observed transit

depth (and so bias the analysis toward larger Rp/Rs).

We neglected dilution because high-resolution imaging

and spectroscopy show no nearby stars within 5 magni-

tudes of HD 106315 at distances < 0.1 arcsec (Kosiarek

et al., in prep). Finally, we held the quadratic limb

darkening parameters fixed to the values predicted by

an ATLAS9 stellar model (u1 = 0.365 and u2 = 0.244).

The transit parameters derived from this analysis are

listed in Table 2.

3.4. Potential Impact of Star Spots

Unocculted star spots and plages can significantly con-

taminate exoplanet transmission spectra (Pont et al.

2013; Rackham et al. 2018, 2019). In general, F-stars

like HD 106315 have lower spot covering fractions than

stars of later spectral type (Rackham et al. 2019). The

K2 light curve for HD 106315 shows variability with am-

plitude 0.1% over a timescale of 75 days, a typical value

for mid-F stars (Rodriguez et al. 2017). This amplitude

corresponds to a covering fraction of 0.1 ± 0.1%. The

expected amplitude of the stellar contamination spec-

trum is 0.0001 − 0.0002× the transit depth. For the

transit depth of HD 106315 c (1000 ppm), the expected

stellar contamination is 0.1 − 0.2 parts per million — a

negligible contribution.

4. ATMOSPHERIC RETRIEVAL

4 https://www.cfa.harvard.edu/∼avanderb/k2.html

We carried out two independent retrieval analyses to

determine the molecular abundances and cloud prop-

erties of the HD 106315 c’s atmosphere. We used the

open-source software package petitRADTRANS (pRT)

(Mollière et al. 2019), as well as a retrieval based on

the SCARLET framework and (Benneke & Seager 2013;

Benneke et al. 2019b). Both retrieval analyses used a

Bayesian framework to compare the measured spectrum

to one-dimensional models with variable atmospheric

properties as described in this section. The analyses

consistently provide tentative evidence for water vapor

based on Bayesian model comparison of retrieval models

(Benneke & Seager 2013).

4.1. petitRADTRANS retrieval analysis

We used the open-source software package

petitRADTRANS (pRT) (Mollière et al. 2019), which is a

fast spectral synthesis tool for exoplanet atmospheres.

We connected pRT to the PyMultiNest tool (Buchner
et al. 2014), which is a Python wrapper of the Multi-

Nest (Feroz & Hobson 2008; Feroz et al. 2009, 2013)

implementation of nested sampling (Skilling 2004).

The atmosphere was modeled with the vertically con-

stant temperature and absorber mass fractions of H2O,

CH4, CO2, CO and N2 as free parameters. We also

included the cloud top pressure of a gray cloud deck

as a free parameter. The atmospheric mean molecular

weight (MMW) was calculated from the parameterized

absorber abundances, assuming that the remaining mass

is contributed by H2 and He, with a H2:He mass ratio of

3:1. Our full model included the line opacities of H2O,

CH4, CO2 and CO, as well as the Rayleigh scattering

cross-sections of these species, in addition to those of H2,

He and N2. N2 may thus be thought of as a proxy for

(mostly) invisible species in the atmosphere that can in-

crease its MMW. Instead of retrieving a reference radius

https://www.cfa.harvard.edu/~avanderb/k2.html
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Table 2. K2/ Spitzer Transit Parameters

Parameter Units Value (K2) Value (Spitzer)

Held fixed:

Rs/a – 0.0373566 0.0373566

i deg 88.50109 88.50109

u1 – 0.365 0.079

u2 – 0.244 0.089

Derived values:

T0 BJDTDB − 2454833 2778.1320+0.0016
−0.0017 3030.8079 ± 0.0012

P d 21.0564 ± 0.0024 21.0564 (fixed)

Rp/Rs % 3.208 ± 0.041 3.271 ± 0.11

(Rp/Rs)2 ppm 1030 ± 26 1070 ± 75

Table 3. Bayesian Evidence for Atmospheric Retrievals with
petitRADTRANS

Retrieval model ∆ ln(Z) Bayes factor for

molecule present

no H2O −0.517± 0.078 1.68

no CO2 0.347± 0.085 0.71

no CO 0.490± 0.122 0.61

no CH4 0.482± 0.040 0.62

no N2 0.766± 0.237 0.46

no cloud −0.022± 0.067 1.02

at a given pressure we retrieved a reference pressure P0

at a given radius, where we made sure that the fixed ref-

erence radius is chosen at values appropriate for placing

the retrieved reference pressure values within the atmo-

spheric pressure domain. We placed log-uniform priors

on the absorber mass fractions of H2O, CH4, CO2, CO

and N2 between 10−10 and 1, requiring that the sum

of all mass fractions is below unity. The temperature

was allowed to vary between 400 and 1000 K. The cloud

and reference pressure could be placed at any location

within the atmospheric pressure domain, imposing a log-

uniform prior. However, we note that the posterior dis-

tribution for the water abundance (which is the only

species we detect tentatively) is sensitive to the choice

of prior bounds, particularly if regions are explored that

do not produce any difference in the model spectrum

(for example, very deep clouds). We additionally tested

retrieving a scattering haze (κhaze = κ0[λ/λ0]γ), a cloud

patchiness parameter (mixing clear and cloudy termina-

tors), and the planet’s gravity within measurement un-

certainties, but none of these tests significantly changed

our results.

In order to test how reliably water can be detected

in our spectrum we followed the approach introduced

in Benneke & Seager (2013). Our full model retrieved

the abundance of all absorbers listed above. Then we

Table 4. Bayesian Evidence for SCARLET Atmospheric
Retrievals

Retrieval model ∆ ln(Z) Bayes factor for

molecule present

no H2O +0.961± 0.010 2.61 (1.9σ)

no CO2 +0.010± 0.028 1.01

no CO +0.022± 0.028 1.02

no CH4 −0.382± 0.026 0.68

no N2 −0.020± 0.028 0.98

no clouds +0.661± 0.038 1.94

iteratively removed one absorber at a time and re-ran

the retrieval. Comparing the evidences between the full

model and the model lacking a given species allows to

assess whether the observation is in favor of that species

being included in the model. The retrieved atmospheric

properties for the full model are shown in Figure 6. In

addition to the ”full retrieval model”, which includes all

five molecules (H2O, CH4, CO2, CO and N2), we ran

five additional retrieval models, each with one molec-

ular species removed at a time. This approach of re-
moving one molecular species from full model at a time

enables us to unambiguously check for each individually

molecule and captures any ambiguity that may be in-

troduced by overlapping absorption features (Benneke

& Seager 2013).

The resulting evidences Z are listed in Table 3. The

Bayes factor is the ratio of evidences. Bayes factors

greater than 100 are considered decisive, 10 − 100 is

strong, 3.2−10 is substantial, and below 3.2 is insignifi-

cant (Kass & Raftery 1995). None of the tested species is

substantially favored to be included in our model. How-

ever, the full model is slightly favored when compared to

a model that removed H2O, with a Bayes factor of 1.7.

The fact that water is the only molecule that can lead to

noticeable differences in the fit is not surprising, since

WFC3 spectra are predominantly sensitive to absorp-
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Figure 6. The retrieved atmospheric properties for the full retrieval with petitRADTRANS. The panels show the posterior
distribution of parameters from the nested sampling run. Darker shading corresponds to higher posterior probability. The
diagonal shows a 1-dimensional histogram for each parameter, with dotted lines denoting the median and 1σ credible interval.
The molecular abundances are the logarithm (base 10) of their volume mixing ratio. For reference, a solar composition gas at
1 mbar pressure and 800 K has nH2O = −3.65, nCO2 = −6.32, nCO = −3.37, nCH4 = −4.43 and nN2 = −4.23.

tion from H2O. Higher precision measurements of the

transmission spectrum are needed to uniquely identify

absorbing species in the atmosphere of HD 106315 c.

The retrieved spectrum is shown in Figure 7. The am-

plitude of spectral features in the best fit model is about

30 ppm (7× smaller than that expected for a solar com-

position, cloud-free atmosphere). This observed peak-

to-trough amplitude corresponds to 0.8 ± 0.04 H2/He

scale heights (assuming µ = 2.3 atomic mass units,

T = 800 K, and g = 6.0 m/s2). In general, to pro-

duce features of this amplitude, models have either (1)

enhanced mean molecular weight (which decreases the

atmospheric scale height and shrinks the spectral fea-

tures), (2) high altitude clouds, which truncates the

spectral feature at the cloud deck altitude, or (3) both

of the above (Benneke & Seager 2013). In the case
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Figure 7. The transmission spectrum of HD 106315 c (points with 1σ uncertainties) compared to retrieved spectra from the
FULL model (teal shading) with petitRADTRANS. The H2/He atmospheric scale height is indicated on the right y-axis,
assuming a solar composition atmosphere at the planet’s equilibrium temperature (the true scale height is likely smaller, due
to enhanced metallicity and/or lower temperature). The tentative detection of water absorption is driven by the small increase
in transit depth near 1.4µm.

of HD 106315 c, the retrieval prefers scenarios (2) and

(3), with the highest posterior probability for moder-

ate cloud coverage. A broad range of H2O abundances

are consistent with the data (3 × 10−4 − 290× solar

at 1σ). The “solar” water abundance corresponds to

the chemical equilibrium water volume mixing ratio for

a solar composition gas at 1 mbar pressure and 800

K (2.2 × 10−4). The cloud-top pressure is between

Pcloud = 0.04−130 mbar (at 1 σ). There is some degen-

eracy between nH2O and Pcloud, because higher water

abundance pushes the photosphere to lower pressures.

There is also a tail of probability towards water-rich

solutions with deep clouds (below the observable pho-

tosphere). Very high water abundances cannot be ruled

out (nH2O < 2100× solar at 2σ confidence, nH2O <

4200× solar at 3σ).

4.2. SCARLET retrieval analysis

As an independent check of the results from pe-

titRADTRANS, we also interpreted the transmission

spectrum with the SCARLET atmospheric retrieval

framework (e.g., Benneke & Seager 2012, 2013; Krei-

dberg et al. 2014; Knutson et al. 2014; Benneke 2015;

Benneke et al. 2019a,b; Wong et al. 2020). Employing

SCARLET’s free molecular composition mode we de-

fined the mole fractions of H2O, CH4, CO2, CO and

N2 as free parameters and assumed a well-mixed at-

mosphere. The remainder of the atmosphere gas was

assumed to be composed of H2 and He in solar abun-

dance ratio. We included a gray cloud deck using a free

parameter describing the cloud top pressure, and an ad-

ditional free parameter to capture our prior ignorance of

the temperature in the photosphere of HD 106315 c near

the terminator.

To evaluate the likelihood for a particular set of at-

mospheric parameters, the SCARLET forward model

in free molecular composition mode computes the hy-

drostatic equilibrium and line-by-line radiative transfer.

We consider the latest line opacities of H2O, CO, and

CO2 from HiTemp (Rothman et al. 1998) and CH4 from

ExoMol (Tennyson et al. 2016), as well as the collision-

induced absorption of H2 and He. We employed log-

uniform priors between 10−10 and 10−0.5 = 31%, but
required that the sum of all mass fractions is below unity.

We employed log-uniform priors for the cloud top pres-

sures 10−3 and 107 Pa. We used a uniform prior on

the photospheric temperature between 620K and 1150K

(70–130% of the equilibrium temperature).

SCARLET then determined the posterior constraints

by combining the SCARLET atmospheric forward

model with nested sampling (Skilling 2004). We ran

the analyses well beyond formal convergence to obtain

smooth posterior distribution and capture the contours

of the wide parameter space in agreement with the trans-

mission spectrum of HD 106315 c. As in Section 4.1, we

evaluated the presence of individual molecular species

in the atmosphere of HD 106315 c following the strategy

outlined in (Benneke & Seager 2013).

The retrieval results are shown in Figure 8. Our anal-

ysis reveals that a Bayes factor of 2.6 in favor of the pres-



12 Kreidberg et al.

logH2O = 3.00+1.91
3.13

8

6

4

2

lo
gC

H4

logCH4 = 6.57+2.78
2.28

8

6

4

2

lo
gC

O2

logCO2 = 5.15+3.36
3.24

8

6

4

2

lo
gC

O

logCO = 4.92+3.37
3.39

8

6

4

2

lo
gN

2

logN2 = 5.25+3.20
3.19

70
0

80
0

90
010

00
11

00

T0
0

T00 = 865.82+187.73
166.25

8 6 4 2

logH2O

2
0
2
4
6

lo
gp

Cl
ou

d

8 6 4 2

logCH4

8 6 4 2

logCO2

8 6 4 2

logCO

8 6 4 2

logN2
70

0
80

0
90

0
10

00
11

00

T00

2 0 2 4 6

logpCloud

logpCloud = 1.64+2.36
2.02

Figure 8. Molecular abundance and cloud property constraints from the SCARLET free retrieval analysis. The top panels in
each column show the 1D marginalized posterior distributions of the molecular abundances and cloud properties, with dashed
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ence of water vapor in the atmosphere of HD 106315 c,

which can be regarded as tentative evidence. No other

molecular species is favored by the data. We also test

for the presence of clouds by comparing the full retrieval

model to a model that lacks clouds in the hypothesis

space, but find no evidence in the observational data.

The small differences between the evidence computed

with SCARLET versus petitRADTRANS can be at-

tributed in the difference in prior volume for the two

analyses. We perform the final parameter estimation us-

ing the full retrieval model including the five molecules

(H2O, CH4, CO2, CO and N2) and gray clouds. The

best-fitting model matches all data points within their

1-σ uncertainties. A wide range of models is consistent

with the data, in agreement with the results from peti-

tRADTRANS.
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5. CLOUD AND HAZE MODELS

The retrieval analysis from the previous section

showed that the muted water feature in the transmission

spectrum is consistent with a low metallicity composi-

tion with high altitude condensates. To explore what

condensate properties are plausible for HD 106315 c, we

ran forward models with physically motivated cloud and

haze opacity.

5.1. Cloud Models

Transmission spectra including the effect of clouds

were calculated following the methodology of Morley

et al. (2015, 2017). First, 1D cloud-free model temper-

ature profiles were calculated, assuming both radiative–

convective and chemical equilibrium, using the approach

described in detail in McKay et al. (1989); Marley

& McKay (1999); Saumon & Marley (2008); Fortney

et al. (2008). We calculate profiles for metallicities of

[M/H]=0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 (1, 3, 10, 30, 100,

and 300× solar). The opacity database is described in

detail in Freedman et al. (2008, 2014), with updated

chemical equilibrium calculations and opacities as de-

scribed in Marley et al. (in prep.).

We include the condensation of Na2S, KCl, and ZnS,

which are expected to condense at the temperature

of HD 106315 c (Teq = 800 Kelvin). We calculate

cloud altitude and height along the cloud-free pressure–

temperature profile; the cloud properties are calculated

using the methods described in Ackerman & Marley

(2001); Morley et al. (2012) for each metallicity, assum-

ing a range of sedimentation efficiencies (fsed=2, 1, 0.5,

and 0.1), a parameter which controls the cloud particle

size and cloud height. This model calculates the cloud

optical depth, single-scattering albedo, and asymmetric

parameter for each layer of the atmosphere. Example

pressure–temperature profiles with cloud condensation

curves are shown in Figure 9.

To calculate transmission spectra, we use the trans-

mission spectrum model described in the appendix of

Morley et al. (2017). Gas opacity from H2 collisionally

induced absorption, CO2, H2O, CH4, CO, NH3, PH3,

H2S, Na, K, TiO, VO, and HCN is included. We cal-

culate models for each metallicity and fsed combination

considered.

Figure 10 shows the goodness of fit for the cloudy

model grid compared to the WFC3 transmission spec-

trum. The K2 and Spitzer data are not precise enough

to significantly affect the goodness of fit. The best fits

have small water absorption features with amplitude of

around 30 ppm. The amplitude of features in the mod-

els is a trade-off between metallicity and cloud altitude:

higher metallicity models tend to have a smaller scale
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Figure 9. Pressure-temperature profiles (solid lines) for
HD 106315 c compared to condensation curves for expected
cloud species (dashed lines). The models assume are in
radiative–convective and chemical equilibrium. The conden-
sation curves are calculated for a 100× solar metallicity com-
position; for lower metallicities, the condensation curves shift
left (by approximately 100 K per 1 dex metallicity). The
shaded region marks the range of pressures sensed by trans-
mission spectroscopy, assuming 100× solar metallicity.

height and thus smaller features. Lower sedimentation

efficiency also decreases the feature amplitude. Small

fsed values loft cloud particles higher in the atmosphere,

obscuring spectral features. As shown in Figure 9, the

cloud base is typically below the pressure level sensed

by the observations, so fsed values . 0.5 are required

to loft the cloud into the observable atmosphere. For

the HD 106315 c spectrum, the best fit models are high

metallicity atmospheres (100 − 300× solar), or lower

metallicity with high-altitude clouds (fsed < 0.5).

5.2. Haze Models

We also calculate transmission spectra for hazy at-

mospheres using the photochemistry, microphysics, and

transmission spectrum models of Kawashima & Ikoma

(2018) in the same way as Kawashima et al. (2019) and

Kawashima & Ikoma (2019). We first perform photo-

chemical simulations to derive the steady-state distri-

bution of gaseous species. Then, since haze monomer

production rate is uncertain for exoplanets, we assume a

certain fraction of the sum of the photodissociation rates

of the major hydrocarbons in our photochemical model,

CH4, HCN, and C2H2, would result in haze monomer

production. We call this fraction as haze formation ef-

ficiency fhaze following Morley et al. (2013). With this

assumption, we derive the steady-state distribution of

haze particles by microphysical simulations. Finally, we



14 Kreidberg et al.

1 3 10 30 100 300

Metallicity (x solar)

no
 c

lo
ud

2
1

0.
5

0.
1

S
ed

im
en

ta
tio

n 
E

ffi
ci

en
cy

6.26 8.56 7.97 4.12 1.50 0.70

3.67 4.53 4.10 2.25 0.94 0.66

2.51 3.07 2.67 1.39 0.74 0.67

1.56 1.65 1.27 0.81 0.69 0.72

0.82 0.84 0.81 0.80 0.82 0.86

0.75

1.00

1.25

1.50

1.75

2.00

2

1.1 1.2 1.3 1.4 1.5 1.6 1.7

Wavelength (microns)

0.090

0.095

0.100

0.105

0.110

0.115
Tr

an
si

t d
ep

th
 (p

er
ce

nt
)

1x, no cloud
3x, fsed = 0.1

30x, fsed = 1.0
300x, no cloud
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model transmission spectra of the atmospheres with the

obtained profiles of haze particles and gaseous species.

For the temperature-pressure profile, we use the

online-available5 analytical model of Parmentier & Guil-

lot (2014) assuming an internal temperature of 100 K

and their correction factor of 0.25, which corresponds to

the case where the irradiation is efficiently redistributed

over the entire planetary surface. For the other input

parameters, we use the default opacities (Valencia et al.

2013; Parmentier et al. 2015) and Bond albedo. We in-

clude convection. Solar elemental abundance ratios are

taken from Lodders (2003). For the UV spectrum of

HD 106315, we use that of the Sun from Segura et al.

(2003) because of its similar stellar type (F5, Houk &

Swift 1999). We assume a constant eddy diffusion coeffi-

cient of 107 cm2s−1 throughout the atmosphere for both

photochemistry and microphysics calculations. We as-

sume a monomer radius of 1 nm and an internal density

of haze particles of 1 g cm−3. The refractive index of

haze is uncertain for exoplanets, so we consider two rep-

resentative cases, tholin (Khare et al. 1984) and soot

(Hess et al. 1998).

We calculate spectra for 1, 10, and 100 × solar metal-

licity atmospheres with a range of fhaze from 10−7 to 1

in 1 dex increments. The integrated monomer produc-

tion rate for fhaze = 1 (the sum of the photodissociation

rates of CH4, HCN, and C2H2) becomes smaller with

increasing metallicity; 1.71 × 10−10, 1.20 × 10−10, and

5 http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A133

5.51 × 10−11 g cm2 s−1 for 1, 10, and 100× the solar

metallicity atmospheres, respectively.

For the calculation of transmission spectra, we treat

the reference radius at 10 bar pressure level as a param-

eter. We find the appropriate value with a grid of 0.1%

of the observed transit radius which yields the minimum

reduced χ2 with 18 degrees of freedom (21 data points

minus 3 free parameters of metallicity, fhaze, and refer-

ence radius), for each case. We account for the trans-

mission curve of the WFC3 G141 grism from the SVO

Filter Profile Service6 (Rodrigo et al. 2012; Rodrigo &

Solano 2013).

The left panel of Figure 11 shows several representa-

tive models compared to the measured WFC3 spectrum;

models for clear atmospheres of three different metallic-
ities, as well as hazy (tholin) atmospheres with haze

formation efficiency tuned to fit the WFC3 data well.

The error bars for the K2 and Spitzer points are large,

and therefore have a negligible effect on the goodness

of fit. The right panel of Figure 11 shows the goodness

of fit for the model grids. We find that modest haze

formation efficiencies of 10−3 − 10−4 generally match

the observed spectra for all the three different metallici-

ties, for both tholins and soots. This is because smaller

scale height due to increasing metallicity can be compen-

sated out by smaller fiducial monomer production rate.

Overall, these haze production efficiencies are orders of

magnitude lower than the extreme values required to

6 http://svo2.cab.inta-csic.es/theory/fps/

http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A133
http://svo2.cab.inta-csic.es/theory/fps/
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1 x Solar, clear
10 x Solar, clear

100 x Solar, tholin, f
haze

 = 10-3

10 x Solar, tholin, f
haze

 = 10-3

1 x Solar, tholin, f
haze

 = 10-4

100 x Solar, clear

Figure 11. (Left) Representative haze forward models compared to the measured WFC3 spectrum; models for the clear
atmospheres of 1 (dark green line), 10 (orange line), and 100 (purple line) × Solar metallicity and those for the hazy (tholin)
atmospheres of 1 (pink line), 10 (light green line), and 100 (yellow line) × Solar metallicity. The haze formation efficiency that
fits the observed data well is chosen. (Right) Goodness-of-fit for the full grid of tholin and soot models. The grid cell shading
indicates the reduced χ2 of the fit to the WFC3 data. The fit has 18 degrees of freedom (21 data points, free parameters for
metallicity, fhaze, and reference radius).

reproduce the featureless spectrum of GJ 1214b (Mor-

ley et al. 2015; Kawashima et al. 2019). As noted above,

the NUV irradiation of HD 106315 c is likely higher than

that of GJ 1214b, so more haze precursors are present

and lower haze production efficiency is needed.

6. INTERIOR STRUCTURE MODELS

Comparison between interior structure and envelope

metallicity can provide additional constraints on the

bulk composition of the planet (Kreidberg et al. 2018b;

Thorngren & Fortney 2019). For example, given knowl-

edge of the envelope metallicity, it is possible to put lim-

its on the core mass, that otherwise suffers from large de-

generacy for planets in the 2−5R⊕ radius range (Rogers

& Seager 2010). We evaluate the internal structure of

HD 106315 c with a model consisting of an inner core

and a H/He outer envelope enriched with some various

amounts of water and rock (in a 50-50 ratio), using the

methods described by (Thorngren et al. 2016). We ex-

plored two limiting cases for the core composition: one

is composed entirely of isothermal rock with radioactive

heating, and the other is composed of convective wa-

ter. Using the observed mass (with error), radius (with

error), age (with error), and flux (ignoring error), we

retrieved the core mass over a range of envelope metal-

licities. Our results are shown in Figure 12.

In the absence of any information about the enve-

lope composition, the core mass fraction for HD 106315 c

could range anywhere from 0 to 1. The higher the en-

velope metallicity, the lower the core mass fraction re-

quired to explain the observed mass, radius, and age

of the planet. To help break this degeneracy, we com-

pared the results from the atmospheric retrieval with
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Figure 12. Core fraction versus envelope metallicity from
interior structure modelling for a rocky core (red line with
1σ uncertainty shaded) and a water core (blue line with 1σ
uncertainty). The retrieval results for the envelope metal-
licity are over-plotted as a histogram, with the 1σ credible
interval indicated by the blue shaded region.

the interior structure model (using water abundance as

a proxy for envelope metallicity). The retrieval results

are shown alongside the interior structure model in Fig-

ure 12. Using the retrieved abundance of H2O from

petitRADTRANS as a proxy for the envelope metallic-

ity (5 × 10−4 − 290× solar at 1σ confidence), we esti-

mate that the core mass fraction is greater than 30%

regardless of the core composition (rock or ice). These

conclusions generally resemble our understanding of the

bulk composition of Uranus and Neptune, which are

expected to have a core mass of 80 - 90% (Hubbard

et al. 1991; Fortney & Nettelmann 2010; Nettelmann

et al. 2013). Follow-up atmosphere characterization

with higher precision and broader wavelength coverage
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can further constrain the envelope metallicity and core

mass of HD 106315 c.

7. DISCUSSION AND CONCLUSIONS

The number of small exoplanets with precise trans-

mission spectra is growing, and already the population

shows diversity in atmospheric properties. Some appear

to have envelope metallicities below that of Neptune

(e.g. HAT-P-26b; Wakeford et al. 2017), whereas oth-

ers require higher metallicity (GJ 436b; Morley et al.

2017). Some planets are blanketed with thick high alti-

tude clouds or haze (particularly GJ 1214b; Kreidberg

et al. 2014), while others have deeper condensates or

even cloud-free atmospheres (Benneke et al. 2019b; Mad-

husudhan et al. 2020). This diversity is expected from

theoretical models. For example, planet population syn-

thesis predicts a wide range of envelope enrichment for

sub-Neptunes (e.g Fortney et al. 2013). Similarly, cloud

and haze models indicate that condensate properties

may vary widely across different planets. Condensate

formation depends on many different atmospheric prop-

erties (e.g. temperature, metallicity, UV irradiation and

vertical mixing) so there is no one-size-fits-all model

to predict whether an atmosphere is cloudy or clear at

the pressure levels sensed by transmission spectroscopy

(Morley et al. 2015; Gao & Benneke 2018; He et al. 2018;

Hörst et al. 2018; Kawashima et al. 2019; Ohno et al.

2020).

Where does HD 106315 c fit into this diverse picture?

The small amplitude of spectral features is consistent

with other sub-Neptunes, which all have feature ampli-

tudes attenuated relative to expectations for solar com-

position, cloud-free atmospheres (Crossfield & Kreid-

berg 2017). Intriguingly, the amplitude of spectral fea-

tures (0.8±0.0.04 H2/He scale heights) agrees well with

the demographic trend noted in Crossfield & Kreidberg

(2017); Libby-Roberts et al. (2020), that shows an in-

crease in the amplitude of the WFC3 water feature with

planet equilibrium temperature. This is a somewhat sur-

prising finding, because there are many factors (noted

above) that affect the observed spectral feature ampli-

tude for planets in this population. A further demo-

graphic study of water absorption in sub-Neptunes will

be explored in a follow-up paper.

The tentative water detection for HD 106315 c is con-

sistent with a wide range of abundances (3×10−4−290×
solar at 1σ confidence), and is most comparable to that

estimated for HAT-P-11b and K2-18b (Fraine et al.

2014; Benneke et al. 2019b; Chachan et al. 2019). Low

metallicities (< 50× solar), akin to those GJ 3470b,

HAT-P-26b, and WASP-107b (Benneke et al. 2019a;

Wakeford et al. 2017; Kreidberg et al. 2018a) are possi-

ble for HD 106315 c, provided it has some condensates in

its atmosphere that truncate the amplitude of the water

feature. The condensate properties are modest relative

to extremes like GJ 1214b, which has a featureless spec-

trum requiring either very low sedimentation efficiency

clouds and high atmospheric metallicity (fsed ≤ 0.1 and

1000× solar composition), or very efficient photochem-

ical haze production (& 10% efficiency) for a 50× solar

metallicity composition (Kreidberg et al. 2014; Morley

et al. 2015). For comparison, the transmission spectrum

of HD 106315 c is fit well with fsed ≤ 0.5 or haze pro-

duction efficiencies of 10−3 − 10−4.

The tentative detection of a small water feature in

HD 106315 c makes it an intriguing candidate for follow-

up observations to further characterize its atmosphere.

Infrared observations are a particularly promising av-

enue — spectroscopy in the 4−5µm range is sensitive to

absorption from CO2, a prominent feature expected in

high metallicity atmospheres (Moses et al. 2013). If the

atmosphere has lower metallicity but is cloudy/hazy, in-

frared observations are also promising because the con-

densates may have lower opacity at longer wavelengths

(e.g GJ 3470b; Benneke et al. 2019b). Future transmis-

sion spectroscopy observations with JWST could po-

tentially distinguish between these possibilities (Greene

et al. 2016), and confirm whether HD 106315 c does in-

deed have a Neptune-like core mass and envelope com-

position. If it does, that will provide new incentive for

formation models to produce ice giants on a wide range

of orbits from 0.15 AU (that of HD 106315 c) to 30 AU

(that of Neptune).
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