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Materials and Methods 
Data 

We used several types of data in this study. First, we used continuous waveforms from the 
Southern California Seismic Network (SCSN), which are publicly available from the Southern 
California Earthquake Data Center (scedc.caltech.edu). Specifically, we used 38 continuous 
stations within 100 km of the Cahuilla swarm (Figure S1) for the period 2016-01-01 to 2019-06-
28. Only EH and HH channels were processed. All seismicity data were produced for this study 
from scratch, starting from the raw continuous data. The focal mechanisms shown in the figures 
were determined by SCSN. 

To build a training dataset for the deep neural networks, we used the event waveforms for all 
earthquakes listed in the SCSN catalog from 2000-2017. We also used publicly available phase 
data provided by the SCSN for the same period. These phase picks have been manually 
reviewed. 

 
Seismicity catalog construction 

We used deep learning methods to build our seismicity catalog by detecting and locating 
earthquakes over the entire continuous waveform dataset. The procedure first uses the 
generalized phase detection approach (39) to perform single station phase detection on all 3-
component stations and then associates these detections across the seismic network to specific 
event detections.  

For the phase detection, we built a training dataset of 1 million P-wave and S-wave 
seismograms from southern California. The datasets were assembled by randomly selecting 1 
million P- and S-wave picks each from the SCSN archives (see Data), along with their associated 
3-component seismograms. The seismograms were 16 seconds long, with the pick randomly 
located somewhere within the 16 second window. The data were filtered between 1-20 Hz for 
this part of the procedure. 

The neural network uses a U-net architecture (40) to predict a binary segmentation mask 0.2 
sec in duration, centered on the real picks, which was motivated by the segmentation network of 
(41) that uses DeepLab v3+. The model was trained using the Adam optimization algorithm (42) 
with default parameters and early stopping criteria. Picks were made by taking the peak sigmoid 
probability whenever a value of 0.5 was exceeded for either phase type. The trained model was 
applied to all continuous waveform data to build a database of tentative phase arrivals. In total, 
37 million phase detections were made. 

Next, we applied the PhaseLink algorithm (43) to associate the phase detections to 
earthquakes and build an initial catalog. PhaseLink is a deep learning algorithm for phase 
association and uses Gated Recurrent Units to sequentially predict and link together phase 
detections. A synthetic training dataset was created for the region shown in Fig S1 by placing 
hypocenters randomly throughout the region. This procedure is described in detail in Ross et al. 
(43). We processed windows of 500 picks at a time with a maximum sequence duration of 120 
sec. We required 12 phase detections to nucleate a cluster, merged clusters with at least 1 phase 
detection in common, and required a minimum of 12 detections left after removing duplicates to 
save an event detection. These parameters were chosen to ensure the detections were of very 
high quality and also to keep the false positive rate well below 1%, which was performed by 
visual inspection of random detections. In total 22,700 events were detected. 

The detected events were then located with NonLinLoc, a probabilistic non-linear 
hypocenter inversion algorithm (44) (Fig. S3, upper panel). We used the 1D velocity model of 
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Hadley and Kanamori (45) and equal differential time likelihood function. The results were 
refined using station correction factors from the mean residuals over all events. Local 
magnitudes were estimated using the waveform processing workflow, attenuation relations, and 
station terms used by the Southern California Seismic Network (46). The calculated local 
magnitudes range from -0.27 to 4.56. We use a goodness of fit test at the 95% level (47)  to 
estimate the magnitude of completeness of 0.56 and a b-value of 1.05. The local magnitude range 
for this dataset corresponds to a moment magnitude range of 0.7 to 4.4. 

We then cross-correlated the earthquakes to measure precise differential times for relocation 
purposes. We used seismograms starting 0.1 sec before all picked phases and lasting a total of 
1.0 seconds. For each earthquake, we correlated it with the 200 nearest neighbors. We required a 
minimum cross-correlation coefficient of 0.8 and band-pass filtered the data between 1 and 15 
Hz beforehand. This resulted in 89 million differential times. 

Finally, the catalog was relocated with GrowClust (48), a cluster-based double-difference 
relocation algorithm. We used a minimum r value of 0.82 and required at least 10 differential 
times for relocation. We performed 100 bootstrap resamples to estimate location errors. To 
prevent any potential issues from cluster splitting, we lowered the minimum connectivity 
fraction (0.0001) until all events in the swarm were joined into a single cluster. This final catalog 
is shown in Figure S3. 

It should be noted that the entire catalog is an automated product; none of the detections, 
phase picks, or differential times have been manually refined. We did however randomly inspect 
many detections and picks while running the detection pipeline to ensure quality control. During 
this process we adjusted parameters as necessary, with the final best parameter set listed above. 

 
Stress drop estimation 

We use the spectral decomposition technique detailed in (49) to estimate Brune-type stress 
drops for a well-recorded subset of full event catalog. Spectral decomposition is an iterative 
inversion technique that takes as input a vector containing observed displacement spectra in log-
units from many earthquakes recorded at many stations, and solves for relative source, station, 
and path terms at each frequency point. We apply a multitaper approach to compute P-wave 
spectra on vertical component channels from time windows that are 1.5 s in length, beginning 0.1 
s before the phase arrival. In the inversion, we only consider spectra from that have signal-to-
noise (SNR) ratio of 3.0 in the 3-30Hz frequency band. We further exclude events that have local 
magnitude less than 0.5 or have fewer than 6 spectral recordings that meet the SNR criteria. We 
also implement an automated procedure to screen for and exclude spectra from clipped 
waveforms, which are few in number but are sometimes observed on broadband recordings of 
the larger events.  

Spectral decomposition is effective in isolating the relative shapes of the source spectrum, 
but to calculate stress drop, we first need to apply an empirical correction to remove path and 
station effects that are common to all sources, such as average near-source and near-station 
attenuation. We use the approach of (49) to do this, which assumes that on average, the source 
spectra in waveform dataset conform to the Brune model with f-2 falloff (50), but makes no 
assumptions regarding self-similarity. With the corrected source spectra in hand, we estimate 
corner frequency fc and compute stress drop using the usual relation: 

∆𝜎𝜎 = 7
16
𝑀𝑀0 �

𝑓𝑓𝑐𝑐
𝑘𝑘𝑘𝑘
�
3
, 

where M0 is the estimated seismic moment (which is proportional to the low-frequency spectral 
moment), 𝛽𝛽 is the shear wavespeed, which we assume to be depth-dependent and estimate from 
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the 1D velocity model, and k=0.38 is a model-dependent constant (51) that has a significant 
impact on the absolute level of stress drop but not the local variability, which is our focus in this 
work. We obtain measurement uncertainties for the stress drop of each event by bootstrapping 
the set of stations that go into the source spectral measurements, obtaining median values (1-
sigma) of 0.15 in log10 MPa units. In total, we obtain stress drop estimates for 3041 events in the 
main cluster of the Cahuilla swarm (Figure S2).  

 
Permeability estimation 
The migration of seismicity has been used to estimate the permeability of rocks at depth (27, 52, 
53). Figure S4 shows the radial distance of seismicity relative to the inferred injection point 
along with several diffusivity curves following 𝑟𝑟 = √4𝐷𝐷𝐷𝐷 (53). First, we note that the 
spatiotemporal evolution of this sequence is not, in fact, well-characterized by a square-root of 
time function described by this simple diffusion model. The lack of an adequate fit to a simple 
diffusion model are suggestive of diffusivities that vary in time due to spatial differences in the 
permeability of the rock.  Nonetheless, these curves still provide some context for the order of 
magnitude of the permeability of the fault zone. The values of D = 0.005, 0.01 and 0.05 m2/s are 
shown in Figure S4. Over a duration of 120 days, the radial extent of the swarm grows to 3500 
m, giving a diffusivity of 0.03 m2/s. The fracture permeability can then be estimated from the 
diffusivity by:  
 

𝑘𝑘 = 𝐷𝐷𝐷𝐷�𝜙𝜙𝛽𝛽𝑓𝑓 + (1 − 𝜙𝜙)𝛽𝛽𝑟𝑟� 
 
where 𝐷𝐷 is the viscosity of fluid, 𝜙𝜙 is the porosity, 𝛽𝛽𝑓𝑓 and 𝛽𝛽𝑟𝑟 are the compressibilities of water 
and rocks, respectively. We typical values of, 𝐷𝐷 = 10−4 Pa s for the viscosity of fluids at 8 km 
depth, 𝜙𝜙 = 3 × 10−3, 𝛽𝛽𝑓𝑓 = 10−10 Pa-1, and 𝛽𝛽𝑓𝑓 = 2 × 10−11 Pa-1 (54).Using the above 
information, we estimate a permeability of 6.0 × 10−17m2. 
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Fig. S1. 
Map of region used to generate training dataset for PhaseLink algorithm. Blue triangles indicate 
station distribution used. Synthetic earthquake hypocenters are placed randomly throughout the 
region to produce a dataset of arrival times for training (see methods).  
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Fig. S2. 
Map of stress drops for the entire sequence.  
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Fig. S3. 
Seismicity before (upper panel; 22,700 events) and after (lower panel; 20,966 events) relocation 
with GrowClust. 
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Fig. S4. 
Estimating the diffusivity (D) of the Cahuilla swarm. Curves are plotted using the equation 𝑟𝑟 =
√4𝐷𝐷𝐷𝐷, following Talwani et al. (53). This figure demonstrates that the sequence is not well-
characterized by a square-root of time migration for any value of D. 
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Fig. S5. 
Aftershocks of the M4.4 event within 10 days (red dots). Cross section is the same as in Fig. 2 
(Z-Z’). 
  



Submitted Manuscript: Confidential 

10 
 

 
 

 

Fig. S6. 
Time evolution of stress drop (∆σ). Solid red line marks the median ∆σ in a causal, 200-event 
moving window. Shading denotes inter-quartile range. Similar to Fig. 3a in the main text, but 
with 1-sigma uncertainty error bars shown for each event, obtained from a bootstrap resampling 
over the stations that go into each source spectral measurement.  
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