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Key Points:  

 Dynamics consistent with quasi-geostrophic 2D turbulence in the Jupiter South Polar 

regions surrounding the main cyclonic circulations.  

 The forcing scales resulting from these analyses indicate that baroclinic instabilities 

may exist in the analyzed regions.  

 Many waves have been revealed in the Jupiter South Polar region by JIRAM images. 
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Abstract 

We present a power spectral analysis of two narrow annular regions near Jupiter’s South Pole 

derived from data acquired by the Jovian Infrared Auroral Mapper (JIRAM) instrument 

onboard NASA’s Juno mission. In particular, our analysis focuses on the dataset acquired by 

the JIRAM M-band imager (hereafter IMG-M) that probes Jupiter’s thermal emission in a 

spectral window centered at 4.8 m. We analyze the power spectral densities of circular paths 

outside and inside of cyclones on images acquired during six Juno perijoves (PJ). The typical 

spatial resolution is around 55 km pixel-1. We limited our analysis to six acquisitions of the 

South Pole from February 2017 to May 2018. The power spectral densities both outside and 

inside the circumpolar ring seem to follow two different power laws. The wavenumbers 

follow average power laws of -0.9±0.2 (inside) and -1.2±0.2 (outside), and of -3.2±0.3 

(inside) and -3.4±0.2 (outside), respectively beneath and above the transition in slope located 

at ~ 2.×10-3 km-1 wavenumber. This kind of spectral behavior is typical of two-dimensional 

turbulence. We interpret the 500 km length scale, corresponding to the transition in slope, as 

the Rossby deformation radius. It is compatible with the dimensions of a subset of eddy 

features visible in the regions analyzed, suggesting that a baroclinic instability may exist. If 

so, it means that the quasi-geostrophic approximation is valid in this context.  

Plain Language Summary 

Juno has revealed extraordinary and unexpected dynamics in Jupiter’s polar regions. The 

clouds imaged in the infrared and visible parts of the spectrum by JIRAM and JunoCam, 

respectively, are organized around a central cyclone in regular patterns of eight (North Pole) 

and five (South Pole) cyclones. We studied the spatial and temporal variability of the regions 

immediately outside the cyclonic circulations at the South Pole. By analyzing multiple JIRAM 

images at 5 microns, geographically merged and appropriately filtered and sampled, we found 

that cloud patterns poleward and equatorward the ring of cyclones at Jupiter’s South Pole, may 

originate from flow instabilities not linked to vortices’ dynamics. These instabilities can have 

their origin in the horizontal pressure and temperature gradients rather than in the cyclonic 

circulations and their interactions, also considering the low speed values of the wind field in 

those regions.  

 

Keywords: Jupiter; Planetary atmospheres; Polar regions; Turbulence; Fourier analysis  

 

1. Introduction 

The design of Juno’s orbital tour permitted the detailed observation of Jupiter’s hitherto 

unexplored polar regions. In particular, infrared and visible observations obtained by JIRAM 

and JunoCam instruments, respectively (Adriani et al., 2019, 2018; Orton et al., 2017), 

revealed an unexpected cluster of cyclones organized in a polygonal array, which has 

persisted between at least 2017-02 and 2018-05. The dynamics at the root of this 

configuration, which is unique in the Solar System, are not yet completely understood, though 

certain recent studies provide some hint of the possible underlying mechanisms (Reinaud, 

2019; Brueshaber et al., 2019). Power spectral analysis previously has been used to study 

aspects of the dynamical mechanisms operating at various scales on cloud patterns of various 
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planetary atmospheres (Travis, 1978; Harrington et al., 1996; Peralta et al., 2007; Barrado-

Izagirre et al., 2009; Choi & Showman, 2011; Cosentino et al., 2017, Young & Read, 2017, 

Cosentino et al., 2019). Power spectral density is a practical way to capture the statistics of 

cloud fields over several wavenumber scales and can quantify the type of turbulence acting 

in the atmosphere by describing the distribution of energy at various scales across the Fourier 

components. The study of atmospheric kinetic energy transfer, implicit in the power 

spectrum, generally requires the wind field measurement to have an accuracy better than 5 

m/sec (Sada et al., 1996; Travis,1978), a goal that is very difficult to achieve over large areas 

by the instruments onboard current space missions. However, the connection between power 

spectra of cloud opacities/albedo and those of atmospheric kinetic energy, empirically 

established by Travis (1978), has been assumed in many previous studies (Harrington et al., 

1996; Peralta et al., 2007; Barrado-Izagirre et al., 2009; Choi & Showman, 2011; Cosentino 

et al., 2017, Young & Read, 2017, Cosentino et al., 2019).  

A puzzling question raised by the unexpected dynamical configuration of Jupiter’s poles is 

whether the cluster of polar vortices observed by JIRAM and JunoCam is tied to a deep 

magneto-hydrodynamic circulation, or instead is a more or less stable configuration in the 

weather layer supported by energy forcing from moist convection or other energy transport 

mechanisms (Sánchez-Lavega & Heimpel, 2018). Both the deep-convection and shallow-

water models, with hybrid combinations, have been developed as general circulation 

hypotheses in past years (Sánchez-Lavega & Heimpel, 2018, and references therein), aiming 

initially to reproduce Jupiter’s banded aspect and velocities of its jets. None of these models 

simulated the possible dynamical structure of the polar regions. We believe that it is 

premature to confidently assert which of these models works better to explain the Jupiter’s 

poles, as observed by Juno/JIRAM. Our goal in this work is to investigate what kind of 

dynamics prevails in those polar regions out of the main cyclonic circulations. While one of 

the full polar cyclones is analyzed in the paper of Adriani et al. (2019) by using 2D Fourier 

analysis, here we use 1D Fourier spectral analysis to investigate whether the dynamics in 

areas surrounding the main cyclones are compatible with quasi-geostrophic two-dimensional 

turbulence. We aim also to determine whether any changes in eddy statistics occurred 

between the several-month-long intervals when JIRAM observed the whole polar region. 

Two-dimensional turbulence is typical of large-scale motions of geophysical fluids in a 

shallow-water scenario (Danilov & Gurarie, 2000), and this model has been already 

successfully tested in the case of Jupiter’s middle and low latitudes in past years (Harrington 

et al., 1996; Barrado-Izagirre et al., 2009; Choi & Showman, 2011; Cosentino et al., 2017, 

Young & Read, 2017, Cosentino et al., 2019). In our case, we have large horizontal coverage 

associated with a depth of sounding as yet unknown and dependent on the vertical extent and 

optical depth of the cloud layers that constitute the pattern imaged by JIRAM.  

For a clear atmosphere, the whole thickness of JIRAM penetration (~150 km) related to the 

circumference relative to 87°S planetographic latitude (~25000 km) would give a scale 

O(102), thus a larger emphasis of the horizontal respect to the vertical scale. However, from 

a dynamical point of view, whether a phenomenon is to be considered a large-scale one 

depends on how much it is influenced by the planet’s rotation, as well as on its size. Therefore, 

the choice of the brightness scans, from which we extract signal samples to analyze, is a 

complicated matter. The cluster of cyclones (Adriani et al., 2018) could well have its origin 

deeper than the weather layer, in the light of current knowledge, while the regions outside 
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and inside the circumpolar ring of cyclones are probably confined at some level in the weather 

layer. For this reason, we oriented our study to signals sampled in those regions. This has 

been accomplished by tracing some ad hoc circular paths, outside and inside the cyclonic ring 

(Figure 1), from which we extracted radiance signal samples. Henceforth we will refer to 

these two annular regions also as “equatorward” and “poleward” respectively, with respect to 

the ring of cyclones. Because small vortices are ubiquitous in the regions under study and 

they can influence the power spectral slopes (Barrado-Izagirre et al., 2009), paths have been 

traced in areas as uniform as possible, as explained in detail in section 2, minimizing the 

presence of the small vortices. 

This work is organized into six sections. In section 2 we provide information on the 

instrument and describe the observations and the processing applied in order to obtain the 

mosaic of the entire polar region. We outline also the criteria used to select the sample data 

to analyze. In section 3, we give details of the analysis we carried out and in section 4 we 

search for wave presence in the analyzed region. The principal findings are discussed in 

section 5 in terms of models and previous turbulence results.  A summary of our conclusions 

is reported in section 6. 

 

2. Data and methodology 

JIRAM combines an infrared imager and a slit spectrometer, sharing the same telescope. The 

imager focal plane is in turn divided into two equal areas defined by the superimposition of 

two different band-pass filters: the L-filter, centered at 3.45 μm with a 290 nm bandwidth 

(IMG-L), and the M-filter, centered at 4.78 μm with a 480 nm bandwidth (IMG-M). The 

spectrometer covers the spectral region from 2 to 5 μm (average spectral sampling 9 nm/band) 

with a 256 pixels slit, co-located in the M-filter imager’s Field of View (FOV) (Adriani et al., 

2014).  

Juno’s highly elliptical ~53 day polar orbit around Jupiter makes it possible to acquire very 

close snapshots of the polar regions by JunoCam and JIRAM. During the spacecraft passages 

over Jupiter’s poles, the instruments have the opportunity to sense adjacent regions of the 

underlying cloud deck. In some passages JIRAM had the opportunity to cover almost 

completely the polar regions. IMG-M acquired data sessions at approximately 10-minutes 

time steps, wherein every session is a collection of observations acquired every ~ 30 s. In this 

work, we use the images of the South Pole acquired during the fourth, sixth, eighth, ninth, 

eleventh and thirteenth orbits (PJ4, PJ6, PJ8, PJ9, PJ11 and PJ13 passages), spanning an 

overall period of roughly 1.5 years. These datasets provide full coverage from the 82.5° S 

planetographic latitude poleward, except the PJ9 and PJ13 cases, where a small area is 

missing. Unfortunately, the spacecraft attitude did not permit the complete coverage of the 

northern regions during the same orbits and the North Pole had only a partial coverage, except 

for the PJ4 passage. Therefore, we prefer to limit our investigation to the South Pole. A list 

of IMG-M image sequences used in this study along with the proper pixel resolution (km) 

and time coverage for each sequence is reported in Supplemental Material 1. 

In principle, JIRAM can sound atmospheric pressure levels as large as 5 bar (Kunde et al., 

1982; Irwin et al.,2001, Grassi et al., 2017) in absence of thick opaque clouds,  whereas in 

areas where thick cloud cover blocks the thermal emission from the deeper warmer interior 
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JIRAM senses the cooler temperatures of the cloud top. All the single images by IMG-M, 

used to create the mosaics, have been corrected for the emission angle (that is the angle 

formed by the instrument line of sight and the nadir direction) and then re-projected in 

stereographic maps to the worst pixel resolution, that is the instantaneous FOV (IFOV) of the 

farthest observation of IMG-M (~ 55 km pixel-1). Projected images are shown in Figure 1. 

We generated six mosaics for the South Pole on geographical basis, by using geometric 

information derived through SPICE-based routines (http://naif.jpl.nasa.gov) and navigational 

databases (Acton, 1996), and ENVI tools (https://www.harrisgeospatial.com/Software-

Technology) for each of the geometric calibrations and image processing applied to the 

JIRAM images. All the maps are based on Jupiter’s planetographic latitude and System III 

longitudes, but with longitude increasing eastward (0-360). All the images used to create the 

mosaics (see Table T1 as supporting information) have been acquired in a time interval where, 

at the mean flow estimated velocity (Grassi et al., 2018), any possible cloud displacement is 

below the pixel resolution. The data range of the six South Pole mosaics has been adjusted to 

be in the same interval of radiance values and a color scale has been used to highlight the 

different optical depths, with the lowest radiance value in white and the highest one in orange 

(Figure 1). Hence, we show white cold clouds on an orange hot background. 

Figure 1- Stereographic projections of mosaics composed with images of Jupiter’s South Pole acquired by IMG-M in six Juno 
perijoves. All the images have been corrected for the emission angle and re-scaled in the same range of radiance values. Here,  
aerosol-free regions of high radiance are dark, and aerosol-covered regions of low radiance are white, as reported in the color 
bar at the bottom of the figure. Black solid circles indicate the trajectories along which the analyzed signals have been sampled. 
The 80° S planetographic latitude is reported as reference (black dotted circle) in each mosaic.   

http://naif.jpl.nasa.gov/
https://www.harrisgeospatial.com/Software-Technology
https://www.harrisgeospatial.com/Software-Technology
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We use power spectra to characterize the statistics of cloud opacities outside and inside the 

circumpolar ring of cyclones. These two regions have similarities from a dynamical 

viewpoint: both of them are marked by low wind speeds but nevertheless various 

morphological structures seem to suggest they are “active”. The equatorward region is 

characterized by the interaction of the circumpolar vortices with chaotic eddy patterns outside 

the ring and by the mutual interplay of the vortices themselves. Similarly, the poleward region 

is the interaction field between the central and circumpolar cyclonic circulations. Although 

very low flow velocities seem to characterize these areas (at the limit of 12 m/s, the minimum 

detectable wind speed according to Grassi et al., 2018), they do not give the impression of 

being inactive (Figure 1): streams of thinning and thickening clouds and small isolated eddies 

are clearly visible. Therefore, we investigated these areas using power spectral analysis to 

characterize the resulting cloud statistics and to verify if the behavior is consistent with a 2D 

turbulence, as reported in Harrington et al. (1996), Barrado-Izagirre et al. (2009), Choi & 

Showman (2011), Cosentino et al. (2017), Young & Read (2017), Cosentino et al., (2019) for 

regions at lower latitudes. 

We extracted from each mosaic six circular samples (black circles in Figure 1), three outside 

and three inside the vortex ring, which we take to be the annular region enclosing the main 

cyclonic circulations. We calculated the power spectrum for every sample, then, to reduce the 

noise, we produced two mean power spectra for the equatorward and for the poleward triplet 

by averaging on each single triplet power spectrum. More details on the calculations are given 

in section 3. Circular paths are advantageous because they combine suitable data size with 

the continuity of the sample, which is periodic, assuring the stationarity of the series (Bendat 

& Piersol, 1986). Each circular path has been shaped on latitude circles that vary from -82.5° 

to -83.5° for the equatorward area, and from -87° to -88° for the poleward one. These paths 

then had to be moved from the original latitude grid into the areas previously selected for the 

analysis, because of the asymmetry of the polygon of cyclones related to the geographical 

pole position. Particular care has been taken to avoid overlapping with the cyclones’ edges, 

that we identify as those regions where the average intensity of the azimuthal wind is larger 

than ~ 50 m sec-1 (Grassi et al., 2018).  

Equatorward paths from PJ9 and PJ13 enclose a small region outside the mosaic. We assume 

for these cases that the series are still stationary, like those with continuous paths, basing this 

assumption on similarity considerations.  

The signals so produced are spatial series of pixel radiances as a function of the cumulative 

distance from an arbitrary starting point (pixel 1) up to the last point before pixel 1 on the 

circular path.  

 

3. Power Spectral Analysis 

We compute the power spectra of Jupiter’s cloud opacities at the South Pole applying the Fast 

Fourier Transform (FFT) method to the datasets sampled on each circular path shown in 

Figure 1. However, because the FFT needs evenly sampled series, we resampled our datasets 

at even steps, applying to every sample an algorithm performing a series of weighted-least 

squares fits, with Gaussian weights, operating on a spatial grid equal to the IFOV (~ 55 km 

pixel-1) in a moving window across the data. In Figure S2 of Supplemental Material 2 the PJ9 



 

 
©2020 American Geophysical Union. All rights reserved. 

equatorward brightness scan is reported, before and after the resampling operation, as an 

example.  The residuals from the comparison, reported as the difference between the sample 

data value and the ones predicted from the fit, are also shown.  

The resulting signals have been tested for stationarity (Bendat & Piersol, 1986), searching for 

the presence of a possible trend in the spatial series, although the choice of the circular path 

should ensure no trends. This test gave negative results, confirming the correctness of our 

assumption of stationarity. In view of the successive average operation to reduce spectral 

noise, the spatial series have been standardized by removing the sample mean. To reduce the 

side-band leakage effects we applied the Hanning tapering window (Bendat & Piersol, 1986) 

to every power spectrum. Then we normalized for the variances of the signals and zero-

padded all the sample data to the 211 constant value, to ensure uniformity in length and bin 

size of the wavenumber range, thus making the single power spectra suitable for averaging. 

Because all these operations do not modify the spectral behavior, they have no impact on the 

principal aim of this study.  The power spectra that we obtain are functions of the wavenumber 

(km-1) and are plotted in logarithmic scale to highlight the potential presence of power-law 

relationships in the inertial sub-range region of the spectrum. Finally, we computed average 

power spectra for the regions outside and inside the circumpolar ring. In Figure 2 we show 

the average power spectral density (psda hereafter) of the signals outside the circumpolar ring, 

relative to the PJ4 passage. The error bars on the spectral curve are the standard error of the 

mean 𝜎𝑎 = 𝜎 √𝑁⁄  (Bevington &  Robinson, 1992). By a simple visual inspection, the psda 

of Figure 2 seems to show two different slopes. To verify this hypothesis, we wrote an 

algorithm for fitting two independent slopes, one at low and one at high wavenumbers, 

following the approach of Choi and Showman (2011). Similar to their work, our algorithm 

finds the best power-law relationships through linear least-squares fitting, constraining only 

the starting and the final wavenumbers, and it determines the location of the wavenumber 

where the possible transition in slope occurs by calculating the two independent best-fit slopes 

Figure 2- Average of three power spectral densities relative to the 
signals sampled outside the southern circumpolar ring of cyclones 
during PJ4. The error bars represent the standard error of the mean. 
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for each possible transition point in the wavenumber range. The overall best fit is the one with 

the lowest χ2= χ1
2+ χ2

2. In Figure S3 of Supplemental Material 2 the χ2 relative to Figure 3 

plots are shown.  

The maximum wavenumber of the whole best-fit range is fixed by the Nyquist theorem, but 

the minimum value is not so easy to constrain. In past works (Harrington et al., 1996; Barrado-

Izagirre et al., 2009; Choi and Showman, 2011), different values have been assumed on the 

Figure 3- Averages of power spectra of the signals sampled inside (top) and outside (bottom) the southern circumpolar ring 
of cyclones. Power law  fits overlap the spectra (red line). Median values of the overall power laws for the two cases are 

shown above the spectra (dashed black lines). The positions of the wavenumbers corresponding to the Rhines scale (k 
and to the transition in slope (kf) are marked by vertical lines. X axes at bottom of each plot are in wavenumbers – inverse 
of length – while x axes at the top are in zonal wavenumbers, as defined in the text.  
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basis of the particular context, type of measurements and specific objectives of the research. 

In our study, we test the hypothesis that the interacting regions of the polar cyclones exhibit 

a dynamical state compatible with quasi-geostrophic two-dimensional turbulence, 

characterized by the conservation of the potential vorticity (PV) and small Rossby number 

(Pedlosky, 1986). This hypothesis makes straightforward the identification of the beginning 

of the power-law at low wavenumbers with the end of the inverse cascade inertial range. 

Thus, we constrain the starting value of the variation range of the overall best fit with the 

wavenumber value corresponding to the Rhines scale (Rhines, 1975; Ingersoll et al., 2004) 

𝑘𝛽 = √
𝛽

2𝑈
 

where U is a typical value of the horizontal wind velocity, 𝛽 = 2Ω cos (𝜑) 𝑅⁄  is the local 

derivative  

of the Coriolis parameter with respect to the latitude φ, and Ω and R are the rotation rate and 

the radius of the planet. It is worthwhile mentioning that the Rhines scale may characterize 

many different phenomena rather than being just the scale of the cascade arrest, as stressed in 

the detailed study of Sukoriansky et al. (2007). However, in the absence of another objective 

criterion that fixes the end of the linear portion of the log-log spectral curve at low 

wavenumbers,  the Rhines scale, intended as a sink for the energy inverse cascade (see also 

Cosentino et al. (2019)), is a reasonable parameter to mark the beginning of the inertial 

subrange.  Here, two different U values (20 m s-1, 15 m s-1) have been assigned for 

Poleward 

Perijove’s passes Slope 1 Slope 2 Transition wavenumber (km-1) 

Pj4 -0.8±0.3 -3.2±0.3 1.6e-03 

Pj6 -0.8±0.2 -3.7±0.9 3.9e-03 

Pj8 -1.6±0.5 -3.2±0.3 1.1e-03 

Pj9 -1.0±0.3 -3.2±0.5 2.6e-03 

Pj11 -0.9±0.3 -3.6±0.5 2.5e-03 

Pj13 -0.3±0.7 -2.5±0.7 7.4e-04 

median -0.9±0.2 -3.2±0.3 2.0e-03±9.3e-04 

Equatorward 

Perijove’s passes Slope 1 Slope 2 Transition wavenumber (km-1) 

Pj4 -1.3±0.3 -3.6±0.4 2.1e-03 

Pj6 -1.3±0.4 -3.1±0.3 1.8e-03 

Pj8 -1.2±0.3 -3.5±0.4 2.0e-03 

Pj9 -1.0±0.3 -3.4±0.3 1.9e-03 

Pj11 -1.1±0.3 -3.6±0.4 2.1e-03 

Pj13 -1.9±0.3 -3.0±0.3 1.7e-04 

median -1.2±0.2 -3.4±0.2 2.0e-03±1.3e-04 

Table 1-Best-fit slope values for the psda of the datasets relative to different perijoves. “Poleward” and “Equatorward”  table sections 
correspond to psda computed by signals sampled inside and outside the circumpolar ring of cyclones. We report the values of the two 

slopes, the 1- uncertainty value for each slope fit and the wavenumber value in correspondence of the transition in slope. At the bottom 
of each column of the table the medians are shown.       
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equatorward and poleward regions, on the basis of the findings of Grassi et al. (2018). The 

values of the Rhines scale calculated from our results are in the range k ~ 1-1.5× 10−4, 

corresponding to an interval ~ 2-8 in terms of zonal wavenumber 𝑘𝑧 =
2𝜋𝑅(𝜑)𝑐𝑜𝑠(𝜑)

1 𝑘⁄   .  These 

values are very different from the ones reported in Cosentino et al. (2019) and references 

therein. However, it should not be forgotten that dynamic and thermodynamic equilibria at 

poles can be very different from those at mid-to-low latitudes, where the values reported in 

literature have been computed. A physical interpretation of the sizes of the structures 

corresponding to the limit of the inverse cascade energy is beyond the scope of this paper.  

Figure 3 shows the psda (black line) of the region inside (top) and outside (bottom) the 

circumpolar ring of cyclones, overlain by the best-fit slopes (red line), for PJ4, PJ6, PJ8, PJ9, 

PJ11 and PJ13. In every plot, the positions of the Rhines parameter (𝑘𝛽) and of the transition 

in slope (kf) values are also indicated on the wavenumber grid by vertical lines. In addition, 

we computed the median of the best-fit slopes on all the perijove’s passages in order to verify 

the time variability of the single slopes, and of the kf  points. They are plotted in Figure 3 as 

black dashed lines above the spectral curves.  

As can be seen in Figure 3, the hypothesis of a double power law behavior is confirmed in 

most cases, except in the PJ8 poleward region and in the PJ13 equatorward region. However, 

it should be noted that both the slopes, and consequently the position of kf  , depend on the 

value of the best-fit starting point. This dependence has been noted also by Cosentino et al. 

(2019) who investigate it by carrying out a sensitivity study on the dependence of the position 

of the transition in slopes on the k initial value. Future analyses will benefit from their detailed 

study.  

We assigned to all the Rhines parameters the PJ4 value of horizontal velocity, the only one 

computed so far (Grassi et al., 2018), but this choice is not obvious. Small variations of U 

have a significant impact on the slope values and on the kf position. On the other hand, the 

PJ4 value of horizontal velocity seems adequate in most cases, as confirmed in Table 1, where 

the best-fit values of the two slopes and the relative medians are reported for all perijoves, 

together with  their 1- uncertainty. 

Slope values for larger scales, as can be seen in Table 1, are slightly different inside and 

outside the circumpolar ring, in line with the results obtained in previous works (Harrington 

et al., 1996; Barrado-Izagirre et al., 2009; Choi & Showman, 2011). Results for smaller scales 

are more uniform relative to those of slope 1. However, slope 2 values appear somewhat 

larger than those reported in the literature cited above. Hypotheses to explain these findings 

are described in section 5.     

As shown in Table 1, the break in slope kf  exhibits more variability inside than outside the 

ring. However, the median values are equal in the two cases, with uncertainties that reflect 

the differing extent of variability. On the other hand, if we refer to the non-dimensional zonal 

wavenumber kz, we obtain median values rather different for the poleward (36.6±17.0) and 

equatorward region (109.7±7.1). These results differ in detail from those reported in 

Harrington et al. (1996), Barrado-Izagirre et al. (2009) and Choi & Showman (2011), even 

though they see a large variability in the kf values.  
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Figure 3 shows also variability of the integrated power under the curves with time. Although 

a detailed analysis is beyond the principal aims of our investigation, a simple visual inspection 

of the plots in Figure 3 shows that contributions from the integrated radiance inside the 

circumpolar ring varies with time, with the largest integrated power registered during PJ4, 

while this behavior is not so evident for the integrated psda outside the ring. 

 

4. Wave visualization 

Our periodogram analysis reveals some time variability in slope 1 and slope 2 values (Table 

1), possibly related to dynamical changes where atmospheric waves may play a role. The high 

resolution of the images that compose the mosaics of Figure 1, allows for a thorough search 

for a possible wave presence in some parts of the southern polar region. We establish a 

criterion for identifying periodic patterns of banded clouds of at least three alternating crests 

and troughs to identify a wave. 

The JIRAM JIR_IMG_RDR_2017033T150327 image, acquired during the 4th perijove 

passage of Juno over Jupiter’s South Pole, is shown in Figures 4 and 5. We choose this image 

for its spatial resolution (~ 47 km/pixel), better than the average value (55 km/pixel) of the 

entire sequence.  Many wave-like features are visible when the image is enlarged. Examples 

Figure 4- Example of JIRAM image JIR_IMG_RDR_2017033T150327 (~47 km/pixel) acquired during the 4th perijove, and identification 

of wavy structures. (a) The original JIRAM image where PG latitude and longitude are projected  as a reference. (b) Enhanced view of 

the JIRAM image, highlighting wavy structures. The rectangular region identifies the area where waves are searched. (c) Selected 

region, extracted from the enhanced view of the image. (d) Selected region with wavy patterns marked with black tickmarks, that 

identify some crests and troughs visible by eye, and blue arrows pointing to further wavy features.Wavelengths of the marked  wave-

like features are in the range of 70-100 km. The 500 km horizontal scale is added to panels (a) and (c) for comparison. 
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of the wavy structures, identified on two rectangular areas in this JIRAM image, are provided 

in Figures 4 and 5. 

We choose to expand areas belonging to the region poleward of the cyclones’ ring, one where 

JIRAM had the most coverage at high resolution. Both Figures 4 and 5 are organized in four 

panels, where the original pixelation has been interpolated by a bicubic kernel, one of the 

ENVI tools for enhancing the image visualization. In panel (a) the original image is reported, 

with the 500 km horizontal scale and the PG geographical grid overlapped. Color scale of this 

panel is equal to that of Figure 1. Panel (b) shows the same image but with a suitable 

combination of color stretching - histogram equalization relative to the areas of interest -  and 

color scales applied to enhance the undulating patterns. In this panel, black rectangles identify 

the zoomed in regions of panels (c) and (d), which represent in turn equal areas without (panel 

c) and with (panel d) overlaying annotations, employed to highlight some of the wave-like 

features for ease of identification. Black ticks are used when crests and troughs are more 

evident, blue arrows in the other cases.  

In Figures 4c and 4d the annotated waves generally seem to propagate zonally, i.e. along lines 

of equal latitude, but showing different degrees of inclination of the crest directions with 

respect to the tangent to the latitude circle. This may indicate a greater or lesser proximity of 

the waves to the main circulation of the cyclones, that could strain the original wave fronts 

and twist the initial wave  direction. A different situation can be seen in Figures 5c and 5d, 

where the scene is dominated by an area with filamentary structures. In detail, two filamentary 

systems seem to join in the upper corner of Figures 5c and 5d with waves propagating along 

Figure 5 -  Same as in Figure 4, applied to a different region. Areas of possible wave interaction (black tickmarks) are visible in 

panels c and d where two filamentary systems seem to join (upper left corner) and at the end of the right filament. 
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both branches of the structure. The most evident crests (black tickmarks) are visible in the 

area where the two filaments are conjoined, and hence where the two waves might interact. 

Another area of possible wave interaction is visible at the end of the right filament, where two 

wave-like features (black tickmarks) seem to cross each other. Several other undulating 

patterns visible in the zoomed in region have been annotated by blue arrows. It is noteworthy 

that the directions of propagation of the waves imaged in Figures 5c and 5d seem quite 

random and not aligned with the latitude circles, in contrast to those in Figures 4c and 4d. As 

the horizontal wind speed (Grassi et al., 2018) does not change between the two regions, 

different mechanisms might be acting in the two areas. Waves visualized in Figures 4 and 5 

show wavelengths in the range of 70-100 km. 

 

5. Discussion  

The results described in section 3 come from the application of well-established methods of 

data analysis, which were successfully used in the past to describe the spatial structure of 

Jupiter’s cloud patterns at various depths, and their relationship to turbulence (Harrington et 

al., 1996; Barrado-Izagirre et al., 2009; Choi & Showman, 2011; Cosentino et al., 2017). 

Because previous studies refer to Jupiter's low and middle-latitudes, a comparison between 

those findings and ours has little significance, considering the very different dynamical 

contexts. However, in both cases the power spectra are best fitted by two slopes with similar 

power laws. All these slopes, including our own values, show some deviations from the values 

predicted from pure 2D turbulence theory (Kraichnan, 1967; 1971). 

The classical 2D and 3D (Kolmogorov, 1941) turbulence equations predict different values 

for the slopes of the power laws, depending on the turbulent regime. In the 3D turbulent 

regime there is only one slope, the energy cascade is downscale and the energy is transferred 

from large to smaller scales, with a k−5/3 law. The rigorous 2D theory, governed by the 2D 

Navier-Stokes equation, introduces the notion of an inverse cascade of energy, or a transfer 

of energy from small to larger scales beginning at the forcing wavenumber. It is applied  to 

incompressible fluids and predicts two inertial intervals, above and below the forcing scale, 

namely an inverse energy and a direct enstrophy cascade, where the enstrophy (the integral 

of the square of the vorticity) accounts for the dissipative effects arising from rotation, vortex 

formation and generally any swirling activity in the flow. The upscale energy flux should 

give, according to the theory, a k−5/3 power law, while the downscale enstrophy flux should 

give a power law with slope -3. The median values calculated from JIRAM data for the 

upscale slopes were -0.9 (poleward) and -1.2 (equatorward), whereas the equivalent median 

values for the downscale slopes were -3.2 and -3.4.  However, large-scale geophysical flows, 

although nearly two-dimensional, show deviations from the predictions of strictly 2D fluid 

dynamics.  

A dimensionless parameter relevant to the atmospheric dynamics and turbulence is the 

Rossby number Ro=U/fL, where U is the background wind speed, L is the horizontal scale of 

the disturbance associated with the phenomenon under study and f is the Coriolis parameter. 

Ro gives a measure of the significance of rotation apparent forces on the phenomenon under 

study. 
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In quasi-geostrophic approximation, the flow is nearly in geostrophic balance but with an 

inertial contribution significantly smaller than the Coriolis one (Ro<<1). Indeed, the quasi-

geostrophic equations, in their stream function formulation, differ from the Navier-Stokes 

ones for the terms depending on Ro-1 (Foster et al., 2013). As in the classical 2D turbulence, 

energy and enstrophy are conserved, but the Coriolis predominance on the inertial term makes 

vortex stretching possible. 

With reference to the transition wavenumbers reported in Table 1, the horizontal length scale 

L=1/kf, implies for Ro, with f  3.5 × 10-4 𝑠−1 at polar latitudes, values in the range ≅  0.08 −

0.1. These are compatible with the hypothesis of quasi-geostrophic 2D turbulence used in this 

analysis.   

Various dissipation mechanisms can disrupt the steady-state characteristics of the turbulent 

regime. Friction and wave-wave interaction can determine a transfer of energy and enstrophy 

in the reciprocal inertial ranges (Maltrud & Vallis, 1993; Young & Read, 2017), modifying 

the expected slopes. In particular, the physical meaning of nonlinear wave-wave interactions 

is that resonant sets of wave components exchange energy, redistributing it over the spectrum 

(Phillips, 1960). In shallow-water models three-wave interactions (so-called triad 

interactions) become important. Evidence of the influence of nonlinear triad interactions on 

the transfer of kinetic energy through the whole range of length scale has been reported by 

Young & Read (2017). They used datasets, acquired in  the visible and near-infrared bands in 

December 2000 during the NASA Cassini mission, to determine the direction of Jupiter's 

kinetic energy cascade throughout the range of length scales of their specific observations. 

They found that a transfer of energy occurs not only upscale of the spectral “kink”, as 

expected in quasi-geostrophic two-dimensional turbulence, but also downscale in a non-

negligible component. Computing the spectral fluxes of kinetic energy both directly, from 

two of their datasets, and by calculating nonlinear triad interactions, from the third one, they 

found that eddy-eddy interactions contribute significantly. Although this computation refers 

to middle-to-low latitudes, it may be considered valid in whatever region of Jupiter presents 

similar conditions. 

Figures 4 and 5 show that many wave-like features are present on Jupiter’s South Pole, 

concealed by the large-scale cloud patterns, and that some of them might interact, as described 

in section 4.  

A complete overview of the various wave typologies and of the possible implied dynamic 

scenarios on Jupiter’s polar regions is beyond the purpose of this work. Here we note only 

that several wave-like features propagating in different directions are visible in Figures 4 and 

5, sometimes crossing each other, and thus the conditions for triad interactions are present in 

the studied region. In the absence of time-resolved images of these waves, we cannot tell 

whether these are diverging or converging, but the structure is suggestive of the triad 

interactions discussed above. If this is the case, it provides one possible hypothesis to explain 

the deviation of the slopes from the theoretical 2D power laws. A full in-depth analysis using 

the 2D filtering method will be published in a paper in preparation. The waves highlighted in 

Figures 4 and 5 are not the only ones present in these figures, but they were selected to serve 

as clear illustrations of the plethora of such waves we see in the best JIRAM images of the 

southern polar region. 
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The kf  transition in slope, obtained in this work, indicates that a forcing scale can exist around 

500 km. If we hypothesize that baroclinic instabilities play a non-negligible role in the region 

under investigation, then we can assign to L  the Ld Rossby deformation radius meaning 

(Pedlosky, 1986). It must be noted that the Ld values, reported in the Jovian literature, have 

been quite different so far, with values O(103 km) (Harrington et al., 1996; Young & Read, 

2017). However, those values have been estimated for different pressure levels and at 

different latitudes. We use the same approach as Conrath et al. (1981), that refers to data 

acquired during Voyagers missions of the Jovian stratosphere, but using values of the various 

parameters derived from the Galileo mission, adjusted to a tropospheric depth down to p0≅5 

bar. 

Specifically, the deformation radius is 

L𝑑 =
𝐻

𝑓
× 𝑁 

where H is the vertical scale height, f the Coriolis parameter and N the Brunt–Väisälä 

(buoyancy term) frequency. H is computed from 𝐻=𝑅𝑇/𝑔≅23 km, with T≅ 180 K, 

calculated as the mean between 𝑝2=0.03 bar (low stratosphere) and 𝑝1=5 bar (deepest 
sounding level of JIRAM) pressure levels, the gas constant R=3600 J kg-1 K-1) and the 

gravity acceleration g=28.3 m 𝑠-2, at polar latitudes. 

The Brunt–Väisälä frequency for the troposphere assumes values ranging in the interval 0.01-

0.006 s-1 (Watkins & Cho, 2013; Magalhães et al., 2002). Accordingly, the Rossby 

deformation radius values vary from Ld ~ 650 km to Ld ~ 395 km, in agreement with the 

median value of 1/kf  (Table 1). 

These values of Ld at Jupiter’s South Pole, converted into the planetary Burger number 

Bu=(
𝐿𝑑

𝑅𝑐
)

2
, with Rc being the polar radius of curvature, yield Bu~0.3-0.7× 10-4.  The 

planetary Burger number is a dimensionless parameter indicating the importance of the fluid 

stratification on the dynamics. Our findings agree with the polar dynamical regime which 

Brushaber et al. (2019) define as “Jupiter-like”. In this regime Bu~10-4 , while values typical 

for Saturn and ice giant polar dynamics are Bu~10-3 and Bu~10-2, respectively. “Jupiter-like”, 

“Saturn like” and “Uranus/Neptune like” polar regimes are characterized in order by multiple 

circumpolar cyclones, a compact intense cyclonic polar vortex and a large cyclonic polar 

vortex. 
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On the other hand, Ld can be thought of as the horizontal scale at which rotation effects 

become as important as buoyancy effects. Thus, if we interpret 1/kf  as the Rossby deformation 

radius, we expect there should be some eddies and/or meanders in the flow with the same 

horizontal scale of Ld  in the regions under study.  In Figure 6 the 500 km horizontal scale is 

compared with a couple of small eddies (red circle) at the limit of the poleward region.  

Consequently, the comparison between the power spectrum analysis and the dynamical 

structures in Figures 4, 5 and 6 suggests the presence of some baroclinic instabilities in the 

region sampled in this study. We speculate that this finding is compatible with a two-layer 

model, with horizontal gradients of temperature parallel to isobaric contours deep in the 

atmosphere (equivalent barotropic atmosphere) and a thin upper layer where temperature 

gradients cross the isobars and baroclinic instabilities transfer energies from ~ 500 km toward 

larger scales. This can be a possible scenario if the deep atmosphere, embedded between the 

central cyclone and the circumpolar ring, does not experience any mixing with warm air 

masses associated with the cyclonic circulations. Recently, Aurnou et al. (2018) suggested in 

their gas giant convection model a similar scenario, characterized by a thick stable layer with 

strong stability, and deep polar cyclones, perhaps penetrating to ~ 3000 km, i.e. the depth of 

the zonal jets, or even deeper according to Reinaud (2019). The low variability of the slopes 

in Table 1 throughout the various perijoves suggests that this scenario persists for at least 

months or years. 

 

6. Conclusions 

We used a power spectrum analysis on Jupiter’s polar cloud opacities to infer what type of 

turbulent regime is acting on the regions just outside and inside the cluster of cyclones 

encircling the South Pole. We found that the shape of the power spectra is compatible with a 

quasi-geostrophic two-dimensional turbulent regime, both for the equatorward and poleward 

annular regions considered here, with forcing scale around 500 km. We also found that this 

regime is preserved, with few variations, in six out of ten Juno orbits around Jupiter, spanning 

Figure 6 - Comparison of the 500 km scale and eddies located close to the region poleward the cyclone’s ring, as 

seen in the JIRAM image JIR_IMG_RDR_2017033T150327. 
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an overall period of roughly 1.5 years. The slight difference between the slopes in this work 

and the theoretical k−5/3 and k-3 power laws can have more than one reason. The presence of 

minor vortices along some brightness circular paths or dissipation mechanisms, like the triad 

interaction, that redistribute energy and enstrophy on different scale ranges are two possible 

explanations of the deviation from theoretical slopes. A possible hint of the triad interaction 

is the complex pattern of waves, visible in the JIRAM images after a proper stretching and 

color scale application. In this work we assumed that the forcing scale can be interpreted as 

the Rossby deformation radius, a hypothesis that would seem to be confirmed by the presence 

of eddies and meanders of similar size inside the flow. Finally, we deduce that baroclinic 

instabilities perturb the region under analysis. This conclusion prompts us to speculate on a 

possible scenario of deep equivalent-barotropic atmosphere. Additional insights into the 

puzzling deep dynamics of Jupiter’s polar atmosphere will come from  the findings of 

Juno/MWR (MicroWave Radiometer), which senses deeper levels of Jupiter’s atmosphere 

than does JIRAM.  
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Captions 

Figure 1 - Stereographic projections of mosaics composed with images of Jupiter’s South 

Pole acquired by IMG-M in six Juno perijoves. All the images have been corrected for the 

emission angle and re-scaled in the same range of radiance values. Here,  aerosol-free regions 

of high radiance are dark, and aerosol-covered regions of low radiance are white, as reported 

in the color bar at the bottom of the figure. Black solid circles indicate the trajectories along 

which the analyzed signals have been sampled. The 80° S planetographic latitude is reported 

as reference (black dotted circle) in each mosaic.   

https://pds-atmospheres.nmsu.edu/data_and_services/atmospheres_data/JUNO/jiram.html
file:///G:/Transcend%20Elite/Power%20spectra%20poles/JGR%20paper/Last(hoping)%20review/(https:/www.harrisgeospatial.com/Software-Technology)
https://data.mendeley.com/datasets/4f3mrkcxvb/5
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Figure 2 - Average of three power spectral densities relative to the signals sampled outside 

the southern circumpolar ring of cyclones during PJ4. The error bars represent the standard 

error of the mean. 

Figure 3 - Averages of power spectra of the signals sampled inside (top) and outside (bottom) 

the southern circumpolar ring of cyclones. Power law  fits overlap the spectra (red line). 

Median values of the overall power laws for the two cases are shown above the spectra 

(dashed black lines). The positions of the wavenumbers corresponding to the Rhines scale 

and to the transition in slope are marked by vertical lines. X axes at bottom of each plot are 

in wavenumbers – inverse of length – while x axes at the top are in zonal wavenumbers, as 

defined in the text. 

Figure 4 - Example of JIRAM image JIR_IMG_RDR_2017033T150327, (~47 km/pixel) 

acquired during the 4th perijove, and identification of wavy structures. (a) The original 

JIRAM image where PG latitude and longitude are projected as a reference. (b) Enhanced 

view of the JIRAM image, highlighting wavy structures. The rectangular region identifies the 

area where waves are searched. (c) Selected region, extracted from the enhanced view of the 

image. (d) Selected region with wavy patterns marked with black tickmarks, that identify 

some crests and troughs visible by eye, and blue arrows pointing to further wavy features. 

Wavelengths of the marked  wave-like features are in the range of 70-100 km. The 500 km 

horizontal scale is added to panels a and c for comparison. 

Figure 5 - Same as in Figure 4, applied to a different region. Areas of possible wave 

interaction (black tickmarks) are visible in panels c and d where two filamentary systems 

seem to join (upper left corner) and at the end of the right filament. 

Figure 6 - Comparison of the 500 km scale and eddies located close to the region poleward 

the cyclone’s ring, as seen in the JIRAM image JIR_IMG_RDR_2017033T150327. 

Table 1 – Best-fit slope values for the psda of the datasets relative to different perijoves. 

“Poleward” and “Equatorward”  table sections correspond to psda computed by signals 

sampled inside and outside the circumpolar ring of cyclones. We report the values of the two 

slopes, the 1- uncertainty value for each slope fit and the wavenumber value in 

correspondence of the transition in slope. At the bottom of each column of the table the 

medians are shown. 
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Poleward 

Perijove’s passes Slope 1 Slope 2 Transition wavenumber (km-1) 

Pj4 -0.8±0.3 -3.2±0.3 1.6e-03 

Pj6 -0.8±0.2 -3.7±0.9 3.9e-03 

Pj8 -1.6±0.5 -3.2±0.3 1.1e-03 

Pj9 -1.0±0.3 -3.2±0.5 2.6e-03 

Pj11 -0.9±0.3 -3.6±0.5 2.5e-03 

Pj13 -0.3±0.7 -2.5±0.7 7.4e-04 

median -0.9±0.2 -3.2±0.3 2.0e-03±9.3e-04 

Equatorward 

Perijove’s passes Slope 1 Slope 2 Transition wavenumber (km-1) 

Pj4 -1.3±0.3 -3.6±0.4 2.1e-03 

Pj6 -1.3±0.4 -3.1±0.3 1.8e-03 

Pj8 -1.2±0.3 -3.5±0.4 2.0e-03 

Pj9 -1.0±0.3 -3.4±0.3 1.9e-03 

Pj11 -1.1±0.3 -3.6±0.4 2.1e-03 

Pj13 -1.9±0.3 -3.0±0.3 1.7e-04 

median -1.2±0.2 -3.4±0.2 2.0e-03±1.3e-04 


