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Abstract12

Whether or not coherent magnetospheric whistler waves play important roles in the pitch-13

angle scattering of energetic particles is a crucial question in magnetospheric physics. The14

interaction of a thermal distribution of energetic particles with coherent whistler waves15

is thus investigated. The distribution is prescribed by the Maxwell-Jüttner distribution,16

which is a relativistic generalization of the Maxwell-Boltzmann distribution. Coherent17

whistler waves are modeled by circularly polarized waves propagating parallel to the back-18

ground magnetic field. It is shown that for parameters relevant to magnetospheric cho-19

rus, a significant fraction (1-5%) of the energetic particle population undergoes drastic,20

non-diffusive pitch-angle scattering by coherent chorus. The scaling of this fraction with21

the wave amplitude may also explain the association of relativistic microbursts to large-22

amplitude chorus. A much improved condition for large pitch-angle scattering is presented23

that is related to, but may or may not include the exact resonance condition depend-24

ing on the particle’s initial conditions. The theory reveals a critical mechanism not con-25

tained in the widely-used second-order trapping theory.26

Plain Language Summary27

A certain class of plasma waves called whistler waves is abundant in the Earth’s28

magnetosphere. The interaction between whistler waves and energetic particles trapped29

in the Earth’s magnetic field can cause the particles to escape the trap and cause pul-30

sating auroras or damage spacecraft. Although previous studies have mostly focused on31

diffusive mechanisms, we show that a significant fraction of the energetic particles in-32

teracts non-diffusively or coherently with the wave. We also show that a widely-used con-33

dition for such interaction is incomplete and provide a more accurate alternative.34

1 Introduction35

Whistler waves are right-handed circularly polarized electromagnetic plasma waves36

that are ubiquitous in the Earth’s magnetosphere (Gurnett & O’Brien, 1964; Burtis &37

Helliwell, 1969; Russell et al., 1969; Tsurutani & Smith, 1974), Jupiter’s magnetosphere38

(Sentman & Goertz, 1978; Leubner, 1982; Tsurutani et al., 1993), and Saturn’s magne-39

tosphere (Barbosa & Kurth, 1993; Akalin et al., 2006; Hospodarsky et al., 2008). These40

waves are also important in the solar wind (Coroniti et al., 1982; Vocks et al., 2005), fast41

magnetic reconnection (Mandt et al., 1994; Bellan, 2014; Chai et al., 2016; Yoon & Bel-42

lan, 2017, 2018; Haw et al., 2019), and helicon plasma sources (Boswell, 1984; Chen &43

Boswell, 1997). In particular, the interaction between energetic charged particles and mag-44

netospheric whistler waves is important since the interaction can change the pitch-angle45

of the particles, potentially scattering them into the loss cone of a magnetic mirror con-46

figuration such as the Earth’s dipole magnetic field. Because the escaped energetic par-47

ticles can cause pulsating auroras at the Earth’s poles and energetic particles in general48

can damage spacecraft, this interaction has been the focus of many studies for decades49

(Kennel & Petschek, 1966; Lyons et al., 1971; Helliwell & Crystal, 1973; Lyons, 1974; Sum-50

mers et al., 1998; Horne & Thorne, 2003; Albert, 2005; Omura & Summers, 2006; Tsu-51

rutani et al., 2013; A. V. Artemyev et al., 2013; A. Artemyev et al., 2016).52

Relativistic wave-particle resonance has been known to be an important element53

of particle energization and pitch-angle scattering. Resonant interaction arises when54

ω − kvz =
Ω

γ
. (1)

Here, ω is the wave frequency, k is the wavenumber parallel to the background magnetic55

field B0 which is oriented in the z direction, vz is the parallel particle velocity, and Ω =56

qB0/m is the cyclotron frequency of the particle with charge q and mass m. Also, γ =57

(

1− v2/c2
)−1/2

is the particle Lorentz factor where v is the particle speed and c is the58
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speed of light. Kennel and Petschek (1966) first quantified the scattering mechanism by59

which incoherent whistler waves lead to velocity space diffusion, and numerous studies60

have further developed this mechanism (Lyons et al., 1971; Lyons, 1974; Albert, 2005;61

Tsurutani et al., 2009). However, recent spacecraft measurements indicate that the ob-62

served chorus bursts are, in fact, extremely coherent and that these waves, especially large-63

amplitude ones (δB/B0 ∼ 0.01 where δB is the wave magnetic field), are directly linked64

to electron energization, loss, and microbursts (Anderson & Milton, 1964; Cattell et al.,65

2008; Tsurutani et al., 2009, 2013; Gao et al., 2014; Breneman et al., 2017). This link-66

age suggests that a non-diffusive process could be governing what is observed.67

There has thus been a continuing and substantial theoretical effort to investigate68

the dynamics of energetic particles under coherent whistler waves. Bortnik et al. (2008)69

numerically investigated ad hoc the coherent interaction between large-amplitude whistler70

waves and relativistic particles. Lakhina et al. (2010) showed via calculations of pitch-71

angle diffusion coefficients that coherent chorus subelements can cause rapid pitch an-72

gle scattering, although Lakhina et al. (2010) used diffusion coefficients calculated from73

incoherent whistler waves (Kennel & Petschek, 1966) and used non-relativistic equations74

of motion whereas the actual wave-particle interaction involves relativistic particles (1075

keV to MeV (Tsurutani et al., 2013; Breneman et al., 2017)). Bellan (2013) presented76

an exact analytical calculation involving a relativistic particle in a right-handed circu-77

larly polarized electromagnetic wave. This calculation showed that a certain class of par-78

ticles undergo quick, drastic pitch-angle scattering depending on whether the individ-79

ual particle’s initial conditions meet a certain criterion, which will be discussed in the80

next section. Also note that other studies have investigated this single-particle problem81

via various methods (Roberts & Buchsbaum, 1964; Ginet & Heinemann, 1990; Qian, 2000;82

Bourdier & Gond, 2000). However, an analysis of the importance of this mechanism for83

a distribution of particles has not yet been done. To demonstrate importance, one must84

show that a significant fraction of the particles in the distribution experiences this dras-85

tic scattering. If this can be demonstrated, then the particle interaction with coherent86

whistler waves will be a dominant pitch-angle scattering mechanism.87

We extend in this paper the analysis presented in Bellan (2013) to the relativis-88

tic generalization of a thermal distribution of particles; the generalization is prescribed89

by the Maxwell-Jüttner distribution (Jüttner, 1911). It is found that for parameters rel-90

evant to magnetospheric chorus, coherent right-handed circularly polarized waves prop-91

agating parallel to the background magnetic field trigger large, non-diffusive pitch-angle92

scatterings for a significant fraction (1% − 5%) of the energetic particles. The scaling93

of this fraction with the wave amplitude may also explain the association of relativis-94

tic microbursts to large-amplitude chorus (Breneman et al., 2017). A new condition for95

large pitch-angle scattering is also presented; this condition specifies a certain range re-96

lated to Eq. 1, but may or may not include exact resonance depending on the particle97

initial conditions. Test-particle simulations corroborate the predictions made by this anal-98

ysis. It is also demonstrated that the widely-used second-order trapping theory (Sudan99

& Ott, 1971; Nunn, 1974; Omura et al., 1991, 2007, 2008) is a simplified approximation100

of the theory presented in this paper and that this simplified approximation effectively101

misses critical details of the wave-particle interaction. The present study illustrates that102

coherent whistler waves are an important cause of non-diffusive pitch-angle scattering103

and provides an accurate condition for this scattering.104

2 Two-Valley Motion Review105

Let us begin with a brief review of the large pitch-angle scattering mechanism pre-106

sented in Bellan (2013). A thorough comprehension of this single-particle mechanism is107

essential for understanding the ensuing analysis presented here. It is assumed that the108

wave is right-handed circularly polarized and travels parallel to a uniform background109
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magnetic field, so the total magnetic field can be expressed as B = B0ẑ + B̃ where110

B̃ = κB0 [x̂ sin (kz − ωt) + ŷ cos (kz − ωt)] . (2)

Here κ is the wave amplitude relative to the background B0. Faraday’s law determines111

the wave electric field to be:112

Ẽ = −ω
k
ẑ × B̃ =

ω

k
B̃ [x̂ cos (kz − ωt)− ŷ sin (kz − ωt)] . (3)

The relativistic Lorentz force equation determines the motion of a charged particle:113

d

dt
(γβ) =

q

m

(

Ẽ

c
+ β ×B

)

(4)

where β = v/c and γ =
(

1− β2
)−1/2

.114

In Bellan (2013), a left-handed circularly polarized wave was used although the study115

was intended for right-handed waves. However, the result therein is unaffected by this116

apparent error because the sign of the particle charge was unspecified. Although it was117

not explicitly stated, the analysis was carried out assuming that the charge is positive,118

e.g., for positrons or ions. If the charge is assumed to be negative, the same wave-particle119

interaction arises when the wave is assumed to have a right-handed polarization. There-120

fore, the theory in Bellan (2013) describes wave-particle interactions between positively121

charged particles and left-handed waves, and equivalently between negatively charged122

particles and right-handed waves — or electrons and right-handed whistler waves. This123

equivalence can also be seen using charge-parity-time symmetry, which is a fundamen-124

tal law of any Lorentz-invariant system (Greenberg, 2002); making the changes z → −z125

and t→ −t in Eqs. 2 and 3 changes the sense of rotation of the wave, and the relevant126

physics must be equivalent when the change q → −q is made.127

In this paper, the analysis in Bellan (2013) with the left-handed wave and positively128

charged particles will be used for two reasons. First, the analysis can then be kept gen-129

eral for any particle with any sign of charge. Second, the derivation of a separate the-130

ory for negatively charged particles will merely be a matter of some sign changes and131

is not worth the additional complexity in understanding the core points of this paper.132

In Bellan (2013), a “frequency mismatch” parameter133

ξ = 1 + αγ (nβz − 1) (5)

was defined, where α = ω/Ω is the normalized frequency, βz = vz/c is the normal-134

ized parallel velocity, and n = ck/ω is the refractive index. Equation 1 is satisfied when135

ξ = 0, so ξ is a measure of the departure from resonance. An exact rearrangement of136

Eq. 4 leads to an equation of motion for a particle moving in ξ-space (Bellan, 2013):137

1

Ω′
d2ξ

dt′2
= −∂ψ

∂ξ
(6)

where138

ψ (ξ) =
1

8
ξ4 +

(

κ′2 − ξ20
2

− sκ′ sinφ0

)

ξ2

2
− κ′2ξ (7)

is the pseudo-potential for ξ-space motion. Here the primed quantities are calculated in139

the wave frame, i.e., a frame moving with a velocity ẑω/k. The subscript 0 refers to the140

value at the initial time t = t′ = 0 and there are two parameters, namely s and φ0.141

The parameter s is defined as142

s =
αnβ⊥0γ0

γT
=
kρ0
γT

(8)
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where γT =
(

1− n−2
)−1/2

is the Lorentz factor of the wave, and ρ is the relativistic143

Larmor radius. The parameter φ0 is defined as the initial angular orientation of the per-144

pendicular velocity in the x − y plane, i.e., the angle between β⊥0 and Ẽ(t = 0, z =145

0). The shape of the pseudo-potential is entirely determined by the initial conditions of146

the particle with respect to the wave as prescribed by ξ0, s, and φ0. Note that s is an147

initial condition of the particle because α and n are fixed parameters in the present anal-148

ysis.149

Multiplying Eq. 6 by dξ/dt′ and integrating with respect to t′ yields the particle150

pseudo-energy,151

W =
1

2Ω′2

(

dξ

dt′

)2

+ ψ (ξ) , (9)

which is a constant of the motion. For certain initial conditions, ψ (ξ) consists of two val-152

leys separated by a hill in between. If the initial particle pseudo-energy is sufficiently large153

to go over the hill between the two valleys, then the particle undergoes two-valley mo-154

tion in ξ-space. This motion involves large changes in ξ and thus in βz, β⊥ and the pitch-155

angle θpitch = tan−1 β⊥/βz.156

3 Two-Valley Motion Condition157

Let us now derive the conditions for two-valley motion for a given particle. The158

conditions consist of two parts: ψ(ξ) must first be two-valleyed, and the particle must159

have sufficient pseudo-energy to overcome the hill between the two-valleys. The initial160

particle kinetic pseudo-energy can be expressed as (Bellan, 2013)161

1

2Ω′2

(

dξ

dt′

)2

t′=t=0

=
1

2
s2κ′2 cos2 φ0, (10)

so the total pseudo-energy is162

W =
1

2
s2κ′2 cos2 φ0 −

ξ40
8

+
ξ20
2
κ′ (κ′ − s sinφ0)− κ′2ξ0. (11)

We write Eq. 7 as ψ (ξ) = ξ4/8+ bξ2/2− κ′2ξ where b = κ′2 − ξ20/2− sκ′ sinφ0. Then163

dψ/dξ = ξ3/2 + bξ − κ′2, so one extremum is at small ξ ≃ κ′2/b and two extrema are164

at large ξ ≃ ±
√
−2b. Since d2ψ/dξ2 = 3ξ2/2+b, for b < 0 the large extrema are local165

minima (two valleys) and the small extremum is a local maximum (a hill). For b ≥ 0,166

the large extrema are undefined, so there is a minimum at ξ ≃ κ′2/b. Figure 1a shows167

an example of a two-valley ψ (ξ) for which b < 0, and Fig. 1b shows a one-valley ψ (ξ)168

for which b ≥ 0.169

We now make the assumption170

κ′ ≪ s, (12)

which will be shown in Section 5 to be appropriate for relevant magnetospheric situa-171

tions. Then, b ≃ −ξ20/2− sκ′ sinφ0 is negative for172

ξ20 ≥ −2sκ′ sinφ0. (13)

All particles having sinφ0 > 0 satisfy this equation because ξ20 is non-negative. Par-173

ticles having sinφ0 ≤ 0 satisfy Eq. 13 only if they are a certain distance away from ex-174

act resonance (ξ = 0).175

Now, inserting ξ = κ′2/b in Eq. 7, we have the height of the hill to be ψmax ≃176

−κ′4/ (2b). Therefore, the particle has enough pseudo-energy to cross over the hill if177

1

2
s2κ′2 cos2 φ0 −

ξ40
8

+
ξ20
2
κ′ (κ′ − s sinφ0) ≥ κ′2ξ0 −

κ′4

2b
. (14)
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Figure 1. (a) An example of a two-valley ψ (ξ) for which b = −0.008 < 0. (b) An example

of a one-valley ψ (ξ) for which b = 0.031 ≥ 0. (c) The time-dependent pitch-angle of the particle

undergoing two-valley motion, and (d) that of the particle undergoing one-valley motion. The

wave parameters were κ = 0.01, α = 0.25, and n(α) = 18 from Eq. 28. (e), (f) The approximated

pseudo-potentials χ obtained by keeping only the term involving sκ′ in Eq. 7 for the respective

particles.

–6–©2020 American Geophysical Union. All rights reserved.



manuscript submitted to JGR: Space Physics

We now assume and justify later that the terms on the right-hand side of Eq. 14 are much178

smaller than those on the left-hand side. Using Eq. 12, Eq. 14 becomes179

1

2
s2κ′2 cos2 φ0 −

ξ40
8

− ξ20
2
κ′s sinφ0 ≥ 0, (15)

whose solution is180

ξ20 ≤ 2sκ′ (1− sinφ0) . (16)

Now we derive the conditions for which the assumptions regarding Eq. 14 are valid. This181

is done by using the solution (i.e., Eq. 16) obtained under the assumptions and deriv-182

ing the conditions for which the terms on the right-hand side of Eq. 14 are indeed small183

compared to those on the left-hand side. Using Eq. 16 as an equality, it is seen that each184

term on the left-hand side of Eq. 14 is O
(

s2κ′2
)

except for the κ′2ξ20/2 term which is185

ignored by Eq. 12. On the right-hand side, κ′2ξ0 = O
(√

sκ′5
)

so it can be ignored if186

κ′ ≪ s3. Examining the second term, κ′4/2b = O
(

κ′3/s
)

because b = O (sκ′), so it187

can be ignored if κ′ ≪ s. Since κ′ ≪ 1 for linear waves, κ′ ≪ s3 and κ′ ≪ s are both188

true for s ≥ 1, and κ′ ≪ s3 is a stronger statement than κ′ ≪ s if s < 1. Therefore,189

for κ′ ≪ s3 – which will later be demonstrated to be valid for relevant magnetospheric190

parameters – the following gives the condition for which a particle undergoes two-valley191

motion and thus a large pitch-angle scattering:192

−2sκ′ sinφ0 ≤ ξ20 ≤ 2sκ′ (1− sinφ0) . (17)

Equation 17 is one of the main results of this paper. For φ0 ≥ 0, Eq. 17 becomes Eq.193

16 and specifies a certain range around ξ0 = 0. However, for φ0 < 0 that statistically194

represents half of the particle population, Eq. 17 does not include ξ0 = 0, which means195

that particles further away from exact resonance undergo two-valley motion and thus196

large pitch-angle scattering. Therefore, Eq. 17 specifies the exact range of the initial dis-197

tance from resonance that leads to two-valley motion.198

Figure 1c shows the time-dependent pitch-angle θpitch(t) of the particle that has199

enough pseudo-energy to undergo two-valley motion in the two-valley pseudo-potential200

in Fig. 1a. Figure 1d shows θpitch(t) of the particle moving in the one-valley pseudo-potential.201

The particle in Fig. 1c experiences a much larger change in pitch-angle than that in Fig.202

1d. The rate of change of the pitch-angle in Fig. 1c is also very large; the wave period203

is TwaveΩ = 2π/α ≃ 25, so the pitch-angle changes by ∼ 15◦ in tΩ ≃ 40 or in about204

one to two wave periods.205

4 Distribution of ξ206

The initial particle distribution in ξ-space will now be derived. The subscript zero207

will henceforth be dropped because only the initial conditions are being examined. The208

thermal distribution is assumed to be the Maxwell-Jüttner distribution (Jüttner, 1911)209

with an isotropic temperature. This is the relativistic generalization of the Maxwell-Boltzmann210

distribution and can be expressed in terms of the Lorentz factor γ as211

fγ =
γ2
√

1− 1/γ2

ΘK2 (1/Θ)
exp

(

− γ

Θ

)

, (18)

where Θ = kBT/mc
2 is the normalized temperature and Kn is the modified Bessel func-212

tion of the second kind of order n. This distribution is a considerable simplification, and213

repercussions of this simplification and possible remedies will be discussed in Section 7.214

Using γ =
√

1 + p2/m2c2 =
√

1 + p̄2 where p̄ = p/mc is the normalized particle mo-215

mentum, Eq. 18 can be expressed as216

fp̄ =
1

4πΘK2 (1/Θ)
exp

(

−
√

1 + p̄2

Θ

)

. (19)
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Figure 2. fξ for different (a) Θ, (b) α and (c) n values. The default values are Θ = 0.1, α =

0.25, and n = 10. The black dashed line is the resonant condition ξ = 0.

Integrating Eq. 19 in p̄z and over all angles gives fp̄⊥
:217

fp̄⊥
=
p̄⊥
√

1 + p̄2⊥
ΘK2 (1/Θ)

K1

(

√

1 + p̄2⊥
Θ

)

. (20)

Note that fp̄ is defined in 3D p̄-space so that
∫

fp̄d
3p̄ = 1, whereas fp̄⊥

is defined in218

1D p̄⊥-space so that
∫

fp̄⊥
dp̄⊥ = 1. Integrating Eq. 19 in p̄x and p̄y gives fp̄z

:219

fp̄z
=

Θ

2K2 (1/Θ)

(

1 +

√

1 + p̄2z
Θ

)

exp

(

−
√

1 + p̄2z
Θ

)

, (21)

where
∫

fp̄z
dp̄z = 1. The details of the derivations of fp̄⊥

and fp̄z
are given in Appendix220

A and Appendix B, respectively.221

Now, noting that γβ = γv/c = p/mc = p̄, the mismatch parameter (Eq. 5)222

can be expressed as223

ξ = 1 + α (np̄z − γ) . (22)

The probability distribution of having a specific ξ is obtained by multiplying the prob-
ability distribution of having a certain γ by that of having the corresponding p̄z which
yields the specified ξ, and then integrating over all γ (full derivation given in Appendix
C). The solution is

fξ =

∫ ∞

1

γ2
√

1− 1/γ2

2αnK2
2 (1/Θ)

(

1 +

√

1 + p̄2z (γ, ξ)

Θ

)

exp

(

−γ +
√

1 + p̄2z (γ, ξ)

Θ

)

dγ, (23)

where p̄z (γ, ξ) = [(ξ − 1) /α+ γ] /n is a rearrangement of Eq. 22 and
∫

fξdξ = 1. Given224

Θ, α and n, Eq. 23 is an integral solution for fξ.225

Figure 2 shows fξ for different (a) Θ, (b) α and (c) n values. The default values226

are Θ = 0.1, α = 0.25, and n = 10,where α = 0.25 and Θ = 0.1 are relevant values227

for the dayside outer magnetosphere (Tsurutani et al., 2009), and n = 18 ∼ 10 from228

the whistler dispersion relation (Eq. 28). The black dashed vertical line represents the229

resonant condition ξ = 0 (or equivalently Eq. 1). As Θ, α and n increase from zero,230

fξ broadens and more particles are resonant. After a certain threshold, however, too much231

broadening leads to the decrease of the local magnitude of fξ (ξ = 0) and reduces the num-232

ber of resonant particles. Increasing α significantly changes the mean value of ξ as well,233

raising this threshold higher.234

5 Fraction of Particles Undergoing Two-Valley Motion235

Before calculating the fraction of particles undergoing two-valley motion, the prob-236

ability distribution of the limits of integration (Eq. 17) must first be derived. Again, the237
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subscript zero will be dropped. From Eq. 8, s = αnβ⊥γ/γT = α
√
n2 − 1p̄⊥, so the238

relevant distribution is that of p̄⊥ and sinφ. Equation 20 prescribes fp̄⊥
, and assuming239

that φ is isotropic, the probability distribution of Φ = sinφ is the Arcsine(-1,1) distri-240

bution,241

fΦ =
1

π
√
1− Φ2

, (24)

for Φ ∈ (−1, 1).242

We now have all the ingredients to calculate the fraction of particles that undergo
two-valley motion in ξ-space and thus experience large pitch-angle scattering. This frac-
tion can be found by calculating the probability that both Eqs. 13 and 16 (i.e., Eq. 17)
are satisfied. In the case Φ > 0 when Eq. 13 is always met, after defining a numerical
factor a = 2ακ′

√
n2 − 1 so that 2sκ′ sinφ = ap̄⊥Φ and 2sκ′ (1− sinφ) = ap̄⊥ (1− Φ),

the probability of two-valley motion is

p+ =

∫ ∞

p̄⊥=0

∫ 1

Φ=0

fp̄⊥
fΦ

∫

√
ap̄⊥(1−Φ)

ξ=−
√

ap̄⊥(1−Φ)

fξdξdΦdp̄⊥. (25)

In the opposite case where Φ ≤ 0, the probability of two-valley motion is,243

p− =

∫ ∞

p̄⊥=0

∫ 0

Φ=−1

fp̄⊥
fΦ

(

∫ −
√
−ap̄⊥Φ

−
√

ap̄⊥(1−Φ)

fξdξ +

∫

√
ap̄⊥(1−Φ)

√
−ap̄⊥Φ

fξdξ

)

dΦdp̄⊥. (26)

The total fraction of particles undergoing two-valley motion is then ptv = p+ + p−.244

There are four degrees of freedom when calculating ptv: Θ, α, n and κ. However,245

one degree of freedom can be eliminated by linking α and n through the whistler wave246

dispersion relation, which, for parallel propagation and Ωp/Ω ≫ 1 where Ωp is the elec-247

tron plasma frequency, is248

c2k2

ω2
=

Ω2
p/ω

2

|Ω| /ω − 1
. (27)

In terms of the dimensionless variables used in this paper, this becomes249

n =
Ωp/Ω

√

α (1− α)
, (28)

which can be used to express n (α) if Ωp/Ω is specified. Using parameters in Tsurutani250

et al. (2009) (ne ≃ 10 cm−3,B0 ≃ 125 nT), we obtain Ωp/Ω ≃ 8; this value will be251

used throughout the rest of the analysis.252

Let us now calculate ptv for the parameters in the range 0.0001 ≤ κ ≤ 0.01, 0.1 ≤253

α ≤ 0.8 and 0.01 ≤ Θ ≤ 10 (corresponding to electron thermal energies from 5.11254

keV to 5.11 MeV). Since the parameter range is determined, the conditions for which255

the assumption κ′ ≪ s3 that was used to derive Eq. 17 is true can now be determined.256

Because n ≫ 1, κ′ = κ/γT = κ
√

1− 1/n2 ≃ κ and s = α
√
n2 − 1p̄⊥ ≃ αnp̄⊥. From257

Eq. 28 it follows that αn = (Ωp/Ω)
√

α/ (1− α). We now compare the largest value258

of κ to the lowest value of s3, which involves the smallest values of α and Θ. For Θ ≪259

1, the most likely p̄⊥ is
√
Θ (see Appendix D). Thus, the condition κ′ ≪ s3 can be ex-260

pressed as κ ≪
(

(Ωp/Ω)
√

αΘ/ (1− α)
)3

, or Θ ≫ κ2/3/
[

(Ωp/Ω)
2
(α/ (1− α))

]

. In-261

serting α = 0.1 and κ = 0.01 shows that κ′ ≪ s3 is valid if Θ ≫ 0.0066. Thus, 0.01 ≤262

Θ ≤ 10 is consistent with κ′ ≪ s3.263

Figure 3 shows contours of ptv as a function of α and Θ for different κ values. For264

κ ≥ 0.001, which is typical for magnetospheric chorus (Tsurutani et al., 2009; Macúšová265

et al., 2015), a significant fraction (1%−5%) of particles undergo two-valley motion and266

thus large pitch-angle scattering. However, ptv decreases at high Θ (Θ & 1), and this267

phenomenon is related to the decrease of the local magnitude of fξ (ξ = 0) if there is too268
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Figure 3. ptv as a function of α and Θ for different κ values.

much broadening of fξ, as shown in Fig. 2. Figure 3 also shows that ptv (α,Θ) has more269

or less the same shape across a wide range of κ but its magnitude is proportional to
√
κ.270

This is because the limits of the ξ integrals in Eqs. 25 and 26 scale as
√
a ∼ √

κ, so if271

the integration range is sufficiently small so that the integrand may be approximated by272

a linear function, it follows that ptv ∝ √
κ.273

6 Numerical Verification274

The analytical predictions presented in this paper will now be verified via numer-275

ical simulations. A computer code was written which solves Eq. 4 and dx/dt = cβ us-276

ing the fully implicit Runge-Kutta method of the Radau IIA family of order 5 (Hairer277

& Wanner, 1991) in the scipy.integrate.solve ivp package in Python 3.7. This particular278

method was used because it yielded the smallest numerical error out of the available meth-279

ods in the Python package, measured by the drift of the average value of the pitch-angle280

over the full simulation time. This drift should be zero in principle because the coeffi-281

cients of ψ(ξ) are time-independent, but numerical error introduces a small drift. For282

example, the simulations in Figs. 1c and 1d show that the particles’ pitch-angles undergo283

oscillatory motion, but there are ever-so-slight, almost unnoticeable drifts (. 0.1◦) of284

the average values. The error was quantified by using the statistics of the 10,000 par-285

ticles in Fig. 5c. The Radau method with a time step ∆t = 0.2 yielded a median value286

for the pitch-angle drift of 0.07◦ with a standard deviation of 0.14◦, which is far smaller287

than the pitch-angle oscillation of a vast majority of the particles. The simulation time288

was set long enough for every particle to undergo at least several oscillations in the pitch-289

angle. The electromagnetic fields were prescribed by Eqs. 2 and 3, which is a simplified290

model of a whistler wave. The code was parallelized with the multiprocessing package.291

It will first be verified that particles which satisfy Eq. 17 and thus undergo two-292

valley motion experience large pitch-angle scattering. 2,500 particle trajectories were nu-293

merically integrated, and the initial particle momenta were scanned in the range p̄⊥ ∈294

[0, 2], p̄z ∈ [−0.5, 0], and φ = π/4,−π/4. The wave amplitude was κ = 0.005, and the295

wave frequency was α = 0.25, which gives n = 18 using Eq. 28.296

Figure 4a shows the regions of initial momentum space (dark green) that satisfy297

the unapproximated two-valley criteria (Eqs. 14 and b < 0) for φ = π/4. Figure 4b298

shows regions of this space that satisfy the approximated criterion (Eq. 17). The regions299

are virtually identical except for p̄⊥ . 0.1 because for sufficiently large p̄⊥, the κ ≪300

s3 approximation holds. Figures 4a and 4b are effectively predictions of large pitch-angle301

scattering. The colors in Fig. 4c show the pitch-angle range that a particle undergoes302

for each point in (p̄⊥, p̄z) space; this pitch-angle range is defined by the absolute differ-303

ence between the maximum and minimum pitch-angles along the particle trajectory. For304

example, the particle in Fig. 1c has a pitch-angle range of ∼ 15◦, and that in Fig. 1d305
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Figure 4. (a) Regions of initial momentum space (dark green) that satisfy the unapproxi-

mated two-valley criteria (Eqs. 14 and b < 0) for φ = π/4. (b) Regions of this space that satisfy

the approximated criterion (Eq. 17) for φ = π/4. (c) Pitch-angle range (in degrees) within a

single particle trajectory for a range of initial particle momenta for φ = π/4. (d-f) are the same

as (a-c) except for φ = −π/4. Blue lines represent the resonance condition (Eq. 1; ξ = 0). The

wave parameters were α = 0.25, κ = 0.005, and n = 18 from Eq. 28.

has a pitch-angle range of ∼ 3◦. Figures 4d-f are the same as Figs. 4a-c except for φ =306

−π/4. It can be clearly seen that if a particle’s initial momentum satisfies the two-valley307

criteria, it undergoes a large pitch-angle scattering.308

The blue curves in Fig. 4 represent the resonance condition (Eq. 1; ξ = 0). The309

curve is found by solving ξ = 1 + α(np̄z − γ) = 1 + α(np̄z −
√

1 + p̄2⊥ + p̄2z) = 0 for310

p̄⊥ (p̄z) and restricting the domain of p̄z to be consistent with γ = α−1 + np̄z ≥ 1. In311

Figs. 4d-f, the blue lines do not pass through regions of two-valley motion and large scat-312

tering. This fact is consistent with Eq. 17 which qualitatively states that for φ < 0, the313

condition for two-valley motion and large scattering does not include ξ = 0.314

Next, the analytical prediction for ptv will be verified via the Monte-Carlo method.315

The trajectories of 10,000 particles whose initial momenta were randomly sampled from316

Eq. 19 were respectively integrated for κ = 0.0001, 0.001 and 0.01. Other parameters317

were α = 0.25, n = 18, and Θ = 0.1.318

Figure 5 shows the pitch-angle range (in degrees) of the randomly sampled parti-319

cles for different κ values. Red points represent particles that meet the two-valley cri-320

terion (Eq. 17), and the text inside represents the percentage of red particles. Figure 3321

shows that for α = 0.25 and Θ = 0.1, the predicted percentage ranges are 0.4−0.48%,322

1.25 − 1.5% and 4.00 − 4.80% for κ = 0.0001, 0.001 and 0.01, respectively, which ap-323

proximately agree with the results in Fig. 5. Red points generally experience significantly324

larger pitch-angle scattering than other particles, as can be seen from the median value325

of the red points (red horizontal lines). However, it can be seen that there are blue points326

that also experience large scattering; examining the pseudo-potential ψ (ξ) for these points327

shows that these particles have pseudo-energies that are just short of overcoming the two-328

valley hill, so they “almost” undergo two-valley motion and experience substantial pitch-329

angle scattering. Therefore, we conclude that ptv is a lower-bound for the fraction of par-330

ticles with large pitch-angle scattering.331
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Figure 5. Pitch-angle range of 10,000 particles whose initial momenta were randomly sampled

from Eq. 19 for different κ values. Red points represent particles that meet the two-valley crite-

rion (Eq. 17), and the text inside represents the percentage of red particles. The red horizontal

lines represents the median ∆θpitch of the red particles in degrees.
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Figure 6. Pitch-angle change per wave period of the respective simulations in Fig. 5. The red

horizontal lines respectively represent the median value of the pitch-angle change per wave period

of the red particles.
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Figure 7. Same as Fig. 4, but for κ = 0.02.

Even if two-valley motion were to cause large pitch-angle scattering, the mecha-332

nism would not be significant if this scattering could not occur within a short enough333

time. Thus, it is necessary to show that the coherent wave lasts sufficiently long for two-334

valley motion to occur. Figure 6 shows the pitch-angle change within a single wave pe-335

riod for the respective simulations in Fig. 5. Tsurutani et al. (2009) observed in the outer336

magnetosphere coherent chorus elements with amplitudes κ ≃ 0.0016 (B0 ≃ 125 nT337

and wave field B̃ ≃ 200 pT) that are 0.1 ∼ 0.5 s long with a frequency of ∼ 700Hz.338

These elements consisted of subelements or packets lasting 5 ∼ 10 ms, corresponding339

to about 3.5 to 7 wave periods. κ ≃ 0.0016 approximately corresponds to Fig. 6b, which340

shows that red particles can reach their median pitch-angle range (∼ 5◦ from Fig. 5b)341

in five wave periods on average. For κ = 0.01 (Fig. 6b), this rate is even faster as the342

red particles can reach their median pitch-angle range of ∼ 15◦ (Fig. 5c) in about two343

wave periods.344

7 Discussion345

The results presented here may help explain the association of large-amplitude whistler346

waves to relativistic microbursts (∼ 1 MeV) (Breneman et al., 2017) and may explain347

the lack of such energetic microbursts in small-amplitude chorus (Tsurutani et al., 2013).348

Particle energization is not a subject of this paper and thus will not be discussed; it will349

be assumed that the particles are first energized by some mechanism that yields a rel-350

ativistic distribution, and then the ensuing pitch-angle dynamics are studied in order to351

concentrate on one topic. It should be noted, however, that energization and pitch-angle352

scattering may occur simultaneously.353

In Fig. 3, for small amplitudes (0.0001 ≤ κ ≤ 0.001), only up to 0.5% of par-354

ticles in a distribution with a temperature of ∼ 1 MeV (corresponding to Θ ≃ 2) in-355

teract with the wave, whereas for large amplitudes (κ ≃ 0.01), ∼2% of such particles356

do. This is because the range of the two-valley condition in Eq. 17 scales with the wave357

amplitude κ; i.e., as the wave amplitude increases, more particles, including energetic358

particles, satisfy the two-valley condition.359

The interaction of large-amplitude waves with relativistic particles is further ex-360

plained in Fig. 7, which is the same as Fig. 4 but for a larger wave amplitude (κ = 0.02).361
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It can clearly be seen that the predictions of large scattering in Fig. 7 are much broader362

in phase space than those in Fig. 4. This is important because in Fig. 4, relativistic par-363

ticles with p̄ & 1 must have large initial pitch-angles to interact with the wave since the364

two-valley condition is a narrow range related to the exact resonance condition, and thus365

these particles must undergo extremely large pitch-angle scatterings in order to jump366

into the loss cone. However, in Fig. 7, the range for two-valley motion is much increased,367

allowing for relativistic particles with smaller initial pitch-angles to interact with the wave.368

The deviation of the two-valley condition from the exact resonance condition is because369

the range in Eq. 17 scales with κ. Furthermore, the pitch-angle range itself is significantly370

increased in Fig. 7. Therefore, a larger wave amplitude allows for relativistic particles371

with lower initial pitch-angles to interact with the wave, while simultaneously increas-372

ing the amount of pitch-angle scattering; these two effects lead to more relativistic par-373

ticles being pitch-angle scattered into the loss-cone.374

There are a few limitations to the present analysis that may be subject to future375

work. First, the Maxwell-Jüttner distribution is a simplification and should not be con-376

sidered as a distribution representing the entire electron population. The actual distri-377

bution is a sum of these Maxwellians or other functions such as the kappa distribution378

(Pierrard & Lazar, 2010). If the actual distribution can be expressed as a weighted sum379

of Maxwelll-Jüttner distributions, then the total fraction of particles that undergo two-380

valley motion is the sum of the partial fractions for each distribution. On the other hand,381

if the actual distribution is another sufficiently simple function, then an analysis sim-382

ilar to that in Sections 4 and 5 may be conducted by replacing Eq. 18 by the actual dis-383

tribution. However, depending on the complexity of the actual distribution, its transi-384

tion to Eq. 23 may be more complicated.385

Second, the particle temperature is assumed for simplicity to be isotropic, whereas386

observations indicate that electron temperature in the magnetosphere in general is anisotropic387

and electron distribution functions can be more complex than simple anisotropic distri-388

butions (Li et al., 2010). The transition to an anisotropic Maxwell-Jüttner distribution389

is outlined in Livadiotis (2016) and Treumann and Baumjohann (2016).390

Third, the wave is assumed to have exact parallel propagation, whereas many in-391

stances of magnetospheric chorus involve oblique propagation (Santoĺık et al., 2009; A. Arte-392

myev et al., 2016). Also, chorus typically exhibits frequency and amplitude changes over393

a short time period (Tsurutani et al., 2009), but the model presented here is based on394

a plane wave with a fixed frequency and wavenumber (Eqs. 2 and 3). However, includ-395

ing obliquity and variable frequency makes the analysis considerably more complicated396

and so would be inappropriate for an inaugural analysis.397

8 Comparison to Second-order Trapping Theory398

A popular theory describing wave-particle interactions is the second-order trapping399

effect presented in, e.g., Sudan and Ott (1971), Nunn (1974) and Omura et al. (1991).400

Omura et al. (2007) and Omura et al. (2008) present relativistic generalizations of the401

theory. However, it will now be shown that this previous theory is an approximation of402

the theory presented here; this approximation effectively misses the critical two-valley403

nature of the pseudo-potential.404

Omura et al. (1991) use the following coupled equations for non-relativistic speeds:

dζ

dt
= k(vz − VR), (29)

d

dt
(vz − VR) =

ω2
t

k
(sin ζ + S), (30)

where405

VR =
ω − Ω

k
, (31)
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ζ is the angle between v⊥ and B̃, ωt =
√
kv⊥Ωκ is the trapping frequency, and S is

a parameter that is equal to zero when the background magnetic field is spatially uni-
form and ω is a constant. Therefore, setting S = 0, differentiating Eq. 30 in time, and
using Eq. 29,

d2

dt2
(vz − VR) =

ω2
t

k
cos ζ

dζ

dt
, (32)

= ω2
t (vz − VR) cos ζ. (33)

Letting γ = 1 in Eq. 5 and rearranging shows that406

ξ =
k

Ω
(vz − VR) , (34)

so Eq. 33 becomes

d2ξ

dt2
= ξω2

t cos ζ, (35)

= − ∂

∂ξ

(

−ξ
2

2
ω2
t cos ζ

)

, (36)

1

Ω2

d2ξ

dt2
= −∂χ(ξ)

∂ξ
, (37)

where χ(ξ) = −ξ2ω2
t cos ζ/2Ω

2 is the pseudo-potential of this system.407

Now, let us examine the term involving sκ′ in Eq. 7 assuming γ0 = γT = 1;

−sκ sinφ0
ξ2

2
= −αnκβ⊥0 sinφ0

ξ2

2
, (38)

= −ω

Ω

ck

ω
κ
v⊥0

c
sinφ0

ξ2

2
, (39)

= −ω
2
t0

Ω2
sinφ0

ξ2

2
, (40)

= χ0(ξ), (41)

because ζ and φ are related by ζ = φ − π/2, so cos ζ = sinφ. χ0(ξ) is χ(ξ) except408

that v⊥0 and φ0 are used instead of v⊥ and φ, and the relationship is similar for ωt0 and409

ωt. Therefore, χ(ξ) results from keeping only the sκ′ term in ψ(ξ). This is important410

because χ(ξ) only describes either a trapping or a non-trapping potential but not a two-411

valley potential.412

Figure 1e and 1f plot the approximated pseudo-potentials χ(ξ) for the particles in413

Fig. 1a and 1b, respectively. For both particles, χ(ξ) is clearly a one-valley potential,414

whereas the unapproximated ψ(ξ) is two-valleyed for the particle in Fig. 1a and thus it415

undergoes much larger pitch-angle scattering than the particle in Fig. 1b . Therefore,416

if the theory in Omura et al. (1991) were to be used, it would be impossible to distin-417

guish between the two particles which clearly have an extremely large difference in the418

amount of pitch-angle scattering.419

Another important problem with the second-order trapping theory is that the time-420

dependence of the variables is ambiguous at best. Omura et al. (1991) imply that v⊥ and421

thus ωt are time-dependent but then treat v⊥ as a constant when they state that com-422

bining Eqs. 29 and 30 gives a pendulum equation. Sudan and Ott (1971) admit that v⊥423

is time-dependent, but then argue that it can be treated as a constant, as specified in424

the sentence after their Eq. 10. In the present theory, however, we explicitly differen-425

tiate between the initial variables and the time-dependent ones, so no approximation re-426

garding time-dependence needs to be made. This is an extremely important point be-427

cause this time-dependence of v⊥ gives the two-valley potential whereas treating it as428

a constant does not. This fact can be more explicitly illustrated by examining Eq. 26429
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in Bellan (2013) which is an equation for the parallel velocity (recall that βz = vz/c430

and prime refers to the wave frame):431

1

Ω′
d2β′

z

dt′2
= ξβ′

⊥ · B̃
′
⊥

B0
− β′

z

B̃′
⊥

B0
· B̃

′
⊥

B0
. (42)

The second-order trapping theory effectively drops the last term in Eq. 42 and ignores432

the time-dependence of the first term on the right-hand side. This leads to433

1

Ω′
d2ξ

dt′2
= αn

γ′

γT
ξβ′

⊥ · B̃
′
⊥

B0
, (43)

which is equivalent to Eq. 37 if γ′ = γT = 1 is assumed. However, Eq. 35 of Bellan434

(2013) states that435

β′
⊥ · B̃

′
⊥

B0
= β′

⊥0 ·
B̃′

⊥0

B0
− γT

2αnγ′
(

ξ2 − ξ20
)

, (44)

which means that treating v⊥ as a constant effectively misses the ξ-dependence in Eq.436

44, which is the reason for the two-valley shape of the pseudo-potential.437

For example, neglecting the ξ20 term in Eq. 44 leads to erroneous conclusions re-438

garding the shape of the potential near ξ = 0. In Fig. 1e, χ(ξ) is a valley because −sκ′ sinφ0439

is positive in this case. However, the correct pseudo-potential ψ(ξ) in Fig. 1a is a hill440

near ξ = 0 because −ξ20/2 − sκ′ sinφ0 in Eq. 7 is negative in this case. Also, the ξ2441

term in Eq. 44, which leads to the positive ξ4 term in Eq. 7, prevents the pseudo-potential442

from diverging to −∞ as ξ → ±∞. This prevents the particle ξ from veering off to in-443

finity; this phenomenon is unphysically allowed if the approximated χ(ξ) is used and sinφ0 >444

0. The term linear in ξ in Eq. 7 which affects the asymmetry of the two-valleys is also445

neglected in χ(ξ). The fact that v⊥ is not constant can be explicitly seen in Fig. 5g of446

Bellan (2013), where v⊥ of a particle undergoing two-valley motion varies in time by over447

a factor of three.448

It should be noted, however, that for a non-uniform background field and/or time-449

dependent wave frequencies, S is finite in Eq. 30 and this may have an important role450

in the system additional to the effects described in the present paper. In fact, many stud-451

ies that use the approximated second-order trapping theory focus on the non-local pro-452

cesses where effects due to finite S are significant (e.g., in Omura et al. (2007)). The present453

study focuses on local scattering that happens over only a few wave periods, so S can454

be presumed to be small, and ψ(ξ) instead of χ(ξ) must be used.455

A simple way to see that S is locally negligible is to consider the physical length456

of the wave for the duration of the pitch-angle scattering. From Figs. 5 and 6, maximum457

deflection happens within 5 wave periods. For B0 = 125 nT, Ω = 2.2×104 rad/s. Us-458

ing wave parameters that have been used so far, α = 0.25 gives ω = 5.5 × 103 rad/s,459

and n = 18 gives the wavelength to be λ = 19 km. Therefore, 5 wave periods corre-460

sponds to about 100 km, which is a minuscule distance compared to the length scale of461

the magnetosphere at L ≃ 5 where plentiful amounts of relativistic microbursts occur462

(Tsurutani et al., 2013). The time-dependence of the wave frequency is also negligible463

because a single chorus element lasts for around 0.1-0.5 s while its frequency increases464

by about 50%, but five wave periods corresponds to less than 0.01 s (Tsurutani et al.,465

2009). Therefore, S can be considered to be negligible during the local scattering pro-466

cess.467

9 Conclusion468

The interaction of a relativistically-consistent thermal distribution of particles with469

a coherent right-handed circularly polarized wave has been investigated. Departure from470
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wave-particle resonance for each particle is expressed by a frequency mismatch param-471

eter ξ, where ξ = 0 represents perfect resonance. An exact rearrangement of the rel-472

ativistic particle equation of motion shows that ξ follows pseudo-Hamiltonian dynam-473

ics with an associated pseudo-potential ψ (ξ). If ψ (ξ) has two-valleys separated by a hill,474

and the particle has enough pseudo-energy to overcome the hill, then the particle un-475

dergoes two-valley ξ-space motion that produces a large, non-diffusive pitch-angle scat-476

tering.477

An accurate condition for two-valley motion and thus for large pitch-angle scat-478

tering has been derived; this condition is related to but may or may not include the ex-479

act resonance condition (Eq. 1), and the range of this condition scales with the wave am-480

plitude. Assuming that the particle distribution is Maxwell-Jüttner, which is a relativis-481

tic generalization of the Maxwell-Boltzmann distribution, for typical magnetospheric pa-482

rameters a significant fraction (1 − 5%) of the particles undergoes two-valley motion.483

The pertinent analysis can potentially be used for the actual local electron distribution,484

which may not be exactly Maxwellian. Numerical simulations confirm the analytical re-485

sults. The scaling of the fraction of interacting particles with the wave amplitude may486

also explain the association of relativistic microbursts to large-amplitude chorus. The487

present theory is more accurate and exact than the widely-used second-order trapping488

theory as second-order trapping theory fails to take into account two-valley motion.489

Appendix A Derivation of fp̄⊥
490

In cylindrical coordinates, Eq. 19 is equivalent to491

fp̄d
3p̄ =

1

4πΘK2 (1/Θ)
exp

(

−
√

1 + p̄2

Θ

)

p̄⊥dp̄⊥dφdp̄z . (A1)

Integrating in p̄z gives492

∫ ∞

p̄z=−∞
fp̄p̄⊥dp̄⊥dφdp̄z =

∫ ∞

p̄z=−∞

1

4πΘK2 (1/Θ)
exp

(

−
√

1 + p̄2⊥ + p̄2z
Θ

)

p̄⊥dp̄⊥dφdp̄z

(A2)

= p̄⊥dp̄⊥dφ

∫ ∞

p̄z=0

1

2πΘK2 (1/Θ)
exp

(

−
√

1 + p̄2⊥ + p̄2z
Θ

)

dp̄z ,

(A3)

where p̄2 = p̄2⊥ + p̄2z. Defining493

a2 =
1+ p̄2⊥
Θ2

(A4)

and494

t =
p̄z
Θ
, (A5)

the p̄z-integral in Eq. A3 becomes495

1

2πK2 (1/Θ)

∫ ∞

0

exp
(

−
√

a2 + t2
)

dt. (A6)

Now we define496

t = a sinh z, (A7)

so
√
a2 + t2 = a

√

1 + sinh2 z = a cosh z and dt = a cosh zdz. Equation A6 is now497

a

2πK2 (1/Θ)

∫ ∞

0

cosh z exp (−a cosh z)dz. (A8)
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The z-integral in Eq. A8 evaluates to K1 (a) where Kn is the modified Bessel function498

of the second kind of order n (Zwillinger, 2015, Section 8.432, 1.).499

Therefore, Eq. A3 is now500

√

1 + p̄2⊥
2πΘK2 (1/Θ)

K1

(

√

1 + p̄2⊥
Θ

)

p̄⊥dp̄⊥dφ. (A9)

Integrating in φ yields the final result:501

fp̄⊥
dp̄⊥ =

p̄⊥
√

1 + p̄2⊥
ΘK2 (1/Θ)

K1

(

√

1 + p̄2⊥
Θ

)

dp̄⊥, (A10)

which is Eq. 20.502

Appendix B Derivation of fp̄z
503

In cylindrical coordinates, Eq. 19 is equivalent to504

fp̄d
3p̄ =

1

4πΘK2 (1/Θ)
exp

(

−
√

1 + p̄2

Θ

)

p̄⊥dp̄⊥dφdp̄z . (B1)

Integrating in all φ and p̄⊥, Eq. B1 becomes505

fp̄z
dp̄z =

∫ ∞

p̄⊥=0

1

2ΘK2 (1/Θ)
exp

(

−
√

1 + p̄2⊥ + p̄2z
Θ

)

p̄⊥dp̄⊥dp̄z . (B2)

Letting η2 = 1 + p̄2⊥ + p̄2z while keeping p̄z constant so that506

ηdη = p̄⊥dp̄⊥, (B3)

we have507

fp̄z
dp̄z =

∫ ∞

η=
√

1+p̄2
z

1

2ΘK2 (1/Θ)
exp

(

− η

Θ

)

ηdηdp̄z . (B4)

Using the integral formula (Zwillinger, 2015, Section 3.351, 2.)508

∫ ∞

u

xne−µxdx = e−uµ
n
∑

k=0

n!

k!

uk

µn−k+1
, (B5)

where x = η, u =
√

1 + p̄2z, µ = 1/Θ, and n = 1 in this case, we have

fp̄z
dp̄z =

1

2ΘK2(1/Θ)

(

Θ2 +Θ
√

1 + p̄2z

)

exp

(

−
√

1 + p̄2z
Θ

)

, (B6)

=
Θ

2K2(1/Θ)

(

1 +

√

1 + p̄2z
Θ

)

exp

(

−
√

1 + p̄2z
Θ

)

, (B7)

which is Eq. 21.509

Appendix C Derivation of fξ510

ξ is defined as511

ξ = 1 + α (np̄z − γ) = 1 + αζ, (C1)

where ζ = np̄z − γ.512
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fζ will first be derived. Defining R = np̄z (so dp̄z = dR/n and ζ = R − γ), we
have

fp̄z
(p̄z)dp̄z = fp̄z

(R/n)
dR

n
(C2)

=
Θ

2nK2 (1/Θ)

(

1 +

√

1 +R2/n2

Θ

)

exp

(

−
√

1 +R2/n2

Θ

)

dR (C3)

= fR(R)dR. (C4)

Now, in order for ζ = R − γ to be true, the value of R has to equal ζ + γ for a given
value of γ. The probability distribution of this occurrence integrated over all values of
γ gives fζ:

fζ(ζ) =

∫ ∞

1

fγ (γ) fR (ζ + γ) dγ (C5)

=

∫ ∞

1

γ2
√

1− 1/γ2

2nK2
2 (1/Θ)



1 +

√

1 + (ζ + γ)
2
/n2

Θ



 exp



−
γ +

√

1 + (ζ + γ)
2
/n2

Θ



 dγ.

(C6)

Finally, rearranging Eq. C1 yields ζ (ξ) = (ξ − 1) /α so that dζ = dξ/α. It fol-
lows that

fζ(ζ)dζ = fζ ([ξ − 1]/α)
dξ

α
(C7)

=

∫ ∞

1

γ2
√

1− 1/γ2

2αnK2
2 (1/Θ)



1 +

√

1 + (ζ (ξ) + γ)2 /n2

Θ



 exp



−
γ +

√

1 + (ζ (ξ) + γ)2 /n2

Θ



 dγdξ

(C8)

= fξ(ξ)dξ. (C9)

Writing p̄z (γ, ξ) = (ζ (ξ) + γ) /n yields a more compact expression:

fξ(ξ) =

∫ ∞

1

γ2
√

1− 1/γ2

2αnK2
2 (1/Θ)

(

1 +

√

1 + p̄2z (γ, ξ)

Θ

)

exp

(

−γ +
√

1 + p̄2z (γ, ξ)

Θ

)

dγ, (C10)

which is Eq. 23.513

Appendix D Derivation of non-relativistic fp̄⊥
514

From Eq. A10,

fp̄⊥
=
p̄⊥
√

1 + p̄2⊥
ΘK2 (1/Θ)

K1

(

√

1 + p̄2⊥
Θ

)

. (D1)

For p̄⊥ ≪ 1,

√

1 + p̄2⊥ ≃ 1 +
p̄2⊥
2

(D2)

For Θ ≪ 1, it is seen that (Watson, 1995, Section 7.23)

K2 (1/Θ) ≃
√

πΘ

2
e−1/Θ, (D3)
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and for small Θ ≪ 1 and p̄⊥ ≪ 1,

K1

(

√

1 + p̄2⊥
Θ

)

≃ K1

(

1

Θ
+
p̄2⊥
2Θ

)

(D4)

≃
√

πΘ

2 + p̄2⊥
exp

(

− 1

Θ
− p̄2⊥

2Θ

)

, (D5)

so to lowest order,

fp̄⊥
≃ p̄⊥

Θ

√

1 +
p̄2⊥
2

exp

(

− p̄2⊥
2Θ

)

(D6)

≃ p̄⊥
Θ

exp

(

− p̄2⊥
2Θ

)

. (D7)

The most likely p̄⊥ value given this probability distribution function is

p̄⊥,ML =
√
Θ. (D8)
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