Appendix A

to

ELECTRON MICROPROBE/SIMS ANALYSES OF AI IN OLIVINE: APPLICATIONS TO SOLAR WIND, PALLASITES, AND TRACE ELEMENT ANALYSES.

J. M. Paque¹, A. E. Hofmann^{1,2}, D. S. Burnett¹, Y. Guan¹, A. J. G. Jurewicz³, D.S. Woolum⁴, C. Ma¹ and G. R. Rossman¹

XPS Modeling

Typical SC3 olivine Al 2p peak, Mg 2s peak to the left. The small Al 2s peak (not shown) is present which confirms identification. Data red; fit black. All 12 spots analyzed have measurable Al 2p peak with an average about 500 cps. For comparison, single crystal sapphire standard 2x10⁴ cps.

Figure A1

For sapphire standard:

cps Al sapphire = k n A λ sin(θ) (A1)

```
k = cons; n = atoms Al/cc in sapphire; A = X-ray beam area; \lambda = photoelectron mean free path (\approx 16 A);
\theta = photoelectron take off angle (35 degrees).
```

For monolayer of Al contamination on olivine: cps Al ol = k N A (S2)

N = contamination atoms of Al/ cm^2

N = n [I(ol) / I(sap)] $\lambda \sin(\theta) \approx 2e13 \text{ atoms/cm}^2$ I=intensity

If mean emp emission depth of Al K α X-ray in olivine is 2 micron, for 100 ppm Al , about 100 x 10¹³ atoms/cm^{2.}

X-rays from surface contamination detected with more efficiency.

So SC3 Al contamination $\geq 2\%$