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CONTROLLABILITY OF LINEAR IMPULSIVE SYSTEMS
—AN EIGENVALUE APPROACH

Vijayakumar S. Muni and Raju K. George

This article considers a class of finite-dimensional linear impulsive time-varying systems for
which various sufficient and necessary algebraic criteria for complete controllability, including
matrix rank conditions are established. The obtained controllability results are further synthe-
sised for the time-invariant case, and under some special conditions on the system parameters,
we obtain a Popov-Belevitch-Hautus (PBH)-type rank condition which employs eigenvalues of
the system matrix for the investigation of their controllability. Numerical examples are pro-
vided that demonstrate—for the linear impulsive systems, null controllability need not imply
their complete controllability, unlike for the non-impulsive linear systems.
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Classification: 15A18, 34A37, 93B05

1. INTRODUCTION

Many of the evolution processes exhibit impulsive behaviour, that is, the states of such
system are subjected to short-term perturbations at certain moments of time. Dynamical
systems which show an impulsive behaviour are often encountered in artificial intelli-
gence, biological systems, population dynamics, neural networks, robotics, telecommu-
nications, information science etc. Readers can refer a monograph by Lakshmikantham
et al [6] for a detailed study on impulsive systems. Controllability is one of the funda-
mental properties of the dynamical control system, which simply means the system can
be steered from any of its initial state to any desired final state within its state-space in
some finite-time, by using a set of admissible control functions.

The investigation on controllability of impulsive systems has begun in 1993 by Leela
et al [7], where, it is analysed an effect of impulsive control on system controllability.
Later the research on these systems took a rapid growth when many other control the-
orists started investigating the controllability of different types of impulsive systems.
Some of the remarkable contributions were made by Benzaid and Sznaier [1], George
et al [2], Guan et al ([3], [4]), Xie and Wang [10], Zhao and Sun ([11], [12]), Han et
al [5] and others. In [1], a homogeneous linear impulsive system is considered and its
global null controllability is established. In [2], the authors investigated the controlla-
bility of impulsive systems with nonlinear perturbations. In [3], various necessary and
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sufficient controllability conditions are obtained for the linear impulsive systems of both
autonomous and nonautonomous type. Xie and Wang [10] considered linear piecewise
constant impulsive systems and obtained their controllability results, which are gener-
alised in [11] for the time-varying case, and further simplifications are performed in [5].
But it is worth pointing out here that, in all these papers the authors actually inves-
tigated the null controllability (i.e. controllable to the origin from any initial state) of
impulsive systems, which is not equivalent to their complete controllability unlike the
linear systems without impulses.

As we know for the time-invariant case of a linear system without impulses, in addition
to Kalman’s matrix rank condition, an equivalent Popov-Belevitch-Hautus (PBH) rank
condition which adopts the eigenvalues of system matrix is one of the easily verifiable
and a powerful tool in the analysis of their controllability (Terrell [9]); and our literature
survey shows that in none of the articles on impulsive control systems, a PBH-type rank
condition is discovered so far.

This article provides various sufficient and necessary criteria for complete controlla-
bility of linear impulsive systems. The accomplished results are further reduced to the
corresponding time-invariant case and subsequently obtained Kalman’s type and PBH-
type rank conditions under some special properties of the system parameters. When we
specialise the obtained complete controllability conditions to that for null controllability,
the results coincide with those in [3].

We organise this manuscript in four sections. In Section 2, some of the preliminaries
and a class of linear impulsive control systems whose controllability are to be investigated
are presented. The main results of the paper begins with Section 3, where we discuss
various sufficient and necessary conditions for controllability of the considered system.
Also a numerical example is introduced to support the claim—the null controllability
need not imply the complete controllability for the linear impulsive systems. In Section 4,
the controllability results which are obtained is Section 3 are applied to the corresponding
time-invariant case of the system, and subsequently the conditions are reduced in terms
of the system matrices and their eigenvalues. Finally the paper terminates with some
concluding remarks.

2. PRELIMINARIES AND SYSTEM DESCRIPTION

Throughout the paper R denotes the set of all real numbers and N the positive integer
set. For any fixed m,n ∈ N, Rn×m defines the real vector space of all (n × m)-real
matrices under the component-wise addition and component-wise scalar multiplication
of matrices; in particular for m = 1, Rn collects all (n × 1)-real matrices (also called
as vectors), which represents an n-dimensional real vector space over a real field, and
is also a real Banach space endowed with an Euclidean norm ‖ · ‖Rn . Let In symbolises
an identity matrix of size (n× n). The spectrum σ(A) defines the set of all eigenvalues
of square matrix A. The transpose of A ∈ Rn×m is denoted by AT ∈ Rm×n. Denote
C(A;B) for the set of all continuous functions from set A to set B. For 1 5 m 5
n, the reverse product of square matrices (of same size) is defined by

∏m
j=n Aj :=

AnAn−1 . . .Am. The zero matrix of any size is denoted by O and zero vector by 0.

The natural space to work on the controllability of finite-dimensional linear impulsive
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systems is the real Banach space:

B :=
{

x(·)
∣∣x(·) : [t0,∞)→ Rn is continuous and bounded on [t0,∞) \ {tk : k = 1, 2, . . .}

and differentiable a.e. on [t0,∞) such that ∃ x(t−k ) := lim
t↑tk

x(t) and x(t+k ) := lim
t↓tk

x(t)

with x(t−k ) = x(tk), and x(t0) = lim
t↓t0

x(t)
}

endowed with sup-norm ∥∥x(·)
∥∥
B := sup

t∈[t0,∞)

∥∥x(t)
∥∥
Rn .

We also need the following real Banach space:

PC :=
{

u(·)
∣∣u(·) : [t0,∞)→ Rm is bounded piecewise continuous function on [t0,∞)

}
endowed with the sup-norm as in B.

In this work, we consider the class of dynamical control systems modelled by the
following n-dimensional linear impulsive ordinary differential equations:

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ [t0,∞) \ {tk : k = 1, 2, 3, . . .},
x(t0) = x0,

∆x(tk) = Ekx(tk) + Fku(tk),

 (1)

where

(i) the state function x(·) ∈ B with a known initial state x(t0) = x0, and the control
function u(·) ∈ PC,

(ii) A(·) ∈ C
(
[t0,∞); Rn×n) and B(·) ∈ C

(
[t0,∞); Rn×m) are the known matrix val-

ued functions,

(iii) ∆x(tk) := x(t+k )− x(tk) is an impulse in the state at known times tk,

(iv) Ek ∈ Rn×n and Fk ∈ Rn×m are the known constant matrices.

The solution to system (1) is given in the following lemma.

Lemma 1. By assuming there are M -impulses, M ∈ N in the time interval [t0, tf ], the
solution to the system (1) in the time-duration (tk, tk+1], k = 1, 2, . . . ,M is given by

x(t) = Φ(t, tk)

{
1∏

j=k

(In + Ej)Φ(tj , tj−1)x0

+

k∑
i=1

(
i+1∏
j=k

(In + Ej)Φ(tj , tj−1)

)
(In + Ei)

∫ ti

ti−1

Φ(ti, s)B(s)u(s)ds

+

k∑
i=2

i∏
j=k

(In + Ej)Φ(tj , tj−1)Fi−1u(ti−1) + Fku(tk)

}

+

∫ t

tk

Φ(t, s)B(s)u(s)ds,

(2)
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where Φ(t, s) := Φ(t)Φ−1(s) is the state-transition matrix associated with A(t), and
Φ(t) is the fundamental matrix (solution) to the homogeneous system: ẋ(t) = A(t)x(t);

it is convention to assume
∏k+1

j=k(In + Ej)Φ(tj , tj−1) = In and tf = tM+1.

P r o o f . The solution to the system (1) in [t0, t1] is given by using the method of
variation of parameters as

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)B(s)u(s)ds. (3)

This gives

x(t1) = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, s)B(s)u(s)ds,

so that

x(t+1 ) = (In + E1)x(t1) + F1u(t1)

= (In + E1)

{
Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, s)B(s)u(s)ds

}
+ F1u(t1),

using which we can write the solution to system (1) in (t1, t2] as

x(t) = Φ(t, t1)x(t+1 ) +

∫ t

t1

Φ(t, s)B(s)u(s)ds

= Φ(t, t1)

{
(In + E1)Φ(t1, t0)x0 + (In + E1)

∫ t1

t0

Φ(t1, s)B(s)u(s)ds

+ F1u(t1)

}
+

∫ t

t1

Φ(t, s)B(s)u(s)ds,

which is same as

x(t) = Φ(t, t1)

{
1∏

j=1

(In + Ej)Φ(tj , tj−1)x0

+

1∑
i=1

(
i+1∏
j=1

(In + Ej)Φ(tj , tj−1)

)
(In + Ei)

∫ ti

ti−1

Φ(ti, s)B(s)u(s)ds

+

1∑
i=2

i∏
j=1

(In + Ej)Φ(tj , tj−1)Fi−1u(ti−1) + F1u(t1)

}

+

∫ t

t1

Φ(t, s)B(s)u(s)ds,

(4)

from which we get

x(t2) = Φ(t2, t1)

{
(In + E1)Φ(t1, t0)x0 + (In + E1)

∫ t1

t0

Φ(t1, s)B(s)u(s)ds+ F1u(t1)

}
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+

∫ t2

t1

Φ(t2, s)B(s)u(s)ds,

so that

x(t+2 ) = (In + E2)x(t2) + F2u(t2)

= (In + E2)Φ(t2, t1)(In + E1)Φ(t1, t0)x0+

+ (In + E2)Φ(t2, t1)(In + E1)

∫ t1

t0

Φ(t1, s)B(s)u(s)ds

+ (In + E2)Φ(t2, t1)F1u(t1) + (In + E2)

∫ t2

t1

Φ(t2, s)B(s)u(s)ds+ F2u(t2),

using which the solution to system (1) in (t2, t3] is given by

x(t) = Φ(t, t2)x(t+2 ) +

∫ t

t2

Φ(t, s)B(s)u(s)ds

= Φ(t, t2)

{
(In + E2)Φ(t2, t1)(In + E1)Φ(t1, t0)x0+

+ (In + E2)Φ(t2, t1)(In + E1)

∫ t1

t0

Φ(t1, s)B(s)u(s)ds

+ (In + E2)Φ(t2, t1)F1u(t1) + (In + E2)

∫ t2

t1

Φ(t2, s)B(s)u(s)ds

+ F2u(t2)

}
+

∫ t

t2

Φ(t, s)B(s)u(s)ds,

that is

x(t) = Φ(t, t2)

{
1∏

j=2

(In + Ej)Φ(tj , tj−1)x0

+

2∑
i=1

(
i+1∏
j=2

(In + Ej)Φ(tj , tj−1)

)
(In + Ei)

∫ ti

ti−1

Φ(ti, s)B(s)u(s)ds

+

2∑
i=2

i∏
j=2

(In + Ej)Φ(tj , tj−1)Fi−1u(ti−1) + F2u(t2)

}
+

∫ t

t2

Φ(t, s)B(s)u(s)ds.

(5)

By observing eqs (4) and (5), and using the principle of mathematical induction, we can
claim that the solution to system (1) in (tk, tk+1] is given by eq (2). �

Lemma 2. If each Ek commutes with the state-transition matrix Φ(t, s), that is

EkΦ(t, s) = Φ(t, s)Ek, ∀ k = 1, 2, . . . ,M,
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then the solution to system (1) given in eq (2) reduces to

x(t) =

1∏
j=k

(In + Ej)Φ(t, t0)x0 +

k∑
i=1

i∏
j=k

(In + Ej)

∫ ti

ti−1

Φ(t, s)B(s)u(s)ds

+

k∑
i=2

i∏
j=k

(In + Ej)Φ(t, ti−1)Fi−1u(ti−1) + Φ(t, tk)Fku(tk)

+

∫ t

tk

Φ(t, s)B(s)u(s)ds, t ∈ (tk, tk+1],

(6)

where as usual we mean
∏k+1

j=k(In + Ej)Φ(tj , tj−1) = In.

P r o o f . Since this lemma discusses the special case of Lemma 1 under the condition
that Φ(·, ·) commutes with each Ek, so with each (In +Ek), and by using the semigroup
property of Φ(·, ·), the solution to system (1) in the time-duration (tk, tk+1] given in
eq (2) reduces to

x(t) = Φ(t, tk)

1∏
j=k

(In + Ej)Φ(tj , tj−1)x0

+

k∑
i=1

Φ(t, tk)

(
i+1∏
j=k

(In + Ej)Φ(tj , tj−1)

)
(In + Ei)

∫ ti

ti−1

Φ(ti, s)B(s)u(s)ds

+

k∑
i=2

Φ(t, tk)

i∏
j=k

(In + Ej)Φ(tj , tj−1)Fi−1u(ti−1) + Φ(t, tk)Fku(tk)

+

∫ t

tk

Φ(t, s)B(s)u(s)ds

= Φ(t, tk)(In + Ek)Φ(tk, tk−1) . . . (In + E1)Φ(t1, t0)x0

+

k∑
i=1

{
Φ(t, tk)(In + Ek)Φ(tk, tk−1) . . . (In + Ei+1)Φ(ti+1, ti)(In + Ei)

×
∫ ti

ti−1

Φ(ti, s)B(s)u(s)ds

}

+

k∑
i=2

{
Φ(t, tk)(In + Ek)Φ(tk, tk−1) . . . (In + Ei)Φ(ti, ti−1)Fi−1u(ti−1)

}

+ Φ(t, tk)Fku(tk) +

∫ t

tk

Φ(t, s)B(s)u(s)ds

=

1∏
j=k

(In + Ej)Φ(t, t0)x0 +

k∑
i=1

i∏
j=k

(In + Ej)

∫ ti

ti−1

Φ(t, s)B(s)u(s)ds
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+

k∑
i=2

i∏
j=k

(In + Ej)Φ(t, ti−1)Fi−1u(ti−1) + Φ(t, tk)Fku(tk)

+

∫ t

tk

Φ(t, s)B(s)u(s)ds,

which is exactly same as eq (6). �

Remark 1. As a special case, when system (1) is autonomous and if A commutes with
each Ek, that is AEk = EkA, ∀ k = 1, 2, . . . ,M, then state-transition matrix will also
commute with each Ek, as Φ(t, s) = eA(t−s).

3. CONTROLLABILITY RESULTS

In this section, we obtain several sufficient and necessary conditions associated with the
controllability of system (1) under various assumptions on the system parameters. First
we recall the definition of complete controllability as follows.

Definition 1. (Complete controllability) The system (1) is said to be completely con-
trollable in Rn, over [t0, tf ], 0 5 t0 < tf <∞, if for each pair (x0,xf ) ∈ Rn ×Rn, there
exists some u(·) ∈ PC such that the corresponding solution of the system (1) with an
initial state x(t0) = x0 satisfies x(tf ) = xf . Such u(·) is one of the control function to
system (1) for driving its state from x0 to xf over [t0, tf ].

Definition 2. (Null controllability) If xf = 0 in the above definition of complete con-
trollability, then system (1) is said to be null controllable over [t0, tf ].

Remark 2. It is clear that, if system (1) is completely controllable over [t0, tf ], then it
is also null controllable over [t0, tf ]. But the converse need not be true (see Example 1).

Theorem 1. (Sufficient conditions) If one of the following conditions hold true, then
system (1) is completely controllable in Rn, over [t0, tf ].

(i) There exists some l ∈ {1, 2, . . . , (M − 1)}, M = 2 and an (m× n)-matrix F′l such
that FlF

′
l = In, and (In + El+1), (In + El+2), . . . , (In + EM ) are invertible.

(ii) There exists an (m× n)-matrix F′M such that FMF′M = In.

(iii) There exists some p ∈ {1, 2, . . . ,M} such that (In+Ep), (In+Ep+1), . . . , (In+EM )

are invertible, and
∫ tp
tp−1

(
Φ(tp, s)B(s)

)(
Φ(tp, s)B(s)

)T
ds is positive-definite.

(iv)
∫ tf
tM

(
Φ(tf , s)B(s)

)(
Φ(tf , s)B(s)

)T
ds is positive-definite.

P r o o f . (a) First we consider case (i). Without loss of generality, suppose there exists
a l ∈ {1, 2, . . . , (M − 1)}, M = 2 and an (m × n)-matrix F′l such that FlF

′
l = In,
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and (In + El+1), (In + El+2), . . . , (In + EM ) are invertible. Then given an initial state
x0 ∈ Rn and a desired final state xf ∈ Rn of the system (1), by using a function

u(t) :=



F′l

(
l+1∏
j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , tf )

×

{
xf −Φ(tf , tM )

1∏
j=M

(In + Ej)Φ(tj , tj−1)x0

}
, t = tl,

0, t ∈ [t0, tf ] \ {tl},

(7)

the solution to system (1) given in eq (2) satisfies x(tf ) = xf .
(b) Now we consider case (ii). Let there exists an (m × n)-matrix F′M such that

FMF′M = In. Then with an initial state x0 ∈ Rn and a desired final state xf ∈ Rn of
the system (1), by taking

u(t) :=


F′MΦ(tM , tf )

{
xf −Φ(tf , tM )

1∏
j=M

(In + Ej)Φ(tj , tj−1)x0

}
, t = tM ,

0, t ∈ [t0, tf ] \ {tM},

(8)

we can verify that its state given in eq (2) satisfies x(tf ) = xf .
(c) To prove the case (iii), let there exists a p ∈ {1, 2, . . . ,M} such that (In+Ep), (In+

Ep+1), . . . , (In + EM ) are all invertible and W =
∫ tp
tp−1

(
Φ(tp, s)B(s)

)(
Φ(tp, s)B(s)

)T
ds

is positive-definite. Then the following function drives the state of system (1) given in
eq (2) from x0 to xf over [t0, tf ].

u(t) :=



(
Φ(tp, t)B(t)

)T
W−1(In + Ep)−1

(
p+1∏
j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , tf )

×

{
xf −Φ(tf , tM )

1∏
j=M

(In + Ej)Φ(tj , tj−1)x0

}
, t ∈ (tp−1, tp),

0, t ∈ [t0, tf ] \ (tp−1, tp).

(9)

(d) Finally to prove case (iv), let W =
∫ tf
tM

(
Φ(tf , s)B(s)

)(
Φ(tf , s)B(s)

)T
ds be

positive-definite matrix. Then plugging the following function

u(t) :=


(
Φ(tf , t)B(t)

)T
W−1

{
xf −Φ(tf , tM )

1∏
j=M

(In + Ej)Φ(tj , tj−1)x0

}
, t ∈ (tM , tf ],

0, t ∈ [t0, tf ] \ (tM , tf ],

(10)

into solution eq (2) of system (1), we get x(tf ) = xf . All these show that, the functions
used in eq (7), (8), (9) and (10) are the control functions to system (1) for driving its
state from x0 to xf over [t0, tf ] under the considered cases. �
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Remark 3. As in the introduction we mentioned—if a linear impulsive system is null
controllable, then it is not necessarily completely controllable, unlike the non-impulsive
linear systems, hence we analyse the null controllability of system (1) rigorously. Though
the conditions stated in Theorem 1 are sufficient for the complete controllability, and so,
for null controllability of system (1), but one can still weaken these conditions for the
null controllability case by waiving the invertibility of (In + Ek)’s unlike in Theorem 1.

Theorem 2. (Sufficient conditions) If one of the following conditions hold true, then
system (1) is null controllable in Rn, over [t0, tf ].

(i) There exists some p ∈ {1, 2, . . . ,M} and an (m×n)-matrix F′p such that FpF
′
p = In.

(ii) There exists a positive-definite matrix W =
∫ tq
tq−1

(
Φ(tq, s)B(s)

)(
Φ(tq, s)B(s)

)T
ds,

for some q ∈ {1, 2, . . . , (M + 1)}.

P r o o f . (a) First we consider case (i). Without loss of generality, suppose there exists
a p ∈ {1, 2, . . . ,M} and an (m × n)-matrix F′p such that FpF

′
p = In. Then given an

initial state x0 ∈ Rn, the function given by

u(t) :=


− F′p

1∏
j=p

(In + Ej)Φ(tj , tj−1)x0, t = tp,

0, t ∈ [t0, tf ] \ {tp},

(11)

is a control to system (1) for steering its state given in eq (2) from x0 to 0, over [t0, tf ].

(b) To prove the case (ii), let W =
∫ tq
tq−1

(
Φ(tq, s)B(s)

)(
Φ(tq, s)B(s)

)T
ds be positive-

definite matrix for some q ∈ {1, 2, . . . , (M + 1)}. Then the following is a control function
to system (1) for driving its state from x0 to 0, over [t0, tf ].

u(t) :=


−
(
Φ(tq, t)B(t)

)T
W−1Φ(tq, tq−1)

1∏
j=q−1

(In + Ej)Φ(tj , tj−1)x0, t ∈ (tq−1, tq),

0, t ∈ [t0, tf ] \ (tq−1, tq),

(12)

where
∏1

j=0(In + Ej)Φ(tj , tj−1) = In. �
The following example shows that a null controllable linear impulsive system is not

completely controllable.

Example 1. Consider a LTI-system with two impulses:

ẋ(t) =

[
1 0
0 1

]
x(t), t ∈ [0, 3] \ {1, 2},

x(0) =

[
1
0

]
,

∆x(1) =

[
1 0 0
0 2 1

]
u(1),

∆x(2) =

[
1 4
3 5

]
x(2).


(13)
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In this system n = 2, m = 3, and F1 =

[
1 0 0
0 2 1

]
. Note that there exists a matrix

F′1 =

[
1 1 −2
0 0.5 0

]T
such that F1F

′
1 = I2, therefore by condition (i) of Theorem 2,

we conclude that system (13) is null controllable over [0, 3]. Further, the solution to
system (13) is obtained from eq (2) as

x(t) =



et
[
1
0

]
, t ∈ [0, 1],

et

{[
1
0

]
+ e−1

[
1 0 0
0 2 1

]
u(1)

}
, t ∈ (1, 2],

et

{[
2
3

]
+ e−1

[
2 8 4
3 12 6

]
u(1)

}
, t ∈ (2, 3].

(14)

One of the control that drives the system (13) to the zero state can be computed from
eq (11), and is found to be

u(t) =

{[
−e −e 2e

]T
, t = 1,[

0 0 0
]T
, t ∈ [0, 3] \ {1},

(15)

and for this u(t), the components x1(t) and x2(t) of the controlled trajectory x(t) com-

puted in eq (14) are plotted in Figure 1. If the desired final state is
[
1 1

]T
, then

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Components of controlled trajectory in system (13) with the

control given in (15)

the state function given in eq (14) reduces to:
[
1 1

]T
= x(3) = c

[
2 3

]T
, that is

1 = 2c and 1 = 3c, for any control u(1) =
[
a1 a2 a3

]T
, where a1, a2, a3 ∈ R and

c = e3
(
1 + e−1(a1 + 4a2 + 2a3)

)
. But the equations: 1 = 2c and 1 = 3c do not have

a common solution for c. Hence we conclude that, there exists no control function for
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steering the state of system (13) from
[
1 0

]T
to
[
1 1

]T
, showing that this system is

not completely controllable in R2, over [0, 3].

Corollary 1. (Sufficient conditions) If in system (1), each Ek commutes with the
state-transition matrix, i.e. EkΦ(t, s) = Φ(t, s)Ek, ∀ k = 1, 2, . . . ,M, then the sufficient
conditions for complete controllability in Rn, over [t0, tf ] of the system (1) given in
Theorem 1 reduces to the following conditions:

(i) There exists some l ∈ {1, 2, . . . , (M − 1)}, M = 2 and an (m× n)-matrix F′l such
that FlF

′
l = In, and (In + El+1), (In + El+2), . . . , (In + EM ) are invertible.

(ii) There exists an (m× n)-matrix F′M such that FMF′M = In.

(iii) There exists some p ∈ {1, 2, . . . ,M} such that (In+Ep), (In+Ep+1), . . . , (In+EM )

are invertible, and W =
∫ tp
tp−1

(
Φ(tf , s)B(s)

)(
Φ(tf , s)B(s)

)T
ds is positive-definite.

(iv) W =
∫ tf
tM

(
Φ(tf , s)B(s)

)(
Φ(tf , s)B(s)

)T
ds is positive-definite.

P r o o f . The proof is similar to that of Theorem 1, hence we skip the details. However
we provide one of the control function that steers the state of system (1) given in eq (6),
from x0 to xf . These are as follows. For the case (i),

u(t) :=


F′lΦ(tl, tf )

(
l+1∏
j=M

(In + Ej)

)−1{
xf −

1∏
j=M

(In + Ej)Φ(tf , t0)x0

}
, t = tl,

0, t ∈ [t0, tf ] \ {tl},
(16)

for the case (ii),

u(t) :=


F′MΦ(tM , tf )

{
xf −

1∏
j=M

(In + Ej)Φ(tf , t0)x0

}
, t = tM ,

0, t ∈ [t0, tf ] \ {tM},

(17)

for the case (iii),

u(t) :=


(
Φ(tf , t)B(t)

)T
W−1

(
p∏

j=M

(In + Ej)

)−1{
xf −

1∏
j=M

(In + Ej)Φ(tf , t0)x0

}
,

t ∈ (tp−1, tp),

0, t ∈ [t0, tf ] \ (tp−1, tp),

(18)

and finally for the case (iv), it is

u(t) :=


(
Φ(tf , t)B(t)

)T
W−1

{
xf −

1∏
j=M

(In + Ej)Φ(tf , t0)x0

}
, t ∈ (tM , tf ],

0, t ∈ [t0, tf ] \ (tM , tf ].

(19)
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�

Corollary 2. (Sufficient conditions) If EkΦ(t, s) = Φ(t, s)Ek, ∀ k = 1, 2, . . . ,M in
system (1), then the sufficient conditions for its null controllability in Rn, over [t0, tf ]
given in Theorem 2 reduces to the following conditions:

(i) There exists some p ∈ {1, 2, . . . ,M} and an (m×n)-matrix F′l such that FlF
′
l = In.

(ii) The matrix W =
∫ tq
tq−1

(
Φ(tf , s)B(s)

)(
Φ(tf , s)B(s)

)T
ds is positive-definite for

some q ∈ {1, 2, . . . , (M + 1)}.

P r o o f . The proof is similar to Theorem 2. Under case (i), we can consider the control
function

u(t) :=


− F′l

1∏
j=l

(In + Ej)Φ(tl, t0)x0, t = tl,

0, t ∈ [t0, tf ] \ {tl},

(20)

to steer the state of system (1) given in eq (6) from x0 to 0.

For case (ii), we can take the control function as

u(t) :=


−
(
Φ(tf , t)B(t)

)T
W−1

1∏
j=q−1

(In + Ej)Φ(tf , t0)x0, t ∈ (tq−1, tq),

0, t ∈ [t0, tf ] \ (tq−1, tq),

(21)

to verify x(tf ) = 0 in eq (6). �

The theorems and corollaries introduced so far in this section provide the sufficient
conditions under which the system (1) is controllable. We now investigate the neces-
sary and sufficient controllability condition for the system (1) by letting (In + Ek) as
nonsingular matrices for every k = 1, 2, . . . ,M. First we introduce the following positive-
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semidefinite (n× n)-matrices:

Wk = W(tk−1, tk) :=

∫ tk

tk−1

{(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
(In + Ek)Φ(tk, s)B(s)

}

×

{(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
(In + Ek)Φ(tk, s)B(s)

}T

ds,

WM+1 = W(tM , tf ) :=

∫ tf

tM

{(
1∏

j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , s)B(s)

}

×

{(
1∏

j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , s)B(s)

}T

ds,

V1 = V(t0, t1) :=

∫ t1

t0

(
Φ(t0, s)B(s)

)(
Φ(t0, s)B(s)

)T
ds,

Vk+1 = V(tk, tk+1) :=

∫ tk+1

tk

{(
1∏

j=k

(In + Ej)

)−1
Φ(t0, s)B(s)

}

×

{(
1∏

j=k

(In + Ej)

)−1
Φ(t0, s)B(s)

}T

ds,

Gk :=

{(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
Fk

}{(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
Fk

}T

,

Hk :=

{(
1∏

j=k

(In + Ej)
)−1

Φ(t0, tk)Fk

}{(
1∏

j=k

(In + Ej)

)−1
Φ(t0, tk)Fk

}T

,


(22)

where k = 1, 2, . . . ,M and tM+1 = tf .

Theorem 3. (Necessary and Sufficient condition) If each (In + Ek) is nonsingu-
lar, then system (1) is completely controllable in Rn, over [t0, tf ] if and only if

rank
(
W1, W2, . . . ,WM+1, G1, G2, . . . ,GM

)
= n. (23)

In addition, if each Ek commutes with the state-transition matrix Φ(t, s), then the above
necessary and sufficient condition for the complete controllability reduces to

rank
(
V1, V2, . . . ,VM+1, H1, H2, . . . ,HM

)
= n. (24)

P r o o f . First we prove that the condition in (23) is necessary as well as sufficient for
the system (1) to be completely controllable, where it is given that all (In + Ek)’s are
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nonsingular. The necessity of this condition can be proved by contradiction. For this,
let the system (1) be completely controllable over [t0, tf ], but assume that

rank
(
W1, W2, . . . ,WM+1, G1, G2, . . . ,GM

)
< n.

Then a homogeneous system:(
W1 W2 . . . WM+1 G1 G2 . . . GM

)T
z = 0 ∈ R(2M+1)n

have at least one nonzero solution z ∈ Rn. Further this z also satisfies the equations:

Wkz = 0, WM+1z = 0, and Gk z = 0, ∀ k = 1, 2, . . . ,M,

from which we can obtain

∫ tk

tk−1

∥∥∥∥∥zT
(

1∏
j=k

(In + Ej)Φ(tj , tj−1)

)−1
(In + Ek)Φ(tk, s)B(s)

∥∥∥∥∥
2

R1×m

ds = 0,

∫ tf

tM

∥∥∥∥∥zT
(

1∏
j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , s)B(s)

∥∥∥∥∥
2

R1×m

ds = 0,

∥∥∥∥∥zT
(

1∏
j=k

(In + Ej)Φ(tj , tj−1)

)−1
Fk

∥∥∥∥∥
2

R1×m

= 0,

for all k = 1, 2, . . . ,M. Since the integrands in the above integrals are non-negative
continuous functions over their domains, hence it follows that

zT

(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
(In + Ek)Φ(tk, s)B(s) = O ∈ R1×m, ∀ s ∈ (tk−1, tk),

zT

(
1∏

j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , s)B(s) = O ∈ R1×m, ∀ s ∈ (tM , tf ],

zT

(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
Fk = O ∈ R1×m,

(25)

for all k = 1, 2, . . . ,M. Here for convention we take (tk−1, tk) as [t0, t1) when k = 1.
Now as the system (1) is completely controllable over [t0, tf ], hence in particular it is
null controllable, and therefore there exists a control function u(·) ∈ PC that steers the
state of system (1) given in eq (2) from x(t0) = z to x(tf ) = 0; that is to say

0 = x(tf ) = Φ(tf , tM )

{
1∏

j=M

(In + Ej)Φ(tj , tj−1)z

+

M∑
i=1

(
i+1∏
j=M

(In + Ej)Φ(tj , tj−1)

)
(In + Ei)

∫ ti

ti−1

Φ(ti, s)B(s)u(s)ds
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+

M∑
i=2

i∏
j=M

(In + Ej)Φ(tj , tj−1)Fi−1u(ti−1) + FMu(tM )

}

+

∫ tf

tM

Φ(tf , s)B(s)u(s)ds

= Φ(tf , tM )

1∏
j=M

(In + Ej)Φ(tj , tj−1)

×

{
z +

M∑
k=1

∫ tk

tk−1

(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
(In + Ek)Φ(tk, s)B(s)u(s)ds

+

∫ tf

tM

(
1∏

j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , s)B(s)u(s)ds

+

M∑
k=1

(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
Fku(tk)

}
.

Premultiply the above step with zT
(∏1

j=M (In + Ej)Φ(tj , tj−1)
)−1

Φ(tM , tf ) and using

the results of eq (25), we obtain zT z = 0 which implies z = 0, a contradiction. Therefore
if the system (1) is completely controllable, then rank

(
W1, . . . ,WM+1, G1, . . . ,GM

)
=

n.

To prove the sufficiency of condition in (23), let rank
(
W1, . . . ,WM+1, G1, . . . ,GM

)
=

n. Denote W = W1 + W2 + · · ·+ WM+1 + G1 + G2 + · · ·+ GM , then

rank
(
W1, W2, . . . ,WM+1, G1, G2, . . . ,GM

)
= rank(W),

so W is positive-definite (refer Lemma 3.1 in Muni and George [8]). Now for a given
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initial state x0 ∈ Rn and a final state xf ∈ Rn of system (1), define a function:

u(t) :=



{(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
(In + Ek)Φ(tk, t)B(t)

}T

W−1

×

{
− x0 +

(
1∏

j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , tf )xf

}
, t ∈ (tk−1, tk),

{(
1∏

j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , t)B(t)

}T

W−1

×

{
− x0 +

(
1∏

j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , tf )xf

}
, t ∈ (tM , tf ],

{(
1∏

j=k

(In + Ej)Φ(tj , tj−1)

)−1
Fk

}T

W−1

×

{
− x0 +

(
1∏

j=M

(In + Ej)Φ(tj , tj−1)

)−1
Φ(tM , tf )xf

}
, t = tk,

(26)

where k = 1, 2, . . . ,M. Here for convention we take (tk−1, tk) as [t0, t1) when k = 1.
Now plug-in (26) in eq (2), we obtain x(tf ) = xf , showing that system (1) is completely
controllable over [t0, tf ].

Now we show that the condition given in (24) is necessary and sufficient for the
complete controllability of (1) over [t0, tf ], under the assumptions that (In + Ek)’s are
invertible and EkΦ(t, s) = Φ(t, s)Ek, for all k. Similar to the first part of this theorem,
the necessity of this condition can be proved by contradiction. For this, let the system (1)
be completely controllable over [t0, tf ], but assume

rank
(
V1, V2, . . . ,VM+1, H1, H2, . . . ,HM

)
< n.

But then, there exists a nonzero vector z ∈ Rn such that

V1z = 0, Vk+1 z = 0, and Hk z = 0,

which implies 

∫ t1

t0

∥∥zTΦ(t0, s)B(s)
∥∥2
R1×mds = 0,

∫ tk+1

tk

∥∥∥∥∥zT
(

1∏
j=k

(In + Ej)

)−1
Φ(t0, s)B(s)

∥∥∥∥∥
2

R1×m

ds = 0,

∥∥∥∥∥zT
(

1∏
j=k

(In + Ej)

)−1
Φ(t0, tk)Fk

∥∥∥∥∥
2

R1×m

= 0,
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for all k = 1, 2, . . . ,M. Since the integrands in the above integrals are non-negative
continuous functions over their domains, hence it follows that



zTΦ(t0, s)B(s) = O ∈ R1×m, ∀ s ∈ [t0, t1),

zT

(
1∏

j=k

(I + Ej)

)−1
Φ(t0, s)B(s) = O ∈ R1×m, ∀ s ∈ (tk, tk+1),

zT

(
1∏

j=k

(I + Ej)

)−1
Φ(t0, tk)Fk = O ∈ R1×m,

(27)

for all k = 1, 2, . . . ,M. Now as the system (1) is completely controllable over [t0, tf ],
hence in particular it is null controllable. Therefore there exists a control function
u(·) ∈ PC that steers the state of system (1) given in eq (6) from x(t0) = z to x(tf ) = 0.
That is,

0 =

1∏
j=M

(In + Ej)Φ(tf , t0)z +

M∑
i=1

i∏
j=M

(I + Ej)

∫ ti

ti−1

Φ(tf , s)B(s)u(s)ds

+

M∑
i=2

i∏
j=M

(In + Ej)Φ(tf , ti−1)Fi−1u(ti−1) + Φ(tf , tM )FMu(tM )

+

∫ tf

tM

Φ(tf , s)B(s)u(s)ds

=

1∏
j=M

(In + Ej)Φ(tf , t0)

{
z +

∫ t1

t0

Φ(t0, s)B(s)u(s)ds

+

M∑
k=1

∫ tk+1

tk

(
1∏

j=k

(In + Ej)

)−1
Φ(t0, s)B(s)u(s)ds

+

M∑
k=1

(
1∏

j=k

(In + Ej)

)−1
Φ(t0, tk)Fku(tk)

}
.

Premultiply the above expression with zTΦ(t0, tf )
(∏1

j=M (I+Ej)
)−1

and using eq (27),

we obtain 0 = zT z =⇒ z = 0, a contradiction. Therefore if the system (1) is completely
controllable, then rank

(
V1, V2, . . . ,VM+1, H1, H2, . . . ,HM

)
= n.

For the converse, let rank
(
V1, V2, . . . ,VM+1, H1, H2, . . . ,HM

)
= n, so that W =

V1 + V2 + · · ·+ VM+1 + H1 + H2 + · · ·+ HM is positive-definite. Now in order to steer



744 V. S. MUNI AND R. K. GEORGE

the state of system (1) given in eq (6) from x0 to xf , we apply the following control:

u(t) :=



(
Φ(t0, t)B(t)

)T
W−1

{
− x0 +

(
1∏

j=M

(In + Ej)Φ(tf , t0)

)−1
xf

}
, t ∈ [t0, t1),

{(
1∏

j=k

(In + Ej)

)−1
Φ(t0, t)B(t)

}T

W−1

×

{
− x0 +

(
1∏

j=M

(In + Ej)Φ(tf , t0)

)−1
xf

}
, t ∈ (tk, tk+1),

{(
1∏

j=k

(In + Ej)

)−1
Φ(t0, tk)Fk

}T

W−1

×

{
− x0 +

(
1∏

j=M

(In + Ej)Φ(tf , t0)

)−1
xf

}
, t = tk,

(28)

where k = 1, 2, . . . ,M. �

4. CONTROLLABILITY RESULTS FOR A TIME-INVARIANT SYSTEM

In this section, we reduce the controllability conditions obtained in Section 3 to that
for the time-invariant case of the system (1) under some assumptions on the system
components. The following theorems accomplish this. Here necessary and sufficient
conditions for the complete controllability are given separately.

Theorem 4. (Necessary conditions) Let all (I + Ek)’s be nonsingular matrices and
each Ek commutes with A. If system (1) is completely controllable in Rn, over [t0, tf ],
then the following conditions hold true:

(i) rank(P) = n, where

P :=

{
B, AB, A2B, . . . ,An−1B,

(In + E1)−1
(
B, AB, A2B, . . . ,An−1B

)
, . . . ,(

1∏
j=M

(In + Ej)

)−1(
B, AB, A2B, . . . ,An−1B

)
,

(In + E1)−1
(
F1, AF1, A2F1, . . . ,A

n−1F1

)
, . . . ,(

1∏
j=M

(In + Ej)

)−1(
FM , AFM , A2FM , . . . ,A

n−1FM

)}
.

(29)
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(ii) rank(Q) = n, ∀λ ∈ σ(A), where

Q :=

{
(λIn −A), B,

(
λIn − (In + E1)−1A

)
,
(
(In + E1)−1B

)
,

(
λIn −

(
1∏

j=2

(In + Ej)

)−1
A

)
,

((
1∏

j=2

(In + Ej)

)−1
B

)
, . . . ,

(
λIn −

(
1∏

j=M

(In + Ej)

)−1
A

)
,

((
1∏

j=M

(In + Ej)

)−1
B

)
,

F1,
(
(In + E1)−1F1

)
, F2,

((
1∏

j=2

(In + Ej)

)−1
F2

)
, . . . ,

FM ,

((
1∏

j=M

(In + Ej)

)−1
FM

)}
.

(30)

P r o o f . First let us show that condition (i) is necessary for the complete controllability
of the system (1), by letting rank(P) < n. Then there exists a nonzero vector z ∈ Rn

such that 

zTAlB = O ∈ R1×m,

zT

(
1∏

j=k

(In + Ej)

)−1
AlB = O ∈ R1×m,

zT

(
1∏

j=k

(In + Ej)

)−1
AlFk = O ∈ R1×m,

(31)

for all l = 0, 1, 2, . . . , (N − 1) and k = 1, 2, . . . ,M. From (22), and using (31), we have

zTV1 =

∫ t1

t0

zT
(
eA(t0−s)B

)(
eA(t0−s)B

)T
ds

=

∫ t1

t0

(
n−1∑
l=0

fl(t0 − s)zTAlB

)(
eA(t0−s)B

)T
ds = O ∈ R1×n,

zTVk+1 =

∫ tk+1

tk

zT

((
1∏

j=k

(In + Ej)

)−1
eA(t0−s)B

)((
1∏

j=k

(In + Ej)

)−1
eA(t0−s)B

)T

ds

=

∫ tk+1

tk

(
n−1∑
l=0

fl(t0 − s)zT
(

1∏
j=k

(In + Ej)

)−1
AlB

)

×

((
1∏

j=k

(In + Ej)

)−1
eA(t0−s)B

)T

ds
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= O ∈ R1×n,

zTHk = zT

((
1∏

j=k

(In + Ej)

)−1
eA(t0−tk)Fk

)((
1∏

j=k

(In + Ej)

)−1
eA(t0−tk)Fk

)T

=

(
n−1∑
l=0

fl(t0 − s)zT
(

1∏
j=k

(In + Ej)

)−1
AlFk

)((
1∏

j=k

(In + Ej)

)−1
eA(t0−tk)Fk

)T

= O ∈ R1×n.

Therefore we proved zT
(
V1, V2, . . . ,VM+1, H1, H2, . . . ,HM

)
= O ∈ R1×(2M+1)n for

some nonzero vector z, which implies rank
(
V1, V2, . . . ,VM+1, H1, H2, . . . ,HM

)
< n,

so that by Theorem 3, system (1) is not completely controllable over [t0, tf ].
Next to show the necessity of condition (ii) for the complete controllability of sys-

tem (1), assume there exists some λ ∈ σ(A) such that rank(Q) < n. But then there
exists nonzero z ∈ Rn such that

zT (λIn −A) = O ∈ R1×n,

zTB = O ∈ R1×m,

zT

{
λIn −

(
1∏

j=k

(In + Ej)

)−1
A

}
= O ∈ R1×n,

zT

(
1∏

j=k

(In + Ej)

)−1
B = O ∈ R1×m,

zTFk = O ∈ R1×m,

zT

(
1∏

j=k

(In + Ej)

)−1
Fk = O ∈ R1×m,

(32)

for all k = 1, 2, . . . ,M. With the repeated use of equations given in (32), one can finally
arrive at rank(P) < n, proving that system (1) is not completely controllable over [t0, tf ]
by condition (i). �

Remark 4. The rank conditions given in Theorem 4 are necessary for the complete con-
trollability of system (1) under the said assumptions, but not sufficient, as the following
examples confirm.

Example 2. Consider a LTI-system with single impulse as

ẋ(t) =

[
1 1
0 2

]
x(t) +

[
1
0

]
u(t), t ∈ [0, 2] \ {1},

x(0) =

[
0
0

]
,

∆(x(1)) =

[
1 2
0 3

]
x(1) +

[
2
0

]
u(1).


(33)
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In this system A =

[
1 1
0 2

]
, B =

[
1
0

]
, E1 =

[
1 2
0 3

]
, and F1 =

[
2
0

]
. Clearly AE1 =

E1A and (I2 + E1) is invertible. Further σ(A) = {1, 2}. Now one can verify that

rank
(
λI2 −A, B,

(
λI2 − (I2 + E1)−1A

)
,
(
(I2 + E1)−1B

)
, F1,

(
(I2 + E1)−1F1

))
= 2,

for both λ = 1 and 2, i.e. the validation of condition (ii) in Theorem 4. However we
obtain, rank

(
B, AB, (I2 +E1)−1

{
B, AB

}
, (I2 +E1)−1

{
F1, AF1

})
= 1 < 2, implying

by Theorem 4–condition (i) that, the system (33) is not completely controllable in R2,
over [0, 2]. This example also shows that the rank condition (ii) need not imply the rank
condition (i) in Theorem 4.

Example 3. Consider another LTI-system with single impulse:

ẋ(t) =

[
0 0
1 0

]
x(t), t ∈ [0, 2] \ {1},

x(0) =

[
0
0

]
,

∆(x(1)) =

[
2 0
1 2

]
x(1) +

[
1
0

]
u(1).


(34)

In this system we have

A =

[
0 0
1 0

]
, B =

[
0
0

]
, E1 =

[
2 0
1 2

]
, and F1 =

[
1
0

]
.

Clearly AE1 = E1A and (I2 + E1) is invertible, and we see that

rank
(
B, AB, (I2 + E1)−1

{
B, AB

}
, (I2 + E1)−1

{
F1, AF1

})
= 2,

i.e. the validation of condition (i) in Theorem 4. Now, the state of system (34) at any
time t ∈ (1, 2] is obtained by using eq (2) as

x(t) = eA(t−1)
[
u(1)

0

]
=

[
1 0

(t− 1) 1

] [
u(1)

0

]
=

[
u(1)

(t− 1)u(1)

]
.

Clearly there is no u(t) that steers the above state function from
[
0 0

]T
to
[
1 2

]T
,

implying that system (34) is not completely controllable in R2, over [0, 2].

Theorem 5. (Sufficient conditions) Under one of the following conditions, system (1)
is completely controllable in Rn, over [t0, tf ].

(i) rank
(
B, AB, A2B, . . . ,An−1B

)
= n.

(ii) rank
(
λIn −A, B

)
= n, for every λ ∈ σ(A).

P r o o f . (a) First we prove case (i). Let rank
(
B, AB, A2B, . . . ,An−1B

)
= n, but as-

sume that system (1) is not completely controllable. Then
∫ tf
tM

(
eA(tf−s)B

)(
eA(tf−s)B

)T
ds
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is singular by case (iv) of Theorem 1, therefore there exists a nonzero vector, say z ∈ Rn

such that

zT
(∫ tf

tM

(
eA(tf−s)B

)(
eA(tf−s)B

)T
ds

)
z = 0,

which can be written as ∫ tf

tM

∥∥zT eA(tf−s)B
∥∥2
R1×mds = 0.

The integrand in the above integral is a continuous non-negative function on (tM , tf ],
therefore

zT eA(tf−s)B = O ∈ R1×m, ∀ s ∈ (tM , tf ].

At s = tf , we have zTB = O. Further, differentiating the above equation successively
with respect to ‘s’ and substituting s = tf in each, we get zTAB = zTA2B = . . . =
zTAn−1B = O. Hence

zT
(
B, AB, A2B, . . . ,An−1B

)
= O ∈ R1×mn.

This implies rank
(
B, AB, A2B, . . . ,An−1B

)
< n, which is a contradiction. Hence the

system (1) must be completely controllable.

(b) Now consider case (ii). Here we show that

rank
(
λIn −A, B

)
= n, ∀λ ∈ σ(A),

is equivalent to
rank

(
B, AB, A2B, . . . ,An−1B

)
= n.

To show rank
(
λIn −A, B

)
= n implies rank

(
B, AB, A2B, . . . ,An−1B

)
= n, assume

0 < rank
(
B, AB, A2B, . . . ,An−1B

)
= r < n,

and prove that there exists some λ ∈ σ(A) such that rank
(
λIn −A, B

)
< n. This is

accomplished as follows. Let T be a nonsingular operator such that the transformation
y(t) = T−1x(t) converts the system (1) into normal form (see pp. 95 of Terrell [9]). To
this end, we have

ẏ(t) = T−1ẋ(t) = T−1
(
Ax(t) + Bu(t)

)
= (T−1AT)y(t) +

(
T−1B

)
u(t),

∆y(tk) = T−1∆x(tk) = T−1
(
Ekx(tk) + Fku(tk)

)
=
(
T−1Ek

)
x(tk) +

(
T−1Fk

)
u(tk).

}
(35)

The system (35) is in normal form, provided if we

(i) assume that T−1AT and T−1B are of the form

T−1AT =

(
A11 A12

O A22

)
and T−1B =

(
B11

O

)
, (36)

such that A11 is (r × r)-matrix, B11 is (r ×m)-matrix with r < n, and
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(ii) show that rank
(
B11, A11B11, . . . ,A

r−1
11 B11

)
= r.

Now, from eq (36) we have

T−1AB =

(
A11 A12

O A22

)
T−1B =

(
A11 A12

O A22

)(
B11

O

)
=

(
A11B11

O

)
. (37)

Since

T−1A2T = (T−1AT)2 = (T−1AT)(T−1AT) =

(
A2

11 A11A12 + A12A22

O A2
22

)
,

so

T−1A2B =

(
A2

11 A11A12 + A12A22

O A2
22

)
T−1B =

(
A2

11 A11A12 + A12A22

O A2
22

)(
B11

O

)
,

that is

T−1A2B =

(
A2

11B11

O

)
. (38)

Continuing this computation, in general we have

T−1An−1B =

(
An−1

11 B11

O

)
. (39)

Therefore

T−1
(
B, AB, . . . ,An−1B

)
=
(
T−1B, T−1AB, . . . ,T−1An−1B

)
=

(
B11 A11B11 · · · An−1

11 B11

O O · · · O

)
.

Hence,

rank
(
T−1

(
B, AB, . . . ,An−1B

))
= rank

(
B11 A11B11 . . . An−1

11 B11

O O . . . O

)
,

which implies rank
(
B11, A11B11, . . . ,A

n−1
11 B11

)
= rank

(
B, AB, . . . ,An−1B

)
= r. Since

A11 is (r×r)-matrix and B11 is (r×m)-matrix, therefore from Cayley–Hamilton theorem
we have

rank
(
B11, A11B11, . . . ,A

r−1
11 B11

)
= r.

This proves that system (35) is in normal form. Now, let ω0 ∈ Rn−r be an eigenvector of
AT

22 corresponds to its eigenvalue λ, i.e. AT
22ω0 = λω0. Also note that λ is an eigenvalue

of A22 too, so an eigenvalues of A. By defining a vector ωT :=
(
O ωT

0

)
T−1 6= O ∈ R1×n,

we compute

ωTB =
(
O ωT

0

)
T−1B =

(
O ωT

0

)(B11

O

)
= O ∈ R1×m,
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and ωTA =
(
O ωT

0

)
T−1A =

(
O ωT

0

)(A11 A12

O A22

)
T−1 =

(
O ωT

0 A22

)
T−1

=
(
O λωT

0

)
T−1

= λ
(
O ωT

0

)
T−1 = λωT .

This proves that, there exists an eigenvalue λ of A such that BTω = 0 ∈ Rm and

ATω = λω. Combining these two results, we can write

(
λIn −AT

BT

)
ω = 0 ∈ Rm+n

with ω 6= 0. This implies that rank
(
λIn −A, B

)
< n.

Conversely, to prove rank
(
B, AB, . . . ,An−1B

)
= n implies rank

(
λIn −A, B

)
= n,

we assume that

0 < rank
(
λIn −A, B

)
< n, for some λ ∈ σ(A),

and show that rank
(
B, AB, . . . ,An−1B

)
< n. But this assumption forces us to write

0 < rank

(
λIn −AT

BT

)
< n,

which implies that the homogeneous system:(
λIn −AT

BT

)
ω = 0 ∈ Rm+n

has a nontrivial solution ω ∈ Rn. That is, with some nonzero vector ω, we have

ωTA = λωT and ωTB = O ∈ R1×m. (40)

With the repeated use of eq (40), one would arrive at

ωT
(
B, AB, . . . ,An−1B

)
=
(
ωTB, ωTAB, . . . ,ωTAn−1B

)
=
(
O, O, . . . ,O

)
= O ∈ R1×mn, with ω 6= 0.

This is equivalent to saying that an augmented matrix
(
B, AB, . . . ,An−1B

)
has linearly

dependent rows, and so that rank
(
B, AB, . . . ,An−1B

)
< n. Hence, finally we proved

rank
(
λIn−A, B

)
= n, ∀λ ∈ σ(A) is equivalent to rank

(
B, AB, A2B, . . . ,An−1B

)
=

n. �

Remark 5. Here we give a procedure to compute the nonsingular operator T used in

Theorem 5 that converts system (35) into normal form. Let T−1 =
(
τT
1 τT

2 . . . τT
n

)T
,

where τ1, τ2, . . . , τn ∈ R1×n are linearly independent row matrices to be determined.
Since

T−1B =

(
B11

O

)
=⇒



τ1B
...
τrB
τr+1B

...
τnB


=

(
B11

O

)
,
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therefore

τ1B...
τrB

 = B11 and

τr+1B
...

τnB

 = O ∈ R(n−r)×m, from which we can deter-

mine τ1, τ2, . . . , τn, and hence T−1.

Remark 6. The conditions given in Theorem 5 are sufficient for the complete control-
lability of system (1), but not necessary, as the following example confirms.

Example 4. Consider a LTI-system with a single impulse as

ẋ(t) =

[
0 0
1 1

]
x(t) +

[
0 0 0
1 2 3

]
u(t), t ∈ [0, 2] \ {1},

x(0) =

[
0
0

]
,

∆(x(1)) =

[
1 1
0 3

]
x(1) +

[
0 1 2
1 0 1

]
u(1).


(41)

In this system A =

[
0 0
1 1

]
, B =

[
0 0 0
1 2 3

]
, E1 =

[
1 1
0 3

]
, and F1 =

[
0 1 2
1 0 1

]
. We

observe that there exists a (3 × 2)-matrix F′1 =

[
1 3 −1
0 −2 1

]T
such that F1F

′
1 = I2,

so the system (41) is completely controllable on [0, 2] by condition (ii) of Theorem 1.
However, observe that rank

(
B, AB

)
= 1 < 2.

Concluding Remarks: In this article, a class of dynamical control systems modelled
with n-dimensional linear impulsive ordinary differential equations are considered. Var-
ious sufficient and necessary conditions for their controllability are investigated. The
established results are further reduced to the corresponding time-invariant case of the
system, and subsequently obtained Kalman’s type and PBH-type matrix rank conditions
under various assumptions on the system components. Further it is proved that for the
linear impulsive systems, the null controllability need not imply their complete control-
lability, unlike for the non-impulsive linear systems. Numerical examples are provided
to substantiate the theoretical results.
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