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Abstract. We establish not only sufficient but also necessary conditions for existence
of solutions to a singular multi-point third-order boundary value problem posed on the
half-line. Our existence results are based on the Krasnosel’skii fixed point theorem on
cone compression and expansion. Nonexistence results are proved under suitable a priori
estimates. The nonlinearity f = f(¢,x,y) which satisfies upper and lower-homogeneity
conditions in the space variables x,y may be also singular at time ¢t = 0. Two examples of
applications are included to illustrate the existence theorems.

Keywords: singular nonlinear boundary value problem; positive solution; Krasnosel’skii
fixed point theorem; multi-point; half-line
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1. INTRODUCTION

This work is concerned with the following multi-point third-order boundary value
problem posed on (0, 00):

(1.1) z(0) = Zaix(fi),

' (0) = Z Bia (13),

lim z”(t) = 0,

t—o0

=2 (t) = f(t,z(t),2'(t)), t>0,
ny
where 0 < a; < Y oy <1 (j=1,2,...,m1),0 <& <& < ... <&, < oo
i=1

DOI: 10.21136/MB.2019.0084-18 305

© The author(s) 2019. This is an open access article under the CC BY-NC-ND licence @®®E


https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2019.0084-18

no
0<B3 <Y Bi<l(i=12,...,n2),0<m <m2 <...<1np, <oo.The nonlinearity
i=1

f1(0,00) x [0,00) X [0,00) — [0,00) is continuous and there exist 0 < a < < o0
such that I, g = ff f(t,14+2,1+t)dt > 0. Moreover,

(H) there exist constants A1, Aa, p1, t2,
O<A <L 0 A< we<l, M+ >1
such that for all ¢ > 0, z,y > 0 and for all 0 < ¢, d < 1,
crdr f(t,x,y) < f(t cx, dy) < MdMf(tx,y).

Taking ¢ = z(t)/y(t) and d = 2/(t)/y’(t) in Hypothesis (), we obtain a monotonicity
property for the nonlinearity f

ftz(t), 2" () < f(ty(0),y' (1))

whenever
0<z(t)<yt) and 0<2'(t) <y (t).

By time-singularity, we mean that the function f in (1.1) is allowed to be unbounded
at the point ¢t = 0.

Boundary value problems (BVPs for short) on the half-line arise naturally in many
applications in physics and engineering. Since the solution may represent a density,
temperature or a concentration, its positivity is required for physical considerations.
This motivates the study of such BVPs on positive cones of some functional Banach
spaces. Also, the nonlinearity f, which represents a physical law, is generally positive,
depends on ¢, x, and may depend on the first derivative. Some general existence
results for different classes of BVPs may be found in [1]. The particular case of
BVPs associated with second-order operators has recently received great attention
(see, e.g., [4], [11]). However, only few papers have considered problems for higher
order differential equations on infinite intervals of the real line (we refer to [5], [7]
for some specific results). In [9], a fourth-order m-point BVP is studied on the
bounded interval [0, 1] and existence of solutions is obtained by application of a fixed
point theorem on a cone while in [10], a third-order multi-point BVP is treated via
comparison arguments. Necessary and sufficient conditions for existence of solutions
are then provided. Some singular BVPs are discussed in [2], [8]. Following [9], [10],
our aim in this paper is to provide sufficient and necessary conditions for solutions of
the singular third-order BVP (1.1) to exist on the half-line. The adequate functional

space is

X ={ae (0,50, R): Jim fg =0},
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It is a Banach space with the norm

]| = max{[|]lo, |[=[|1},

where ||zl = sup |z(¢)|/(1 +t?) and ||z||y = sup |z'(t)|/(1 +t). Notice that
teR+ teRT

tlim 2'(t)/(1+t) = 0 implies that tlim z(t)/(1+t?) = 0, which justifies the

— 00 — 00

norm |||

Definition 1.1. By a solution we mean a function x € C2(0,00) satisfying
problem (1.1). If further z”(0%) := lim+ x'(t) exists, then z is said to be a
t—0

C?[0,00) N C3(0, 00) solution.

The basic tool to be used in this work is the classical Krasnosel’skii fixed point
theorem on cone compression and expansion.

Lemma 1.1 ([6]). Let E be a Banach space and P C E a cone. Assume that
and Qo are bounded open subsets of E with 8 € Q1, Q1 C Qo, where 6 is the zero
element in E. Let A: PN (Q2\ Q1) — P be a completely continuous operator such
that either

|Az|| < |lz]| Yz € PNOQy, ||Az| > ||| Y& € PN OQy,

or
|Az|| = ||z|]| Ve € PNOQ, [Az| < ||z|| V& € PN INs.

Then A has a fixed point in PN (Qz \ Q1).

To show the compactness of a fixed point operator, we need the following com-
pactness criterion on unbounded intervals of the real line which can be easily derived
from Corduneanu’s Compactness Criterion (see [3]):

Lemma 1.2. Let W be a bounded subset of X. Then W is relatively compact if
the following two conditions hold:
(a) the sets {v(t)/(1+t?),v € W} and {v'(t)/(1 +t),v € W} are equicontinuous
on any finite subinterval of (0, 00), i.e.

VI =[a,b] C RT, Ve>0 35§>0, Vti,ta €I, VueWw,

u(t1) ‘< and |20 u'(t2)

B 1+t 14t

t1 —ta| <0 =
[t =] 1+£2 1—|—t2

<e€

(b) for all € > 0, there exists T = T'(¢) > 0 such that for allt > T and u € W

!
t
‘< and ‘u()

<e
1+t‘

1+t2
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2. PRELIMINARIES
Before we state our main existence result, we need some auxiliary lemmas.

Lemma 2.1. Suppose that Hypothesis () holds and let x be a solution of prob-
lem (1.1). Then

2(t) = By(a) + tAs(a /Gts (5, 2(s), 2/ (s)) ds
and

20 =50+ | K (t5) f(s,a(s), 2/ () ds,

where the constants

Zﬁz () = = Zﬁz/ K(s)f(s,0(s),2' () ds, B=1- 6

and

ni

ni 1
S (e = L <51A (&) f (s 2(s), 2 <s>>)
D oucte) = 3 Lo (st + [
;1:1—21:041‘
=1

are positive and where the kernels are the Green functions defined by

%tQ if s>t
(2.1) G(t,s) = and K(t,s) = min(s,t).

1
55(275—5) if s<t

Proof. Integrating the equation in (1.1) three times yields

2

(2.2) z(t) = z(0) + t2'(0) + %x"(oo) + % /0 s(2t — s) f(s,z(s),2'(s)) ds

+ t2/ f(s,x(s),2'(s))ds.

Applying the boundary conditions, we get
t
(2.3) Z i (€) +t2m () / $(2t — 8) (5, 2(5), 2/ () ds

+ tz/ f(s,2(s),2'(s)) ds
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and

(2.0 f@iE}W%Hﬁ/ﬁ@ﬂ) s+t [ fls,a(s).(5)
i=1

Substituting into (2.4) gives

Zﬂz (ni) = = Zﬂl/ K(ni,s)f(s,x(s),2'(s))ds = Ag(x) > 0.

Back to (2.3), we find

- ;aix(ﬁi) +tAp(x) + %/o s(2t — ) f(s, 2(s), 2" () ds

+§ﬁﬂwf@w@xf@»d

By substitution, we get

gaix(&) = %(g ;& Ay (z) +§;ai% /:O (s, 2(s),2'(s))d

and

+Z%/ 2 <><WQ+MA>
/ £(s, (s d&+;/t@t—$ﬂsﬂﬁf@D®
e < 4L

/ f(s,x( ))ds + ;/0 s(2t — s)f(s,z(s),2'(s)) ds

#(s))d )+mxm

|
é?
/N
Fa
BN
\
\
Q
Z?*
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Hence,
2(t) = By(x) + tAs (& /Gts (5, 2(s), 2/ (s)) ds.
O

The Green functions G and K satisfy G(t,s) < 4t* for all s,t > 0 and the following

estimates.

Lemma 2.2. For all positive s, t, we have

where ~y(t) = min{¢, 1}.

Proof. Since the function g(t) = ¢/(1 + t) is nondecreasing, we have t/(1 +1t) <
s/(1+s) for t < s while s/(1+1¢) < s/(1+s) for s <t. Then

K(t,s) o K(s,s)

< Vi s e0,00).
1+t~ 1+s s €[0,00)
On the other hand, if ¢ € [0, 1], then
t t .
-> ift<s
K(t,s) ) s 1l+s
iR =
SR B if ¢ > s
s 1+s
while if ¢ € [1,00), then
t 1 .
- > ift<s
K(t,s) J s~ 1+s
e =
SR . if ¢ > s
s 1+s

O

Lemma 2.3. Suppose that Hypothesis () holds and let x be a solution of prob-
lem (1.1). Then

(1) 2yl ¥t o.
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Proof. We have

() = Ap(x) + /OOo K(t, 5)f (s, 2(s), 2/ (s)) ds

> Ayl o) [ 5 p(ssa(s) /(5 s

A() [ K(s.s)
m<v@ )y T

s a(s).a'(s) s

>0 (ar@)+ [T S (o) () as).
Since
Y A s LR
<)+ [ A fo () s
hence,
loll < 45+ [ EE .09,/ (5)
Finally,

3. EXISTENCE AND NONEXISTENCE RESULTS

3.1. C3(0,0) solutions. We first prove a nonexistence result.

Theorem 3.1. Suppose that Hypothesis () holds. Then a necessary condition
for problem (1.1) to have a nontrivial solution is:

dt < oco.

Ctf(t,1+21+1)
(3'1) /0 (1 -|-t)#2+1(1 +t2)#1

Proof. Let 2 be a nontrivial solution of problem (1.1) and let ¢cg = co(x) be a
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constant such that 0 < ¢ < min{1,1/||z||}. By Hypothesis (H), we have

a0 = 1 (1, 20 =0, 2020
T\ 1\ co(L+t)z(t) co(l+t)2'(t)
() @) )

L t) %51 Col‘/(t) p2
>0 M A2(6033( ) ( )

_ t) Moo q;/(t) K2

S o Al(fc( )" et (E) pr 142,14 1),
o 1r2) T+t Jt,1+t5,1+1)

B (x) A% (x)

(1+ 2y (1 + tyra

> Cgﬂruzf)qf)\z f(t,1+t2,1+t).

So,

ft’1+t271+t 1 21— M2 —p1 — 2
D < By ) Ay o) 00 (0)

< OBy ()1 Ag(e) ™ (~a(1)).

Integrating both sides yields

| s < oy A ) 0)

14 s2)m(1+ s)re

and

<1 * f(s,1+8%1+s) ot s T ()
’ ’ < B HlA M2 .
/0 (1+1¢)2 dt/t (1 + s2)H1(1 + s)H2 ds /0 OBy P +1)2 d

Then,

X tf(t, 1 +t21+1) . < 2 (t)
? ’ g B HlA M2
/0 (14 t)n2t1(1 4 t2)m dt<C ) f /o (1+1)2

On the other hand,

[t [ () e [

proving our claim.
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Define a cone in X by
n1
P = {a: eX: z(0)= Zaix(&) and z'(t) > vy(t)||z||1 for all t > O}.
i=1

The following estimates hold:

Lemma 3.1. For x € P we have
Milzllr < [lzllo < Mal|zl1,

where

& Ly
My=1+ — Zal(gz ) and M1:ZZai5(§i).
i=1

Proof. For each z € X we have

a:(t)z/ot ds+ az/gl

and for z € P
1 &
Gm+j§)M@Qwh<m> (t+5 +fzm@z £))lel
=1
where §(t fo v(s)ds. So, for all t > 0,
L (o0 + 23 o))
1+ A %) JIel

x(t) 1 21 & £
<7< — 4+ = (e + 2
< < <t+ + 3 az(fz 5 ) )1

1+¢2 = 1+4¢2 2 P
Then,
1 1 & x(t) 1 &
ot - 0(& < 1+ < ( ) .
e (00 + 3 et Jielh < 5 < (1+ 3 e T
Finally,

1 1 £
— S(E < < — (e 13 )
T2 @leds < el < (1 7D (e + ) el

1=

—



Now we are ready to state and prove our first existence result:

Theorem 3.2. Suppose Hypothesis (H) holds and

° 1 21
(3.2) / sf(s, 1471+ 5) ds < o0,
0 1+S
1 >
(3.3) tlggol——i—t/o sf(s,1+s°,1+s)ds=0.

Then problem (1.1) has at least one positive solution.

Proof. Step 1. A fixed point formulation. For each x € X, let 0 < ¢; < 1 be a
positive constant such that ¢;||z| < 1. For all £ > 0 we have

(2)" s ot 00)

e " f (s e (1+ ) |zllo, ' (1))

o " (erlle )M 81+ 82,2 (1))

e (el 1+ P e (148
e TP (el (e[l )2 F (142,14 1)
MR+,

ft,2(t),2'(1))

N

INCINCININ N

Then,

/Gts (5, 2(s), 2 /Kts (5, 2(s), 2/ (s)) ds

Y I ECEC

1 1
<1+ t)ey " ”2/ sfo,1 4% 145) ds < cc.
0 1+S

In particular, this implies that for all x € X
oo [ee]
/ G(t,s)f(s,x(s),2'(s))ds < oo and / K(t,s)f(s,z(s),2'(s))ds < oo,
0 0
which allows us to define an operator A on X by

Ax(t) = By(z) + tAs(x / G(t,s)f(s,z(s),2'(s))ds.
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Step 2. A: X — X is well defined. Indeed, for all ¢t > 0
<MW>AA>/Qmm> Dast [ f(sia(s). /() s
/ K(t,s)f(s,z(s),z'(s))ds.

Moreover,
(o)) _ Ar /
T+t 14t T1xr ), KBeS(se)e(s)ds
Ay I
1+t+1—+t Osf(sax(s) d8+1—+t/ f(s,2(s
<i+6*m H2 L/tsf(81+81+s2)ds
1+t 1+t ./, ’ ’
/Oosf(s,l—i—s,l—f—sQ)ds)
+ .
p 1+s

"(s)) ds

Equations (3.3) and (3.2) imply that tlim (Az)'(t)/(1+¢t) = 0. In addition,
o0

A(P) C P. Indeed, by simple calculation, we get Az(0) = Z a;Ax(&;) for x € P.

Following the same steps as in the proof of Lemma 2.3, we can check that

(Az)'(t) 2 v()|| Azl VE>0.

Step 3. A fized point of A is a solution of problem (1.1). Let

x(t) = Az(t) = By(x) + tAs(x /Gts (s,2(s),2'(s)) ds.

Differentiating = three times, we get successively

2 (t) = Ag() + fﬁ@ﬂ Mﬁ/fsx /() ds,

/fsx /() ds,

and

o0 = By(e) = 5 Y (s + [ Gl s 0(0).0' ) s ).
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we deduce that By(z) = Zl a;x(&;). Finally, using (3.2) we find
i=1

00 2
O< Lx"(t) < Cl_ll«l_HQ/ Sf(571+8 71+8) dS Vt 2 0.
1+1¢ p 1+s
Hence
: " _ 1 /! —
tlgglox (t)itlggo 11¢" (t) =0.

Step 4. Operator A: P — P is completely continuous.

(i) A is bounded. Indeed, let B C P be a bounded set. Then there exists a
constant M such that for all x € B,||z|| < M. Let ¢z be a constant such that
0 < ¢z < min(1,1/M). We have

(l)”lf(t,@u 2y 20 #(1))

o 1+ ¢2’

ey F(t, ca(1+ ) allo, ' (¢))

¢ " (eallal F (1,14 £, (1)

ey T (MM F(H 1+ 12, ex(1+ 8)|])1)
c3 " T (MM (ea M) f(8,1 + 82,1 + 1)
M TR E(E T4 12,1 4 1),

f(t,x(t), 2/ (2))

N

INCINCININ N

Asa consequence

[(Az)'(t)| _ Ay I A )
2. 1+t/o K(t,5)f(s,2(s), 2/ (5)) ds
K(nivs)

1 & o0 ,
<§;&A(Hw%——#@ﬂﬁﬂﬂ®

L+mn
*© K(t,s)

| A s (e). ') ds

< Mgcg’“*’”/o %_}_Sf(s,l—i—sal—i—s)ds < 00,
n .

where M3 =1+ (ZQ Bi(1+ m))/B. Since || Az|lo < Ma||Az|1, A(B) is bounded, as
i=1

claimed.

(ii) A is continuous. Let x,, zg € P be such that ||z, — zo|]| — 0 as n — oo; then
(zn)n is bounded. Let L = sup{||z.|,» = 1,2,...} and let c¢3 be a constant such
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that 0 < ¢3 < min(1,1/L). We have
(Azy)'(t) _ (Azo)'(1) ’

1+t 1+t
1 2 oo , ,
< m;ﬂ/o K (i, 8)[(f (s, 20 (s), 23, (8)) — f(s,20(s), z(s)))| ds

[ R (5).1,60) = Sl ap)) s

1+
<My [ (). 0,6) = (). i)
and Ln .
tszat® h0) < (2)" (st + 222G ot )

cg " F(t s (L + ) |lznlo, 27, (1))

c5 " (eallon )M F(E 1+ 82,2, (1))

eg " T (es L) F(8, 1+ 1%, c3(1 4 1) [an1)
372 (s L)M (es L) f (1, 1+ 7,1 + t)
SegMT (it 1+ 12,1+ t).

By the Lebesgue dominated convergence theorem and Lemma 3.1, we deduce that

V/AN/ANV/AN

N

Az, — Azglls = 0 as n — oo,
and by Lemma 3.1, we infer that
Az, — Azgllo = 0 as n — oo,

proving that A: P — P is continuous.
(iii) A is equicontinuous. Let B C P be a bounded set, and let t1,t2 € [a,b] be
such that 0 < t; < ta. Then for all x € B, we have the estimates:

‘ (Az)'(t2) _ (Az)'(t1) }

1+1s 1+t

|58 - T [ (R - T e na

< [t —m%;ﬂi / K(mi,5)f (s, 2(s), 2 (s)) ds

- /02 ﬁf(s,x(s),x'(s))der/t:O 1ft2f(s,x(s),x'(8))ds

)

ty s , > t1 /
—/O Ttlf(s,x(s),x(8))018—/t1 1+t1f(87$(5)a$ (s))ds
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that is,
(Az)'(t2)  (Az)'(t1)
1+t 1+ tl

<lta=tig 38 [0 T ot ) 0

|t1 — t2| t1 ,
m/o sf(s,z(s),'(s))ds

2]

1 /
T, ), ). (s)ds
|t1 —t2|
(1—|—t2 1+t1 / flo,als),'())ds
31
1 n f(s Heh (e ds

s
< |tg — ti| = il—i—i/—s,xs,x’s ds
|2 1|B;5( 77)0 5o/ (5a(s)27(s))
|t1—t2| t1 S
1+t2 0 1+S
|ts — 1|
(T+t2)(1+t1) J,

=78 ﬁf(w(s),x'(s))ds

f(s,2(s), 2/ (s)) ds
f(s x(s), ' (s)) ds

1 & R 9
< Clta — t1| = (14 m; —f(s,14+s%,1+s)ds
-tz e [ )

[t1 —ta| [T s
T+ty Jo 1+s
|ty — Lo
(L+t2)(14+t1) Jy

+C f(s,14+s%1+s)ds

+C f(s 1+5% 1+ s)ds.

Hence

® sf(s, 14 52,1+ s)
1+s

ds

(Az)(t2)  (Ax)(t1) 'S e
T+t 144 <C|ﬁ2ﬂtlhi}&(lwﬁ)/o

|1§1—7§2|/t1 sl—l—sQ,l—l—s)dS

1+t 1+s
2
— 1
|f,1 t2| / f(S, 1+s s + S) ds < e,
ta(1+t1) 1+s
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M1 — 2

where C' = ¢y . Similarly, we can prove that

(Az)(ta) _ (Az)(t)

1+ t3 1+ 17
Therefore the operator A is equicontinuous.
(iv) A is equiconvergent. We have
|4 \ o ARV EE RO
= s)f(s,x(s),2'(s))ds
1+t 1—|—t 1 ’ T
® sf(s,1+ 5,1+ 5%
f 1 Ml M2 ) ) d
tBZB e /0 1+s i
+ e L/tsf(s 145,14 5%)ds
2 1+t Jo ’ ’
e, )
p 1+s

which tends to 0 as ¢ — oco. In the same way we can prove that |(Az)(t)/(1 +¢%)| — 0
as t — oo. We conclude that A: P — P is completely continuous.

(v) Let Jy = [, 8]. Then K(t,s)/(1+t) > e1 = a/(1+ B) for (t,s) € Jy x Jp.
Hence, for all x € P and for all ¢t € Jy we have

(A2)'(t)

) <
1+1¢ 1+t/Ktsf(sx() 51/f8$ '(s))ds

and
ft (), ' (£) = f(t, (L+ ) M|z|1, (1 + t)eaz]l),

where e2 = min(a, 1)/(1 + ). For each x € P, let ¢4 = c4(x) be a positive constant
such that ¢y min(Mjy,e2)||z||1 > 1. For all z € P and t € Jy, we have

Fltx(t),2' (1) = e 7" (caMa ||l )™ (caeallall) (f (2 (1 + %), (1 +1)).

Since
Az) (t _
(1711&) > e1c, " (cady||]|0) M (cacz|@]11) 2 s

1 MY ol e Lo

VoWV

e oA M ol

WV

A1tz
A1+A2—p1—p2 A2 A s A1
Cy €165 ° M7 1o

|z[lo ,

E'
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we deduce that

e — 1 A1+A
Al > e e 2 M Lo max ([l 2, (7 lello) )

I
A1z —p1— A2 37 8 PYEDY PYEDY
>yt u251522M11ﬁmaX(”x”11+ % llllg )

A1+Ao—p1 —p2 A2 A A1 Iaﬁ INED T
=) €169 Mj WHJCH :
2

By Lemma 3.1, we have

I
Ar+Ae—p1— Y A 8
I Aeilo > M| Arily > My 271 e e MY i
Then,
1,
A1+ —p1— A A B A1+
|Az|| > max(1, My)cy' 727 H2€1€22M117M2)j+/\2 ||| 22,
Since A1 + A2 > 1, we may choose
Ing

\ N 71/()\14’)\271)
_ 1+A2—p1—p2 A2 A A1
R = <max(1,M1)c4 €1&9 Ml W) .

As a consequence, for R large enough, we obtain
[Az| = |lzll Yz eP, [zl = R.

Furthermore, let 0 < r < 1 be selected sufficiently small and B = B(0,r). Then
for all z € PNOB, let 0 < ¢5 = c5(xr) < 1 be a positive constant such that
¢s max(Ma, 1)||z]|1 < 1. Hence for all positive ¢, we have

Flt ()2’ (0) < 5" 27T (Mala]) ™ (o)) (8, 1+ 82,1+ ¢).

Asa consequence

/ (oo}
Kﬁ fft)l - 1A+ft + 1it/0 K(t,5)f(s,2(s), 2'(s)) ds
> sf(s,1+5%1+5)
1+s
> sf(s,14+5%1+5)
1+s

ol [T oL E S g
1+s

< Myegrthemimoee (M2||x||1)h(||x||1)h/0 ds

ds

S e
0

1
A1+A2
M;

< M3c§1+/\2—lt1—lt2 M2)\1
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Hence,
| Azlly < Macd #2142 0 mim ([l 2+,

00 2
></ sf(s,l—i—s,l—i—s)ds
0 1+5

o0 1+ 821
S e

] )

M)\l +A2

Now if we choose

i ! > (s, (1+52),(1+s)) , \ /M Teb
0<r< (Inln(l,W)]M?,]WQ‘/0 s ds

for r small enough, then we arrive at the estimate
|Az|| < ||z|] Vx e PnNOoB.

By Lemma 1.1, we conclude that A has a fixed point * € P which satisfies r <
2] < R. U

Example 3.1. Consider the boundary value problem:

(3.4) x@D——%x(%)::Q
o-3) -
fliglo (1) =0,
" a() ()"
(t) P 0, t=0,

where A > 0,0 < u <1, A+ p > 1.
We have

f(t7cx7dw’)=m(c 2() (e (1)) ckd"mwmw

ol 14+t21 o0 1
/ tf(t,1+t2, +t)dt:/ _ _a
o 1+t o (L+t)l=m(1+1t2)

Since 1 — pu > 0, we get

1 +82 1+t Sl |
/ ﬂ,+,+)&</ P
0 1+t o 1+1t2 2

and

A
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Also,

1/ 1 [fa4s) 1
< — 1+s21 ds = ds < tant.
i) 5f(s,145%,1+s)ds 1+t/0 T2 0 (1+t>1_uarcan

[]ellce,
IIIl] ! é«j(é71 S ) 5)df—o
0

+
From Theorem 3.2, problem (3.4) has at least a C*(0, c0) positive solution.
3.2. C?[0,00) N C3(0,00) solutions. First, we prove a nonexistence result.

Theorem 3.3. Suppose that Hypothesis () holds. Then a necessary condition
for problem (1.1) to have a C%[0,0) N C3(0, c0) positive solution is

(3.5) dt < oo.

/°° ft,1+121+1)
o (L+t)r=(l42)m

Proof. Suppose that = is a C?[0,00) N C3(0,00) positive solution of prob-
lem (1.1). Then 2”(0") exists. By integration of (1.1) we obtain

/OOO f(s,2(s),2'(s))ds = 2"(0) < .

Let ¢y be a constant such that 0 < ¢g < min{1,1/||z||}. From Hypothesis (), we
have the estimates

, B co(1+t2)x(t) co(1+1t)x'(t)
f(t’x(t)’x(t))*f(t’ co(l+12) 7 co(1+1) )

o (L) (L) (s, A2 wll+ 1)y

o 1+ 1+t

N t) M1 C():L'/(t) M2
> ¢y *2(Cox( ) ( ) e
Co 1+ t2 14+¢ f( ’ + ’ + )

> (o)t~ (%)M(CO)’“*A? (f/—g)wf(t, 1462 1+1).

Co

By Lemma 2.1, we have

1 p1 1 B2
e —— 1+t 1+¢
(1+t2) (1+t) FE1+6,1+1)

1 - "
<m3f($) M A ()R f(t @ (t), 2 (1)
0

< apBy(2) " Ay ()2 (—a" (1)).
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Integrating both sides, we obtain

* fls,1+5%1+ o B
/0 (1(-is)uz(81+82;)1 ds < aoBy(z)™" Ap(z)~"* (2"(0)) < oco.

We end the paper by an existence result for a regular solution.

Theorem 3.4. Suppose that Hypothesis (H) holds and

(3.6) / ft,1+t3141)dt < oo,
0
1 t )
(3.7) tll>rgo1—+t/0 sf(s,14+s°,1+s)ds=0.

Then problem (1.1) has at least one C?[0, 00) N C3(0, 00) positive solution.

Proof. Suppose that (3.6) and (3.7) hold. According to the proof of Theo-
rem 3.2, there exists a C3(0,00) positive solution Z to problem (1.1) such that
r < ||Z]] < R. Let 0 < ¢g < 1 be a constant such that cg max{Mao,1}||Z| < 1.
We have

(@) = f(t,T(1),7(t) <cg™ " ft, 1+ 12,1 +1).

Then |7"| is absolutely integrable on [0, oc), which implies that Z € C?[0, 00); so T
is a C2[0, 00) positive solution of problem (1.1). O

Example 3.2. Consider the following boundary value problem:

(3.8) 2(0) — 535(5) =0,

tPa(t) ! (t)*

" R S A t>
O+ v mpar =0 120

where A >0, 0 < p < 1, A+ u > 1. By Theorem 3.4, problem (3.8) has at least one
C?[0,00) N C3(0, 00) positive solution whenever p > 0 and p + p < 1.

Remark 3.1 (Concluding remarks). Examples 3.1 and 3.2 show that in this
work existence of solutions was obtained under sub-linear growth in the second ar-
gument, the derivative 2’ of the solution, of the nonlinearity f. In this case, one can
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take any power of x provided that f has a global joint super-linear growth in the
space arguments. The time singularity in Example 3.1, which has a killing effect,
has order 1/t in the vicinity of the origin. However, for a more regular solution to
exist, say of class C2[0,00), we required in Example 3.2 that f behaves as t*~! with
exponent 0 < p < 1— pu <0, in the vicinity of the time origin.

Acknowledgments. The authors would like to thank the anonymous ref-
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