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Abstract. We investigate the uniqueness of a q-shift difference polynomial of meromor-
phic functions sharing a small function which extend the results of N.V.Thin (2017) to
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1. Introduction and results

In this paper, a meromorphic function always means it is meromorphic in the

complex plane C. We use the standard notation in Nevanlinna’s value distribution

theory (see, e.g. [9], [14], [15]). We denote by S(r, f) any quantity satisfying S(r, f) =

o(T (r, f)) as r → ∞ possibly outside a set of finite logarithmic measure. We write

̺(f) for order of f(z).

The following definitions we use while proving our results.

Definition 1.1. Let a be a finite complex number, and k a positive integer. We

denote by N(k(r, a, f) the counting function for zeros of f − a with multiplicities at

least k, and by N (k(r, a, f) the one for which multiplicity is not counted. Similarly,

we denote by Nk)(r, a, f) the counting function for zeros of f − a with multiplicities
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at most k, and by N (k(r, a, f) the one for which multiplicity is not counted. Then

Nk(r, a, f) = N (1(r, a, f) +N (2(r, a, f) + . . .+N (k(r, a, f).

Definition 1.2. Let f(z) and g(z) be two meromorphic functions in the complex

plane C. If f(z)−a and g(z)−a assume the same zeros with the same multiplicities,

then we say that f(z) and g(z) share the value a CM, and if we do not consider

the multiplicity, then we say that f(z) and g(z) share the value a IM, where a is a

complex number.

Recently, people have raised great interest in difference analogues of Nevanlinna’s

theory and many articles have focused on value distribution and uniqueness of dif-

ference polynomials of entire or meromorphic functions (see for example [1]–[8]).

In 2015, Zhao and Zhang (see [17]) proved the following results

Theorem 1.A. Let f(z) and g(z) be transcendental entire functions of zero

order and let n, k be positive integers. If n > 2k + 5, then (fnf(qz + c))(k) and

(gng(qz + c))(k) share z or 1 CM, then f = tg for a constant t with tn+1 = 1.

Theorem 1.B. Let f(z) and g(z) be transcendental entire functions of zero

order and let n, k be positive integers. If n > 5k + 11, then (fnf(qz + c))(k) and

(gng(qz + c))(k) share z or 1 IM, then f = tg for a constant t with tn+1 = 1.

In 2017, Thin proved the following theorems for meromorphic functions (see [12]).

Theorem 1.C. Let f(z) and g(z) be two transcendental meromorphic (entire)

functions of zero order, q and c be complex constants, q 6= 0, k be a positive integer.

Let a(z) 6≡ 0 be a meromorphic (entire) small function and let P (z) = anz
n +

an−1z
n−1 + . . . + a1z + a0 be a nonconstant polynomial with constant coefficients

a0, a1, . . . , an−1, an(6= 0) andm be the distinct zeros of P (z). If n > 2m(k+1)+2k+6

(respectively, n > 2m(k+1)+4) and (P (f)f(qz+c))(k) and (P (g)g(qz+c))(k) share

a(z), ∞ CM, then one of the following two results holds:

(1) f = tg for a constant t with td = 1, where d = LCM{λj : j = 0, 1, . . . , n}, and

λj =

{

j + 1 if aj 6= 0,

n+ 1 if aj = 0,

(2) f and g satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = P (ω1)ω1(qz + c)− P (ω2)ω2(qz + c).
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Theorem 1.D. Let f(z) and g(z) be two transcendental meromorphic func-

tions of zero order, q and c be complex constants, q 6= 0, k be a positive in-

teger. Let a(z) 6≡ 0 be a meromorphic (entire) small function and let P (z) =

anz
n + an−1z

n−1 + . . . + a1z + a0 be a nonconstant polynomial with constant co-

efficients a0, a1, . . . , an−1, an(6= 0) and m be the distinct zeros of P (z). If n >

2m(k+2)+3m(k+1)+8k+21 and (P (f)f(qz+ c))(k) and (P (g)g(qz+ c))(k) share

a(z) IM, then one of the following three results holds:

(1) (P (f)f(qz + c))(k)(P (g)g(qz + c))(k) ≡ a2,

(2) f = tg for a constant t with td = 1, where d = LCM{λj : j = 0, 1, . . . , n}, and

λj =

{

j + 1 if aj 6= 0,

n+ 1 if aj = 0,

(3) f and g satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = P (ω1)ω1(qz + c)− P (ω2)ω2(qz + c).

In this paper, we extend Theorem 1.C and Theorem 1.D to the q-difference oper-

ator ∆qf = f(qz + c)− f(z) and prove the following theorems.

Theorem 1.1. Let f(z) and g(z) be two transcendental meromorphic (entire)

functions of zero order, such that f(qz+c)−f(z) 6≡ 0 and g(qz+c)−g(z) 6≡ 0, where q

and c are nonzero complex constants, k, n, m are positive integers. Let a(z) (6≡ 0)

be a small function of f(z) and g(z). Let P (z) = anz
n+an−1z

n−1+ . . .+a1z+a0 be

a nonconstant polynomial with constant coefficients a0, a1, . . . , an−1, an(6= 0) and m

the distinct zeros of P (z). If n > 2mk+2m+2k+7 (respectively, n > 2mk+2m+5)

and (P (f)(f(qz + c)− f(z)))(k) and (P (g)(g(qz + c)− g(z)))(k) share a(z), ∞ CM,

then one of the following two cases holds:

(1) f ≡ tg for a constant t with td = 1, where d = LCM{λj : j = 0, 1, . . . , n}, and

λj =

{

j + 1 if aj 6= 0,

n+ 1 if aj = 0,

(2) f and g satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = P (ω1)(ω1(qz + c)− ω1(z))− P (ω2)(ω2(qz + c)− ω2(z)).
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Theorem 1.2. Let f(z) and g(z) be two transcendental meromorphic functions

of zero order such that f(qz + c)− f(z) 6≡ 0 and g(qz + c)− g(z) 6≡ 0, where q and c

are nonzero complex constants and k, n, m are positive integers. Let a(z) (6≡ 0) be

a small function of f(z) and g(z), let P (z) = anz
n + an−1z

n−1 + . . . + a1z + a0 be

a nonconstant polynomial with constant coefficients a0, a1, . . . , an−1, an(6= 0) and m

the distinct zeros of P (z). If n > 5mk+7m+8k+25 and (P (f)(f(qz+c)−f(z)))(k)

and (P (g)(g(qz + c)− g(z)))(k) share a(z) IM, then one of the following three cases

holds:

(1) (P (f)(f(qz + c)− f(z)))(k)(P (g)(g(qz + c)− g(z)))(k) ≡ a2,

(2) f ≡ tg for a constant t with td = 1, where d = LCM{λj : j = 0, 1, . . . , n}, and

λj =

{

j + 1 if aj 6= 0,

n+ 1 if aj = 0,

(3) f and g satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = P (ω1)(ω1(qz + c)− ω1(z))− P (ω2)(ω2(qz + c)− ω2(z)).

As a particular case of the above theorems, we deduce the following corollaries.

Corollary 1.1. Let f(z) and g(z) be two transcendental meromorphic functions

of zero order such that f(qz + c) − f(z) 6≡ 0 and g(qz + c) − g(z) 6≡ 0, where q

and c are nonzero complex constants. Let k, n be positive integers, a(z) (6≡ 0) be

a small function of f(z) and g(z), and α a complex constant. If n > 4k + 9 and

((f −α)n(f(qz+ c)− f(z)))(k) and ((g−α)n(g(qz+ c)− g(z)))(k) share a(z), ∞ CM,

then one of the following two cases holds:

(1) f ≡ tg for a constant t with tn+1 = 1,

(2) f and g satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = (ω1 − α)n(ω1(qz + c)− ω1(z))− (ω2 − α)n(ω2(qz + c)− ω2(z)).

Corollary 1.2. Let f(z) and g(z) be two transcendental meromorphic functions

of zero order such that f(qz + c) − f(z) 6≡ 0 and g(qz + c) − g(z) 6≡ 0, where q

and c are nonzero complex constants. Let k, n be positive integers, a(z) (6≡ 0) be

a small function of f(z) and g(z), and α a complex constant. If n > 13k + 32 and

((f − α)n(f(qz + c) − f(z)))(k) and ((g − α)n(g(qz + c) − g(z)))(k) share a(z) IM,

then one of the following three cases holds:

(1) ((f − α)n(f(qz + c)− f(z)))(k)((g − α)n(g(qz + c)− g(z)))(k) ≡ a2,

(2) f ≡ tg for a constant t with tn+1 = 1,
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(3) f and g satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = (ω1 − α)n(ω1(qz + c)− ω1(z))− (ω2 − α)n(ω2(qz + c)− ω2(z)).

2. Some preliminary results

To prove our theorems we require the following lemmas.

Lemma 2.1 ([14]). Let f(z) be a nonconstant meromorphic function, then

T (r, Pn(f)) = nT (r, f) + S(r, f).

Lemma 2.2 ([13]). Let f(z) be a nonconstant meromorphic function of zero order

and let q, η be two nonzero complex constants. Then on a set of lower logarithmic

density 1, we have

T (r, f(qz + η)) = T (r, f) + S(r, f).

Lemma 2.3 ([13]). Let f(z) be a nonconstant meromorphic function of zero order

and let q, η be two nonzero complex constants. Then on a set of lower logarithmic

density 1, we have

N(r, f(qz + η)) = N(r, f) + S(r, f),

N
(

r,
1

f(qz + η)

)

= N
(

r,
1

f

)

+ S(r, f).

Lemma 2.4 ([11], Theorem 2.1). Let f(z) be a nonconstant zero order meromor-

phic function and let q be a nonzero complex number. Then on a set of logarithmic

density 1, we have

m
(

r,
f(qz + η)

f(z)

)

= S(r, f).

Lemma 2.5 ([16]). Let f(z) and g(z) be nonconstant meromorphic functions,

and let a(z)(6≡ 0,∞) be a small function of f(z) and g(z). If f(z) and g(z) share

a(z) IM, then one of the following three cases holds:

(1) T (r, f) 6 N2(r, 1/f)+N2(r, f)+N2(r, 1/g)+N2(r, g)+2(N(r, 1/f)+N(r, f))+

(N(r, 1/g)+N(r, g))+S(r, f)+S(r, g), and a similar inequality holds for T (r, g),

(2) fg ≡ 1,

(3) f ≡ g.
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Lemma 2.6 ([10], Lemma 2.11). Let f(z) be a nonconstant meromorphic func-

tion, and let p, k be positive integers. Then

Np

(

r,
1

f (k)

)

6 T (r, f (k))− T (r, f) +Np+k

(

r,
1

f

)

+ S(r, f),

Np

(

r,
1

f (k)

)

6 Np+k

(

r,
1

f

)

+ kN(r, f) + S(r, f).

Lemma 2.7. Let f(z) be a transcendental meromorphic function of zero order

and let F = P (f)(f(qz + c)− f(z)), where n is a positive integer. Then

(n− 1)T (r, f) + S(r, f) 6 T (r, F ).

P r o o f. From First fundamental theorem, Lemma 2.1 and Lemma 2.4, we obtain

(n+ 1)T (r, f) = T (r, f(z)P (f)) + S(r, f) 6 T
(

r,
f(z)F

f(qz + c)− f(z)

)

+ S(r, f)

6 T (r, F ) + T
(

r,
f(qz + c)− f(z)

f(z)

)

+ S(r, f)

6 T (r, F ) + T
(

r,
f(qz + c)

f(z)

)

+ S(r, f)

6 T (r, F ) +m
(

r,
f(qz + c)

f(z)

)

+N
(

r,
f(qz + c)

f(z)

)

+ S(r, f)

6 T (r, F ) + 2T (r, f) + S(r, f).

Therefore (n− 1)T (r, f) + S(r, f) 6 T (r, F ) on a set of logarithmic density 1. �

Lemma 2.8. Let f(z) be a transcendental entire function of zero order and

P (f) = anf
n+ an−1f

n−1+ . . .+ a1f + a0. Let F = P (f)(f(qz+ c)− f(z)), where n

is a positive integer. Then

nT (r, f) + S(r, f) 6 T (r, F )

P r o o f. From First fundamental theorem, Lemma 2.1 and Lemma 2.4, we obtain

(n+ 1)T (r, f) = T (r, f(z)P (f)) + S(r, f) 6 T
(

r,
f(z)F

f(qz + c)− f(z)

)

+ S(r, f)
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6 T (r, F ) + T
(

r,
f(qz + c)− f(z)

f(z)

)

+ S(r, f)

6 T (r, F ) + T
(

r,
f(qz + c)

f(z)

)

+ S(r, f)

6 T (r, F ) +m
(

r,
f(qz + c)

f(z)

)

+N
(

r,
f(qz + c)

f(z)

)

+ S(r, f)

6 T (r, F ) + T (r, f) + S(r, f).

Therefore nT (r, f) + S(r, f) 6 T (r, F ) on a set of logarithmic density 1. �

3. Proof of theorems

P r o o f of Theorem 1.1. Let F (z) = P (f)(f(qz + c) − f(z)) and F (k)(z) =

(P (f)(f(qz + c) − f(z)))(k) and G(z) = P (g)(g(qz + c)− g(z)) and G(k)(z) =

(P (g)(g(qz + c) − g(z)))(k). Since F (k) and G(k) share a(z), ∞ CM, there exists a

nonzero constant β such that

(3.1)
(P (f)(f(qz + c)− f(z)))(k)/a(z)− 1

(P (g)(g(qz + c)− g(z)))(k)/a(z)− 1
= β,

and we get

(P (f)(f(qz + c)− f(z)))(k) − a(z)(1− β) = β(P (g)(g(qz + c)− g(z)))(k).

Now, we will prove that β = 1. Let, on the contrary, β 6= 1. Using the Second

fundamental theorem and by Lemma 2.6 , we get

T (r, F (k)) 6 N(r, F (k)) +N
(

r,
1

F (k)

)

+N
(

r,
1

F (k) − a(z)(1− β)

)

+ S(r, f)

6 N(r, F ) +N

(

r,
1

F (k)

)

+N
(

r,
1

G(k)

)

+ S(r, f)

6 N(r, F ) + T (r, F (k))− T (r, F ) +Nk+1

(

r,
1

F

)

+ kN(r,G)

+Nk+1

(

r,
1

G

)

+ S(r, f) + S(r, g),
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which implies

T (r, F ) 6 N(r, F ) +Nk+1

(

r,
1

F

)

+ kN(r,G) +Nk+1

(

r,
1

G

)

+ S(r, f) + S(r, g)

6 N(r, f) +N(r, f(qz + c)) +Nk+1

(

r,
1

P (f)

)

+N
(

r,
1

f(qz + c)− f(z)

)

+ kN(r, g) + kN(r, g(qz + c)) +Nk+1

(

r,
1

P (g)

)

+N
(

r,
1

g(qz + c)− g(z)

)

+ S(r, f) + S(r, g)

6 T (r, f) + T (r, f) +m(k + 1)T (r, f) + 2T (r, f) +m(k + 1)T (r, g)

+ 2T (r, g) + kT (r, g) + kT (r, g) + S(r, f) + S(r, g).

Combining this with Lemma 2.7, we obtain

(3.2) (n−1)T (r, f) 6 (mk+m+4)T (r, f)+(mk+m+2k+2)T (r, g)+S(r, f)+S(r, g).

Similarly

(3.3) (n−1)T (r, g) 6 (mk+m+4)T (r, g)+(mk+m+2k+2)T (r, f)+S(r, f)+S(r, g).

From (3.2)and (3.3), we get

(n− 1)(T (r, f)+T (r, g)) 6 (2mk+2m+2k+6)(T (r, f)+T (r, g))+S(r, f)+S(r, g),

which implies (n−1−2mk−2m−2k−6)(T (r, f)+T (r, g)) 6 S(r, f)+S(r, g), that is

(n− 2mk− 2m− 2k− 7)(T (r, f)+T (r, g))6 S(r, f)+S(r, g). This is a contradiction

to n > 2mk + 2m+ 2k + 7. Thus, we get β = 1. Hence from (3.1), we have

(P (f)(f(qz + c)− f(z)))(k) = (P (g)(g(qz + c)− g(z)))(k),

and we get

(3.4) P (f)(f(qz + c)− f(z)) = P (g)(g(qz + c)− g(z)) + r(z),

where r(z) is a polynomial of degree at most k − 1. Suppose r(z) 6≡ 0, then we get

P (f)(f(qz + c)− f(z))

r(z)
=

P (f)(g(qz + c)− g(z))

r(z)
+ 1.
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Therefore, from Lemma 2.7 and the Second fundamental theorem, we have

(n− 1)T (r, f) 6 T
(

r,
P (f)(f(qz + c)− f(z))

r(z)

)

+ S(r, f)

6 N
(

r,
P (f)(f(qz + c)− f(z))

r(z)

)

+N
(

r,
r(z)

P (f)(f(qz + c)− f(z))

)

+N
(

r,
r(z)

P (g)(g(qz + c)− g(z))

)

+ S(r, f)

6 N(r, f(z)) +N(r, f(qz + c)) +N
(

r,
1

P (f)

)

+N
(

r,
1

f(qz + c)− f(z)

)

+N
(

r,
1

P (g)

)

+N
(

r,
1

g(qz + c)− g(z)

)

+ S(r, f),

(n− 1)T (r, f) 6 (m+ 2)(T (r, f) + T (r, g)) + 2T (r, f) + S(r, f).(3.5)

Similarly, we have

(3.6) (n− 1)T (r, g) 6 (m+ 2)(T (r, f) + T (r, g)) + 2T (r, g) + S(r, g).

From (3.5) and (3.6), we obtain

(n− 1)(T (r, f) + T (r, g)) 6 2(m+ 2)(T (r, f) + T (r, g)) + 2(T (r, f) + T (r, g))

+ S(r, f) + S(r, g),

(n− 1− 2m− 4− 2)(T (r, f) + T (r, g)) 6 S(r, f) + S(r, g),

that is

(n− 2m− 7)(T (r, f) + T (r, g)) 6 S(r, f) + S(r, g).

This is a contradiction to n > 2mk + 2m + 2k + 7 > 2m + 7. Therefore r(z) ≡ 0.

Hence (3.4) becomes

(3.7) P (f)(f(qz + c)− f(z)) = P (g)(g(qz + c)− g(z)).

That is (anf
n+an−1f

n−1+. . .+a1f+a0)(f(qz+c)−f(z)) = (ang
n+an−1g

n−1+. . .+

a1g + a0)(g(qz + c) − g(z)), which implies (anf
n + an−1f

n−1 + . . . + a1f + a0)×

f(qz+c)−(anf
n+an−1f

n−1+. . .+a1f+a0)f(z) = (ang
n+an−1g

n−1+. . .+a1g+a0)×

g(qz + c) − (ang
n + an−1g

n−1 + . . . + a1g + a0)g(z). Let h = f/g, we consider the

following cases.
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Case 1. If h(z) is a constant, then substituting f = gh into (3.7), we have

(anh
ngn + an−1h

n−1gn−1 + . . .+ a1hg + a0)hg(qz + c)− (ang
n + an−1g

n−1 + . . .+

a1g + a0)g(qz + c) − ((anh
ngn + an−1h

n−1gn−1 + . . . + a1hg + a0)hg(z) − (ang
n +

an−1g
n−1 + . . . + a1g + a0)g(z)) = 0, which implies ang

ng(qz + c)(hn+1 − 1) +

an−1g
n−1g(qz + c)(hn − 1) + . . . + a1g

1g(qz + c)(h2 − 1) + a0g(qz + c)(h − 1) −

(ang
n+1(hn+1 − 1) + an−1g

n(hn − 1) + . . .+ a1g
2(h2 − 1) + a0g(h− 1)) = 0. There-

fore ang
n(g(qz + c)− g(z))(hn+1 − 1) + an−1g

n−1(g(qz + c)− g(z))(hn − 1) + . . .+

a1g(g(qz + c)− g(z))(h2 − 1)+ a0(g(qz + c)− g(z))(h− 1) = 0. This implies hd = 1,

where d = LCM{λj : j = 0, 1, . . . , n}, and

λj =

{

j + 1 if aj 6= 0,

n+ 1 if aj = 0.

Thus, f ≡ tg, where t is a constant with td = 1, where d = LCM{λj : j =

0, 1, . . . , n}, and

λj =

{

j + 1 if aj 6= 0,

n+ 1 if aj = 0.

Case 2. Suppose h(z) is not a constant, then f and g satisfy the algebraic equation

R(f, g) = 0, where

R(ω1, ω2) = P (ω1)(ω1(qz + c)− ω1(z))− P (ω2)(ω2(qz + c)− ω2(z)).

Note that, when f(z) and g(z) are transcendental entire functions, we have

N(r, F ) = 0 and N(r,G) = 0. By computing similarly to the case of meromorphic

functions, we easily obtain the conclusion of Theorem 1.1 with n > 2mk+2m+5 �

P r o o f of Theorem 1.2. Let F (z) = P (f)(f(qz + c) − f(z)) and G(z) =

P (f)(g(qz+c)−g(z)). We see that F (k) and G(k) share a(z) IM. If (1) of Lemma 2.5

holds, then using Lemma 2.7, we obtain

T (r, F (k)) 6 N2

(

r,
1

F (k)

)

+N2(r, F
(k)) +N2

(

r,
1

G(k)

)

+N2(r,G
(k))

+ 2
(

N
(

r,
1

F (k)

)

+N(r, F (k))
)

+N
(

r,
1

G(k)

)

+N(r,G(k)) + S(r, F ) + S(r,G)

6 N2(r, F
(k)) + T (r, F (k))− T (r, F ) +Nk+2

(

r,
1

F

)

+Nk+2

(

r,
1

G

)

+ kN(r,G) +N2(r,G
(k)) + 2

(

Nk+1

(

r,
1

F

)

+ kN(r, F ) +N(r, F (k))
)

+Nk+1

(

r,
1

G

)

+ kN(r,G) +N(r,G(k)) + S(r, f) + S(r, g),
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which implies

T (r, F ) 6 N2(r, F ) +Nk+2

(

r,
1

F

)

+Nk+2

(

r,
1

G

)

+ kN(r,G)

+N2(r,G) + 2
(

Nk+1

(

r,
1

F

)

+ kN(r, F ) +N(r, F )
)

+Nk+1

(

r,
1

G

)

+ kN(r,G) +N(r,G) + S(r, f) + S(r, g).

Therefore

T (r, F ) 6 (2k + 4)N(r, F ) +Nk+2

(

r,
1

F

)

+ 2Nk+1

(

r,
1

F

)

(3.8)

+ (2k + 3)N(r,G) +Nk+2

(

r,
1

G

)

+Nk+1

(

r,
1

G

)

+ S(r, F ) + S(r,G).

Similarly

T (r,G) 6 (2k + 4)N(r,G) +Nk+2

(

r,
1

G

)

+ 2Nk+1

(

r,
1

G

)

(3.9)

+ (2k + 3)N(r, F ) +Nk+2

(

r,
1

F

)

+Nk+1

(

r,
1

F

)

+ S(r, F ) + S(r,G).

We have

N(r, F ) 6 N(r, f) +N(r, f(qz + c)− f(z)) 6 2T (r, f) + S(r, f),(3.10)

Nk+2

(

r,
1

F

)

6 Nk+2

(

r,
1

P (f)

)

+N
(

r,
1

f(qz + c)− f(z)

)

(3.11)

6 (m(k + 2) + 2)T (r, f) + S(r, f),

and

(3.12) Nk+1

(

r,
1

F

)

6 Nk+1

(

r,
1

P (f)

)

+N
(

r,
1

f(qz + c)− f(z)

)

6 (m(k + 1) + 2)T (r, f) + S(r, f).

Similarly,

N(r,G) 6 2T (r, g) + S(r, g),(3.13)

Nk+2

(

r,
1

G

)

6 (m(k + 2) + 2)T (r, g) + S(r, g),(3.14)
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and

(3.15) Nk+1

(

r,
1

G

)

6 (m(k + 1) + 2)T (r, g) + S(r, g).

Substituting (3.10)–(3.12) in (3.8), we get

T (r, F ) 6 2(2k + 4)T (r, f) + (m(k + 2) + 2)T (r, f) + 2(m(k + 1) + 2)T (r, f)

+ 2(2k + 3)T (r, g) + (m(k + 2) + 2)T (r, g) + (m(k + 1) + 2)T (r, g)

+ S(r, f) + S(r, g),

(n− 1)T (r, f) 6 (3mk + 4m+ 4k + 14)T (r, f)(3.16)

+ (2mk + 3m+ 4k + 10)T (r, g) + S(r, f) + S(r, g).

Similarly, substituting (3.13)–(3.15) in (3.9), we get

(n− 1)T (r, g) 6 (3mk + 4m+ 4k + 14)T (r, g)(3.17)

+ (2mk + 3m+ 4k + 10)T (r, f) + S(r, f) + S(r, g).

From (3.16) and (3.17), we get

(n− 1)(T (r, f) + T (r, g)) 6 (5mk + 7m+ 8k + 24)(T (r, f) + T (r, g))(3.18)

+ S(r, f) + S(r, g),

(n− 1− 5mk − 7m− 8k − 24)(T (r, f) + T (r, g)) 6 S(r, f) + S(r, g),

and

(n− 5mk − 7m− 8k − 25)(T (r, f) + T (r, g)) 6 S(r, f) + S(r, g),

which is a contradiction to n > 5mk + 7m+ 8k + 25. Thus, by Lemma 2.5 we have

either F (k)G(k) ≡ a2(z) or F (k) = G(k).

Case 1. Suppose F (k)G(k) ≡ a2(z) i.e.,

(P (f)(f(qz + c)− f(z)))(k)(P (g)(g(qz + c)− g(z)))(k) ≡ a2(z).

This is one of the conclusion of Theorem 1.2.

Case 2. Now, we consider F (k) = G(k). By an argument as in Theorem 1.1, we

obtain that f and g satisfy one of the following two statements:

(1) f ≡ tg for a constant t with td = 1, where d = LCM{λj : j = 0, 1, . . . , n}, and

λj =

{

j + 1 if aj 6= 0,

n+ 1 if aj = 0,

(2) f and g satisfy the algebraic equation R(f, g) = 0, where

R(ω1, ω2) = P (ω1)(ω1(qz + c)− ω1(z))− P (ω2)(ω2(qz + c)− ω2(z)).

�
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4. Open Question

Qu e s t i o n 4.1. Are the conditions on n in Theorem 1.1 and Theorem 1.2 sharp?

A c k n ow l e d g em e n t. The authors are grateful to the referees for their sug-

gestions towards the improvement of the paper.
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