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EVENT-TRIGGERED CONTROL OF CYBER-PHYSICAL
SYSTEMS UNDER ASYNCHRONOUS DENIAL
OF SERVICE ATTACKS

Huaye Peng, Chen Peng, Yong Shao, and Deliang Zeng

This paper addresses event-triggered control cyber-physical systems under asynchronous
denial of service attacks. First, a general attack model is given, which allows us to conveniently
model the asynchronous denial of service attacks within measurement and control channels
in a unified framework. Then, under a delicate event triggered communication mechanism,
a refined switching control mechanism is proposed to account for various attack intervals and
non-attack intervals. Furthermore, sufficient conditions are derived for guaranteing the input
to state stability (ISS) of the resulting closed-loop system. Finally, a simulation example of
unmanned ground vehicle (UGV) is given to demonstrate the validity of the proposed main
results.

Keywords: DoS attack, event-triggered mechanism, cyber-physical system
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1. INTRODUCTION

In recent years, due to the computer’s computing processing capabilities and the long-
distance communication capabilities of communication networks, cyber-physical systems
that combine computing sources, communication networks, and physical objects have
received increasing attention [5, 14, 26, 27, 33]. Numerous practical applications, such
as smart grids, water distribution systems and unmanned ground vehicles, have testified
the prospects of cyber-physical systems in modern critical infrastructure. However,
due to the openness and insufficient protection of various communication networks [34],
the reliability of communication is generally difficult to guarantee during the operation
and control of the physical object. It is thus possible that real-world attackers can
launch malicious cyber attacks on the network medium [7]. The occurrences of cyber
attacks can often lead to damages or even collapses of physical objects [23, 20]. This
has been fully demonstrated in recent years such as the StuxNet computer worm [6] and
the Ukrainian blackout [16]. Therefore, the security control problem of cyber-physical
systems has received intensive attention in recent several years, see, e. g., [1, 2, 3, 21]
and the references therein.
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Among the many types of cyber attacks, there are two main categories that have been
widely studied: false data injection attacks and denial of service (DoS) attacks. There
are fruitful results dealing with such a type of attacks in different cyber-physical systems,
see, e. g., [4, 10, 15, 31, 32] and the references therein. The latter is a more common and
easy-to-implement type of attacks, mainly causing congestion in the communication net-
work and resulting in prevented data exchanges or data losses among distributed system
components [27, 35]. DoS attacks can either interrupt the sensor channels [18], block
the acquisition of sensor data, or block both the sensor channels and the controller chan-
nels [27]. As testified by the networked control literature, an event-triggered mechanism
provide an effective and efficient solution for reducing the frequency of sensor/controller
data packet transmissions or updates [8, 9, 11, 19, 22, 30], thus potentially contributing
to the saving of limited communication resources in practical networked systems. There
is no doubt that employing suitable event-triggered mechanism to deal with DoS at-
tacks for practical networked systems is also an interesting research topic in the control
society [13, 25]. For example, to combat DoS attacks with limited energy, a resilient
trigger mechanism is designed for load frequency control (LFC) in [24]. An observer-
based event trigger control mechanism is proposed in [12] under consideration of the
periodic congestion attacks. However, the above results require that the DoS attacks
occur at the same time when data are transmitted over the communication channels
from the sensor to the controller and the controller to the actuator [29], thereby leading
to the so-called synchronous DoS attacks. From the perspective of the system designers,
such a requirement may facilitate the analysis and design of practical networked systems.
However, this may also increase the detectability of such attacks and thus the possibility
of being removed by the system designers, which violates the intension of a real-world
cunning attacker. A more practical scenario is that a sophisticated adversary launches
asynchronous DoS attacks on the sensor-to-controller communication channel and the
controller-to-actuator communication channel to disrupt the data exchanges. How to
further the research of secure control for practical cyber-physical systems motivates the
current study.

Under consideration of the asynchronous attacks in the communication channels from
the sensor to the controller and the controller to the actuator, a unified model for
asynchronous denial of service attacks is firstly established, which is inspired by [27] and
[12]. Then under a carefully designed event-triggered communication scheme, a refined
switching control mechanism is proposed to deal with the attack interval and non-attack
interval respectively. Two sufficient conditions are further derived for guaranteing the
input to state stability (ISS) of studied system. Compared with some existing works,
the main contributions of this paper are summarized as follows:

1) An asynchronous attack model has been introduced to make the attack model more
general. For the asynchronous DoS attacks in the measurement channel and the
control channel, it is equivalent to replace it with the DoS attacks in the control
channel; and

2) Two sufficient conditions have been derived for the analysis and synthesis of the
studied system under DoS attacks by using an new Lyapunov functional. Different
from the open loop control in [12], in this work, the control inputs are kept as the
last received data until there are new arrived data.
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Fig. 1. Block diagram of closed-loop system.

Notation. We denote by Rn the set of n dimensional real vector. Given α ∈ R, we
let R>α(R≥α) denote the set of reals greater than (greater than or equal to) α. Given
v ∈ Rn, ‖v‖ is its Euclidean norm. We let N denote the set of natural numbers and
denote N0 := N ∪ {0}. Given a matrix M , then ‖M‖ is its spectral norm. Given two
sets A and B, we denote by A\B the relative complement of B in A. And we denote
‖w(t)‖∞ = sups∈[0,t]{w(s)} and ‖x(t)‖h = sup−h≤θ≤0{x(t+ θ), ẋ(t+ θ)}.
The remainder of this paper is organized as follows. In Section 2, we describe the
framework of the system and the formulate of the control problem. In Section 3, the
stability of the closed loop system is analyzed. In addition, the trigger matrix and the
controller gain matrix is obtained by solving a set of LMIs. In Section 4, the effectiveness
of the proposed control strategy is demonstrated by a practical example. The conclusions
are drawn in Section 5.

2. PROBLEM FORMULATION

2.1. System equation

The schematic of a cyber-physical system under asynchronous DoS attacks is shown in
Figure 1, where the system model is given as follows:

ẋ(t) = Ax(t) +Bu(t) + w(t) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, w(t) ∈ Rn is an
unknown disturbance. A,B are matrices of appropriate size. Throughout this paper, we
assume (A,B) is controllable. The sensor and the controller are connected to each other
by the network, as are the controller and the actuator. The state feedback is concerned
in this paper, so the sensor directly measures the state vector of the system.
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2.2. Event trigger mechanism

In this work, we employ the following event triggering mechanism [17]:

pj+1h = pjh+ inf{lh|eT ((pj + l)h)Ωe((pj + l)h) > σxT (pjh)Ωx(pjh)} (2)

where h is the sampling period of sensor, e(t) = x(pjh) − x(t), Ω is a positive definite
weighting matrix, and σ is a preselected constant. The successfully received control se-
quence at the actuator is described by the set S1 = {0, t1h, t2h, . . . , tkh}, the transmitted
sequence is described by the set S2 = {0, p1h, p2h, . . . , pjh}, We can obtain S1 ⊆ S2,
and S3 = {0, h, 2h, . . . , nh} is the set of the sampled sequence.

As shown in Figure 1, the sensor sends data to the remotely located controller through
the communication network for calculating suitable control commands, and then the con-
trol commands are transmitted over the communication network again to the actuator so
as to act on the physical system (plant). In this paper, we assume that the transmitted
data is received immediately without delay. The control input applied to the process
can be expressed as

v(t) = Kx(tskh), t ∈ [tskh, t
s
k+1h) (3)

u(t) = v(tckh), t ∈ [tckh, t
c
k+1h) (4)

where K is the state-feedback matrix, v(t) is the controller output, tikh(i = s, c) repre-
sents the successful sensor (s) or control (c) update instants sequence, respectively. Since
the controller receives the sensor datas only at each triggering time, it is simultaneously
transmitted to the actuator, so the actuator only receives the controller outputs at the
triggering time. Then we have {tck} ⊂ {tsk}. In this paper, only the actuator could hold
the control input, so the sensor sending data unsuccessfully is equivalent to the sensor
sending successfully but the controller failed to send the data. So let tkh be the instants
sequence when the actuator last successfully received the data. Then we get

u(t) = Kx(tkh). (5)

2.3. General DoS attack

Let {hn}n∈N0
denote the sequence of DoS off/on transitions, i. e., the time instants at

which DoS exhibits a transition from zero (communication is possible) to one (com-
munication is interrupted) [27], τn represents the nth DoS attack duration. Then we
have

Hn = [hn, hn + τn] . (6)

For a period [τ, t] , τ ∈ [0, t), it can be divided into the following subintervals

Ξ(τ, t) :=
⋃
n∈N0

Hn
⋂

[τ, t] (7)

Θ(τ, t) := [τ, t]\Ξ(τ, t). (8)

Where Ξ(τ, t) is the sum of all attacked periods within [τ, t], and Θ(τ, t) is the sum
of all unattacked periods within [τ, t]. However, due to energy constraints and other
constraints, it is assumed that the attack is not arbitrary, as in [27], introducing con-
straints on attack duration and frequency. Let n(τ, t) denote the number of DoS off/on
transitions occurring on the interval [τ, t)
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Assumption 1 – (DoS Duration): There exist κ ∈ R≥0 and T ∈ R>1 that

|Ξ(τ, t)| ≤ κ+
t− τ
T

. (9)

Assumption 2 – (DoS Frequency): There exist η ∈ R≥0 and τD ∈ R>∆ that

n(τ, t) ≤ η +
t− τ
τD

(10)

where ∆ < tk+1h− tkh, k ∈ N0.

Remark 2.1. Duration and frequency of occurrence are the main features of the attack.
The longer the duration, the longer the communication channel is blocked, and the con-
straint duration cannot be long enough to completely block the communication channel.
T indicate the ratio of the attack duration to the discussed duration. Another constraint
is that for the frequency of occurrence, the constrained frequency must not be greater
than the frequency of data transmission. Otherwise, each data transmission may just
be attacked, resulting in no data transmission success. So, τD means the approximate
period of attack.

2.4. Asynchronous DoS attack

The above attacks are only for one communication channel. However, the actual system
has two communication channels, one is from the sensor to the controller and the other
is from the controller to the actuator. Especially when the attack is not synchronized,
it is necessary to establish an asynchronous attack model.
For asynchronous DoS attack, the measurement channel and the control channel are
attacked separately. Then

Hsn = [hsn, h
s
n + τsn],Hcn = [hcn, h

c
n + τ cn] (11)

represent the attack duration of the measurement channel (sensor-to-controller) and the
control channel (controller-to-actuator), respectively. And as long as any channel is
attacked, the packet will not be received successfully. Then let

H∗n = Hsn ∪Hsn (12)

denote the total time period during which any channel is attacked.
According to assumption 1 and assumption 2, we have

|Ξs(τ, t)| ≤ κ1 +
t− τ
T1

, ns(τ, t) ≤ η1 +
t− τ
τ1
D

(13)

|Ξc(τ, t)| ≤ κ2 +
t− τ
T2

, nc(τ, t) ≤ η2 +
t− τ
τ2
D

(14)

where Ξi(τ, t) and ni(τ, t)(i = s, c) represent the attack duration and the number of
attacks of the sensor channel or the actuator channel in time period [τ, t), respectively.
Then we have

|Ξ∗(τ, t)| ≤ |Ξs(τ, t)|+ |Ξc(τ, t)| = (κ1 + κ2) + (t− τ)

(
1

T1
+

1

T2

)
(15)
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and

n∗(τ, t) ≤ ns(τ, t) + nc(τ, t) ≤ (η1 + η2) + (t− τ)

(
1

τ1
D

+
1

τ2
D

)
(16)

where Ξ∗(τ, t) and n∗(τ, t) represent the duration and the number of attacks after merg-
ing the two channels, that is, attacking any one channel is considered an attack on the
network. Let

κ∗ = κ1 + κ2,
1

T∗
=

1

T1
+

1

T2
(17)

and

η∗ = η1 + η2,
1

τ∗D
=

1

τ1
D

+
1

τ2
D

. (18)

Then we get

|Ξ∗(τ, t)| ≤ κ∗ +
t− τ
T∗

(19)

and

n∗(τ, t) ≤ η∗ +
t− τ
τ∗D

. (20)

Since the combined overall attack has the possibility of simultaneous attacks on two
channels, the duration overlap rate λ and the attack occurrence merge rate ϕ are defined
for this purpose. The duration overlap rate λ represents the ratio of the simultaneous
attack duration of two channels to the duration of the attack of the two channels. Let

λ(τ, t) =
|Ξs(τ, t) ∩ Ξc(τ, t)|
|Ξs(τ, t)|+ |Ξc(τ, t)|

(21)

and the attack occurrence merge rate ϕ is the ratio of the number n̄(τ, t) of overlaps to
the total number of attacks. We have

ϕ(τ, t) =
n̄(τ, t)

ns(τ, t) + nc(τ, t)
. (22)

Then we get

|Ξ∗(τ, t)| ≤ (1− λ(τ, t))

(
κ∗ +

t− τ
T∗

)
(23)

n∗(τ, t) ≤ (1− ϕ(τ, t))

(
η∗ +

t− τ
τ∗D

)
. (24)

Define the occurrence time {h∗n}n∈N0
of the overall attack and the corresponding duration

τ∗n. Then we have H∗n = [h∗n, h
∗
n + τ∗n].

2.5. Period division of switched controller under DoS attacks

Packets sent over the network may not all be successfully received [27], so the time
period is divided into two parts, in which the controller is switched, they are Θ̄(τ, t) and
Ξ̄(τ, t) respectively and we use Zm and Wm to represent the two parts, where

Ξ̄(τ, t) :=
⋃
m∈N0

Zm ∩ [τ, t] (25)
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Θ̄(τ, t) :=
⋃
m∈N0

Wm−1 ∩ [τ, t] (26)

Zm := {ζm} ∪ [ζm, ζm + vm] (27)

Wm := {ζm + vm} ∪ [ζm + vm, ζm+1] . (28)

Let
H̄∗n := {h∗n} ∪ [h∗n, h

∗
n + λn + Λn] (29)

where

λn :=

{
τ∗n, if Sn = ∅
tsup{k∈N0:k∈Sn} − h∗n, otherwise,

(30)

Λn :=

{
0, if Sn = ∅
∆sup{k∈N0:k∈Sn}, otherwise,

(31)

where Sn = {k ∈ N0|pk ∈ H∗n} and ∆k = pk+1h − pkh. λn represents the length of
the attack duration in each of different situations. Λn means the additional affected
duration under the attack if there is a triggering in the attack duration [27]. Then we
have

ζ0 := inf
{
pkh|pkh ≥ h∗0, pkh ∈ H̄∗0

}
(32)

ζm+1 := inf
{
pkh|pkh ∈ H̄∗n, h∗n > ζm, h

∗
n > h∗n−1 + λn−1 + Λn−1

}
(33)

which means that the first triggering instant in the attack time period is taken as ζm,m ∈
N0. Then, let

vm :=
∑
n∈N0;

nζm≤h∗
n<ζm+1

∣∣H̄∗n\H̄∗n+1

∣∣. (34)

Since H̄∗n and H̄∗n+1 may have overlapping portions, in order to separate the overlapping
portions, the overlapping portions of H̄∗n and H̄∗n+1 are removed in vm, that is, the length
of Zm.
Divide the period by the instant when the trigger data is successfully received. We have

Fk = [tkh, tk+1h), k ∈ N0. (35)

Remark 2.2. In the time period Ξ̄(τ, t), due to the DoS attack, although the trigger
mechanism does not change, the actuator does not receive the triggered data, so the
time interval between the two actual received data will contain multiple trigger instants,
although they are triggered and transmitted. It can be seen from the above that the
starting moments of Wm must be the triggering instants when the actuator successful
received the triggers, and the starting and ending instants of Zm are also the triggering
instants.

We define µ1 as the maximum trigger interval when t ∈ Wm, and b is the largest
trigger interval for two successfully received triggers, which is also the maximum duration
of the attack.



Event-triggered control under asynchronous DoS attacks 347

For the jth trigger instant in the kth successful trigger interval Fk, denoted by tk,j ,
then we use

Fk,j = [tk,jh, tk,j+1h), tk,j > tk, tk,j+1 < tk+1 (36)

denote the trigger interval for each of the unsuccessfully transmitted triggers, where
tk,0 = tk.

2.6. Event triggered control model under DoS attacks

Under consideration of cases with or without attacks, the event-triggered control scheme
can be given as

ẋ(t) =

{
Ax(t) +BK1x (tkh) + w(t) t ∈Wm

Ax(t) +BK2x (tkh) + w(t) t ∈ Zm
(37)

where K1 and K2 are the controller gains need to be solved and Wm and Zm are given
in (28) and (27).

The objective of this paper is to design an event-triggered control scheme, such that
the resulting closed-loop system (37) is input-to-state stable under the DoS attacks. For
completeness, the definition of input-to-state stability is given as follows.

Definition 2.3. Let Σ denote the system resulting from (37), then system Σ is said to
be input-to-state stable (ISS) if there exist a KL-function β and a K∞-function γ, for
each w ∈ L∞ that [27]

x(t) ≤ β (x(0), t) + γ (‖w(t)‖∞) (38)

for all t ∈ R>0

3. MAIN RESULTS

Before give the main results, the follow lemma, which is helpful for deriving the main
theorem, is presented.

Lemma 3.1. Given the feedback gain K and trigger parameter σ, for the system (37),
if for some prescribed constants αi ∈ (0,∞), γi ∈ (0,∞), there exist symmetric positive
definite matrices Pi, Qi, Ri and matrices Xi (i = 1, 2) of appropriate dimensions such
that

Σ1 < 0, <1 > 0 (39)

Σ2 < 0, <2 > 0 (40)

where

Σ1 =

[
Π1 ∗

µ1R1F1 −R1

]
, <1 =

[
R̃1 ∗
X1 R̃1

]
Σ2 =

[
Π2 ∗

µ2R2F2 −R2

]
, <2 =

[
R̃2 ∗
X2 R̃2

]
R̃1 = e−α1µ1

[
R1 ∗
0 3R1

]
, R̃2 =

[
R2 ∗
0 3R2

]
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X1 =

[
X11 X12

X13 X14

]
, X2 =

[
X21 X22

X23 X24

]

Π1 =


Π11

1 ∗ ∗ ∗ ∗ ∗
Π21

1 Π22
1 ∗ ∗ ∗ ∗

Π31
1 Π32

1 Π33
1 ∗ ∗ ∗

Π41
1 Π42

1 Π43
1 Π44

1 ∗ ∗
Π51

1 Π52
1 Π53

1 Π54
1 Π55

1 ∗
Π61

1 0 0 0 0 Π66
1



Π2 =


Π11

2 ∗ ∗ ∗ ∗ ∗
Π21

2 Π22
2 ∗ ∗ ∗ ∗

Π31
2 Π32

2 Π33
2 ∗ ∗ ∗

Π41
2 Π42

2 Π43
2 Π44

2 ∗ ∗
Π51

2 Π52
2 Π53

2 Π54
2 Π55

2 ∗
Π61

2 0 0 0 0 Π66
2


Π11

1 =α1P1 +ATP1 + P1A+Q1 − 4R1e
−α1µ1

Π21
1 = −X11 −X12 −X13 −X14 − 2R1e

−α1µ1

Π22
1 = X11 −X12 +X13 −X14 +XT

11 −XT
12 +XT

13 −XT
14 − 8R1e

−α1µ1 + (σ − 1) Ω
Π31

1 = KT
1 B

TP1 +X11 +X12 −X13 −X14

Π32
1 = −X11 +X12 +X13 −X14 − 2R1e

−α1µ1 + Ω
Π33

1 = −Q1e
−α1µ1 − 4R1e

−α1µ1 − Ω,Π41
1 = 6R1e

−α1µ1

Π42
1 = 2XT

12 + 2XT
14 + 6R1e

−α1µ1 ,Π43
1 = −2XT

12 + 2XT
14

Π44
1 = −12R1e

−α1µ1 ,Π51
1 = 2X13 + 2X14

Π52
1 = −2X13 + 2X14 + 6R1e

−α1µ1 ,Π53
1 = 6R1e

−α1µ1

Π54
1 = −4X14,Π

55
1 = −12R1e

−α1µ1

Π61
1 = P1,Π

66
1 = −γ1, F1 =

[
A 0 BK1 0 0 I

]
Π11

2 = ATP2 + P2A+Q2 − α2P2 − 4R2

Π21
2 = −X21 −X22 −X23 −X24 − 2R2

Π22
2 = X21 −X22 +X23 −X24 +XT

21 −XT
22 +XT

23 −XT
24 − 8R2

Π31
2 = KT

2 B
TP2 +X21 +X22 −X23 −X24

Π32
2 = −X21 +X22 +X23 −X24 − 2R2

Π33
2 = −Q2e

α2h − 4R2,Π
41
2 = 6R2,Π

42
2 = 2XT

22 + 2XT
24 + 6R2

Π43
2 = −2XT

22 + 2XT
24,Π

44
2 = −12R2,Π

51
2 = 2X23 + 2X24

Π52
2 = −2X23 + 2X24 + 6R2,Π

53
2 = 6R2,Π

54
2 = −4X24

Π55
2 = −12R2,Π

61
2 = P2,Π

66
2 = −γ2, F2 =

[
A 0 BK2 0 0 I

]
then we have{

V1(t) ≤ e−α1(t−ζm−vm)V1(ζm + vm) + γ3w
T (t)w(t) t ∈Wm

V2(t) ≤ eα2(t−ζm)V2(ζm) + γ4e
α2(t−ζm)wT (t)w(t) t ∈ Zm

(41)

where γ3=γ1/α1,γ4=γ2/α2.

P r o o f . See Appendix. �

Base on Lemma 1, we now state and establish the following stability analysis result.



Event-triggered control under asynchronous DoS attacks 349

Theorem 3.2. Given the feedback gain K and trigger parameter σ, for the system (37),
if some prescribed constants κi, ηi, τ

i
D, Ti, δi, φ1(i = 1, 2) satisfying

α1 >
(α1 + α2)

T̄
+
ϕ̄ (φ1 + φ2)

τ∗D
(42)

where ϕ̄ = 1−ϕ, and there exist symmetric positive definite matrices Pi, Qi, Ri and ma-
trices Xi (i = 1, 2) of appropriate dimensions satisfying (39) and (40) and the conditions
below are satisfied

P1 ≤ δ2P2, P2 ≤ eφ1P1 (43)

Q1 ≤ δ2Q2, Q2 ≤ δ1Q1 (44)

R1 ≤ δ2R2, R2 ≤ δ1R1 (45)

then the system (37) under the asynchronous DoS attack is ISS.

P r o o f . See Appendix. �

By Theorem 1, we now provide the following theorem for the co-design of the con-
troller feedback gain K, and the weighting matrix Ω.

Theorem 3.3. Given the trigger parameter σ, for the system (37), and αi(i = 1, 2) sat-
isfying (42), if for some prescribed positive constants γi, δi, $i, θi, there exist symmetric
positive definite matrices T̄i, Q̄i, R̄i, Ω̄i and matrices X̄1, X̄2(i = 1, 2) of appropriate
dimensions such that

Σ̄1 < 0, <̄1 > 0 (46)

Σ̄2 < 0, <̄2 > 0 (47)[
−δ2T̄2 T̄2

T̄2 −T̄1

]
≤ 0,

[
−eφ1 T̄1 T̄1

T̄1 −T̄2

]
≤ 0 (48)[

−δ2Q̄2 T̄2

T̄2 $2
1Q̄1 − 2$1T̄1

]
≤ 0,

[
−δ1Q̄1 T̄1

T̄1 $2
2Q̄2 − 2$2T̄2

]
≤ 0 (49)[

−δ2R̄2 T̄2

T̄2 θ2
1R̄1 − 2θ1T̄1

]
≤ 0,

[
−δ1R̄1 T̄1

T̄1 θ2
2R̄2 − 2θ2T̄2

]
≤ 0 (50)

where

Σ̄1 =

[
Π̄1 ∗
µ1F̄1 −T1R̄

−1
1 T̄1

]
, <̄1 =

[
¯̃R1 ∗
X̄1

¯̃R1

]
Σ̄2 =

[
Π̄2 ∗
µ2F̄2 −T2R̄

−1
2 T̄2

]
, <̄2 =

[
¯̃R2 ∗
X̄2

¯̃R2

]
¯̃R1 = e−α1µ1

[
R̄1 ∗
0 3R̄1

]
,̄̃ R2 =

[
R̄2 ∗
0 3R̄2

]
X̄1 =

[
X̄11 X̄12

X̄13 X̄14

]
, X̄2 =

[
X̄21 X̄22

X̄23 X̄24

]
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Π̄1 =


Π̄11

1 ∗ ∗ ∗ ∗ ∗
Π̄21

1 Π̄22
1 ∗ ∗ ∗ ∗

Π̄31
1 Π̄32

1 Π̄33
1 ∗ ∗ ∗

Π̄41
1 Π̄42

1 Π̄43
1 Π̄44

1 ∗ ∗
Π̄51

1 Π̄52
1 Π̄53

1 Π̄54
1 Π̄55

1 ∗
Π̄61

1 0 0 0 0 Π̄66
1



Π̄2 =


Π̄11

2 ∗ ∗ ∗ ∗ ∗
Π̄21

2 Π̄22
2 ∗ ∗ ∗ ∗

Π̄31
2 Π̄32

2 Π̄33
2 ∗ ∗ ∗

Π̄41
2 Π̄42

2 Π̄43
2 Π̄44

2 ∗ ∗
Π̄51

2 Π̄52
2 Π̄53

2 Π̄54
2 Π̄55

2 ∗
Π̄61

2 0 0 0 0 Π̄66
2


Π̄11

1 =α1T̄1 +AT T̄1 + T̄1A+ Q̄1 − 4R̄1e
−α1µ1

Π̄21
1 = −X̄11 − X̄12 − X̄13 − X̄14 − 2R̄1e

−α1µ1

Π̄22
1 = X̄11 − X̄12 + X̄13 − X̄14 + X̄T

11 − X̄T
12 + X̄T

13 − X̄T
14 − 8R̄1e

−α1µ1 + (σ − 1) Ω̄
Π̄31

1 = Y T1 B
T + X̄11 + X̄12 − X̄13 − X̄14

Π̄32
1 = −X̄11 + X̄12 + X̄13 − X̄14 − 2R̄1e

−α1µ1 + Ω̄
Π̄33

1 = −Q̄1e
−α1µ1 − 4R̄1e

−α1µ1 − Ω̄, Π̄41
1 = 6R̄1e

−α1µ1

Π̄42
1 = 2X̄T

12 + 2X̄T
14 + 6R̄1e

−α1µ1 , Π̄43
1 = −2X̄T

12 + 2X̄T
14

Π̄44
1 = −12R̄1e

−α1µ1 , Π̄51
1 = 2X̄13 + 2X̄14

Π̄52
1 = −2X̄13 + 2X̄14 + 6R̄1e

−α1µ1 , Π̄53
1 = 6R̄1e

−α1µ1

Π̄54
1 = −4X̄14, Π̄

55
1 = −12R̄1e

−α1µ1

Π̄61
1 = T̄1,Π

66
1 = −γ1, F1 =

[
AT̄1 0 BY1 0 0 T̄1

]
Π̄11

2 = AT T̄2 + T̄2A+ Q̄2 − α2T̄2 − 4R̄2

Π̄21
2 = −X̄21 − X̄22 − X̄23 − X̄24 − 2R̄2

Π̄22
2 = X̄21 − X̄22 + X̄23 − X̄24 + X̄T

21 − X̄T
22 + X̄T

23 − X̄T
24 − 8R̄2

Π̄31
2 = Y T2 B

T + X̄21 + X̄22 − X̄23 − X̄24

Π̄32
2 = −X̄21 + X̄22 + X̄23 − X̄24 − 2R̄2

Π̄33
2 = −Q̄2e

α2h − 4R̄2, Π̄
41
2 = 6R̄2

Π̄42
2 = 2X̄T

22 + 2X̄T
24 + 6R̄2, Π̄

43
2 = −2X̄T

22 + 2X̄T
24

Π̄44
2 = −12R̄2, Π̄

51
2 = 2X̄23 + 2X̄24

Π̄52
2 = −2X̄23 + 2X̄24 + 6R̄2, Π̄

53
2 = 6R̄2, Π̄

54
2 = −4X̄24

Π̄55
2 = −12R̄2, Π̄

61
2 = T̄2,Π

66
2 = −γ2, F2 =

[
AT̄2 0 BY2 0 0 T̄2

]
then the system (37) with

K1 = Y1T̄
−1
1 ,K2 = Y2T̄

−1
2 (51)

is ISS in the presence of asynchronous DoS attack.

P r o o f . See Appendix. �

Remark 3.4. Since the matrix inequalities (46) and (47) contains the nonlinear term
−T̄iR̄−1

i T̄i(i = 1, 2), the basic inequality −T̄ R̄−1T̄ ≤ $2R̄− 2$T̄ ,$ > 0 can be used to
linearize the nonlinear term, making it easy to use the LMI toolbox.

Remark 3.5. For the selection of the parameter δi(i = 1, 2), the idea in [2] is adopted.
Since the theorem 1 must be satisfied, that is β∗ > 0, notice that the β∗ is a monotonic
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increasing function of α1 and is a monotonic decreasing function of α2, so α1 should
be chosen as large as possible while α2 should be chosen as small as possible, until the
theorem 1 are feasible. The β∗ is a monotonic decreasing function for both δ1 and δ2,
therefore, multiple attempts are required to arrive at the suitable values.

4. AN EXAMPLE

In this section, a practical example is utilized to demonstrate the effectiveness of the
proposed method. Let the physical plant in Figure 1 be an unmanned ground vehicle
(UGV) under DoS attacks [18].
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Fig. 2. State response of open-loop system.

A simplified linear dynamic model of the UGV system is described as[
ẋ
v̇

]
=

[
0 1
0 −b

M

] [
x
v

]
+

[
0
1
M

]
F + w(t) (52)

where x and v are the states of the UGV corresponding to position and linear velocity,
respectively. M and b denote the mechanical mass and translational friction coefficient,
respectively. The force F is the input and the disturbance w(t) is introduced. For
M = 1, b = 0.5, then we have

A =

[
0 1
0 −0.5

]
, B =

[
0
1

]
. (53)

Setting w(t) = 0.1e−0.1t sin(t), h = 0.01s, ϕ(0, t) = 0.5, λ(0, t) = 0.5, κ∗= 2, η∗ = 1, T∗ =
10, τ∗D = 50,∆∗ = 0.5, $ = 1 and choose σ = 0.02, then we let α1= 0.6,α2= 4, which
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Fig. 3. State response of closed-loop system in the presence of DoS

attack.

Fig. 4. Release instants and release intervals.
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satisfy theorem 1. Then solving the LMIs in theorem 2, we obtain that

Ω =

[
14.33 43.54
43.54 141.37

]
,K1 =

[
−0.45 −0.825

]
,K2 =

[
−0.005 −0.013

]
. (54)

The initial conditions are taken as x0 =
[

4 8
]T

and the simulation time is assumed
to be 30 s. In the presence of the DoS attacks, the state responses of the open-loop
system, the state response of the close loop system, the release time intervals between
any two consecutive release instants are depicted in Figures 2 – 4, respectively.
From Figure 2 we could see the original system is not a asymptotically stable system.
With the proposed controller, the close-loop system’s state response is depicted in Fig-
ure 3, the states are asymptotically convergent over time. In Figure 4, the triggering
instants are illustrated. The triggering instants might be dropped due to DoS attacks,
that forced event generater to trigger immediately when attacks leave. The whole sys-
tem is input-to-state stable. It proved that the proposed event triggering mechanism
can be tolerant to some dropouts of the transmitted packets in the presence of the DoS
attacks.

5. CONCLUSION

In this paper, we proposes an asynchronous DoS attacks model, which is analyzed by
an equivalent synchronous attack model. The event-triggered transmitting mechanism
is used to submit control signals and to maintain the most recently received data. By
improving the Lyapunov functional of time-delay analysis, the sufficient conditions for
the stability of the system under the asynchronous DoS attacks are given. In the future
work, we will further study the observer-based feedback control under asynchronous DoS
attacks. The event-triggered H∞ filtering problem under such a type of asynchronous
DoS attacks also a potential future topic.

6. APPENDIX

6.1. Proof of Lemma 1

Construct the following piecewise Lyapunov functional for system (37):

V (t) =

{
V1(t) t ∈Wm

V2(t) t ∈ Zm
(55)

where

V1(t) = xT (t)P1x(t) +

∫ t

tkh

xT (s)e−α1(t−s)Q1x(s) ds

+ µ1

∫ t

tkh

∫ s

t−µ1

ẋT (s)e−α1(t−s)R1ẋ(s) dθds

(56)
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V2(t) = xT (t)P2x(t) +

∫ t

tkh

xT (s)eα2(t−s)Q2x(s) ds

+ µ2

∫ t

tkh

∫ s

t−µ2

ẋT (s)eα2(t−s)R2ẋ(s) dθds.

(57)

Where µ1 and µ2 are the maximum successful reception intervals when t ∈ Wm and
t ∈ Zm, respectively. Then we have

V̇1(t) ≤− α1V1(t) + α1x
T (t)P1x(t) + ẋT (t)P1x(t) + xT (t)P1ẋ(t) + xT (t)Q1x(t)

− xT (tkh)Q1e
−α1µ1x(tkh) + µ2

1ẋ
T (t)R1ẋ(t)

− e−α1µ1 (t− tkh)

∫ t

tkh

ẋT (s)R1ẋ(s) ds

(58)

and

V̇2(t) ≤α2V2(t)− α2x
T (t)P2x(t) + ẋT (t)P2x(t) + xT (t)P2ẋ(t) + xT (t)Q2x(t)

− xT (tkh)Q2e
α2hx(tkh) + µ2

2ẋ
T (t)R2ẋ(t)− (t− tkh)

∫ t

tkh

ẋ(s)R2ẋ(s) ds.
(59)

We now consider the following two cases.

Case 1 : when t ∈ [ζm + vm, ζm+1), there is no attack. We now first divide the time
periods. Let

kmmin = {k|tkh = ζm + vm}, kmmax = sup{k|tkh < ζm+1} (60)

then we have

F lk = [tkh+ (l − 1)h, tkh+ lh) , l ∈ {1, 2, . . . , γk} , k ∈ [kmmin, k
m
max] (61)

where γk = inf{l|(tk + l)h ≥ tk+1h or (tk + l)h ≥ tk,1h}. Let

ηk(t) =


t− tkh, t ∈ F1

k

t− tkh− h, t ∈ F2
k

...
t− tkh− (γk − 1)h, t ∈ Fγkk

(62)

and for each k ∈ [kmmin, k
m
max], we have

− (t− tkh)

∫ t

tkh

ẋ(s)R1ẋ(s) ds=− (t− tkh)

∫ t

t−ηk(t)

ẋ(s)R1ẋ(s) ds

− (t− tkh)

∫ t−ηk(t)

tkh

ẋ(s)R1ẋ(s) ds.

(63)

Using the inequality in [28] and [36], we have

− (t−tkh)
∫ t
t−ηk(t)

ẋ(s)R1ẋ(s) ds−(t−tkh)
∫ t−ηk(t)

tkh
ẋ(s)R1ẋ(s) ds ≤ − (t−tkh)

ηk(t) ΛT11R̃1Λ11

− (t−tkh)
(t−tkh)−ηk(t)ΛT12R̃1Λ12 ≤ −

[
ΛT11

ΛT12

]T [
R̃1 XT

1

X1 R̃1

] [
Λ11

Λ12

]
(64)
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where [
R̃1 XT

1

X1 R̃1

]
> 0 (65)

and

Λ11 =

[
I −I 0 0 0 0
I I 0 −2I 0 0

]
ξ1(t), R̃1 =

[
R1 0
0 3R1

]
(66)

Λ12 =

[
0 I −I 0 0 0
0 I I 0 −2I 0

]
ξ1(t), X1 =

[
X11 X12

X13 X14

]
(67)

where

ξT1 (t)=
[
xT (t) xT (t−ηk(t)) xT (tkh)

∫ t
t−ηk(t)

xT (s)
ηk(t) ds

∫ t−ηk(t)

tkh
xT (s)
h−ηk(t) ds wT (t)

]T
.

(68)
Let

<1 =

[
R̃1 ∗
X1 R̃1

]
(69)

using the event-triggering condition (2), we have

(x(tkh)− x(t− ηk(t)))
T

Ω (x(tkh)− x(t− ηk(t))) ≤ σxT (tkh)Ωx(tkh) (70)

then we have

V̇1(t) ≤ −α1V1(t) + ξT1 (t)
(
Π1 + µ2

1F
T
1 R1F1

)
ξ1(t) + γ1w

T (t)w(t). (71)

Applying the Schur complement, when the inequality (39) is satisfied, then we can obtain

V̇1(t) ≤ −α1V1(t) + γ1w
T (t)w(t). (72)

Due to the arbitrary of k, when t ∈ [ζm + vm, ζm+1), then we have

V1(t) ≤ e−α1(t−ζm−vm)V1(ζm + vm) + γ3w
T (t)w(t) (73)

where γ3=γ1/α1.

Case 2 : when t ∈ [ζm, ζm+vm), there are DoS attacks so the network might be blocked.
Then following the similar steps as the ones in the proof of case 1, we let

jkm = {j|tk,jh = tk+1h = ζm + vm} (74)

then we have

F lk,j = [tk,jh+ (l − 1)h, tk,jh+ lh) , l ∈ {1, 2, . . . , γk,j} , j ∈
[
0, jkm

)
(75)

where γk,j = inf{l|(tk,j + l)h ≥ tk,j+1h}. Let

τk,j(t) =


t− tk,jh, t ∈ F1

k,j

t− tk,jh− h, t ∈ F2
k,j

...
t− tk,jh− (γk,j − 1)h, t ∈ Fγk,jk,j

(76)
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for each j ∈ [1, jkm), we have

− h
∫ t

t−τk,j(t)
ẋ(s)R2ẋ(s) ds− h

∫ t−τk,j(t)

tkh

ẋ(s)R2ẋ(s) ds ≤ − h

τk,j(t)
ΛT21R̃2Λ21

− h

h− τk,j(t)
ΛT22R̃2Λ22 ≤ −

[
ΛT21

ΛT22

]T [
R̃2 XT

2

X2 R̃2

] [
Λ21

Λ22

] (77)

where [
R̃2 XT

2

X2 R̃2

]
> 0 (78)

and

Λ21 =

[
I −I 0 0 0 0
I I 0 −2I 0 0

]
ξ2(t), R̃2 =

[
R2 0
0 3R2

]
(79)

Λ22 =

[
0 I −I 0 0 0
0 I I 0 −2I 0

]
ξ2(t), X2 =

[
X21 X22

X23 X24

]
(80)

where

ξT2 (t) =
[
xT (t) xT (t− τk,j(t)) xT (tkh)∫ t
t−τk,j(t)

xT (s)
τk,j(t)

ds
∫ t−τk,j(t)
tkh

xT (s)
(t−tkh)−τk,j(t) ds wT (t)

]T
.

(81)

Then we have

V̇2(t) ≤ α2V2(t) + ξT2 (t)
(
Π2 + µ2

2F
T
2 R2F2

)
ξ2(t) + γ2w

T (t)w(t). (82)

Taking the Schur complement, when the inequality (40) is satisfied and due to the
arbitrary of j, when t ∈ [ζm, ζm + vm), then we can obtain

V2(t) ≤ eα2(t−ζm)V2(ζm) + γ4e
α2(t−ζm)wT (t)w(t) (83)

where γ4=γ2/α2.
From the above analysis of cases 1 and 2, the conditions (39) and (40) guarantee the

inequality (41) is satisfied. The proof is thus completed.

6.2. Proof of Theorem 1

Choose a piecewise Lyapunov functional V(t) as Lemma 1. According to (43), (44) and
(45), it follows from Lemma 1 that:

V1(t) ≤ δ2V2(t), V2(t) ≤
(
µ2

µ1

)2

e(α1+α2)µ1δ1V1(t) (84)

when t = ζm, t− tkh ≤ µ1 is satisfied. Then we have

V1(ζm + vm) ≤ δ2V2(ζm + vm), V2(ζm) ≤ V1(ζm)δ1

(
µ2

µ1

)2

e(α1+α2)µ1 . (85)
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Then in time period [0, ζp], we have

V (ζp) = V2(ζp) ≤ e−α1|Θ̄(0,ζp)|eα2|Ξ̄(0,ζp)|en∗(0,ζp)(φ1+φ2)V∗(0)

+γ∗

1 + 2
∑

m∈N0;
ζm<ζp

e−α1|Θ̄(ζm+vm,ζp)|eα2|Ξ̄(ζm,ζp)|en∗(ζm,ζp)(φ1+φ2)

 ‖w(ζp)‖2∞
(86)

where V∗(t) = max{V1(t), V2(t)}, γ∗ = max{γ3, γ4}, φ1 = 2 (lnµ2 − lnµ1)+(α1 + α2)µ1

+ ln δ1, φ2 = ln δ2.
When t ∈ Zm, we have from (41)

V (t) ≤ eα2(t−ζp)eφ1V (ζp) + γ∗e
α2(t−ζp)eφ1 ‖w(t)‖2∞ . (87)

Since ∣∣Ξ̄(0, t)
∣∣ =

∣∣Ξ̄(0, ζp)
∣∣+ t− ζp, n∗(0, t) = n∗(0, ζp) + 1 (88)

we have

V (t) ≤ e−α1|Θ̄(0,t)|eα2|Ξ̄(0,t)|en∗(0,t)(φ1+φ2)V (0)

+ γ∗[2
∑
m∈N0;
ζm≤t

e−α1|Θ̄(ζm+vm,t)|eα2|Ξ̄(ζm,t)|en∗(ζm,t)(φ1+φ2)] ‖w(t)‖2∞ . (89)

Then when t ∈Wm, we have

V (x(t)) ≤ e−α1(t−ζp−vp)eα2vpeφ2eφ1V (x (ζp)) . (90)

Notice that ∣∣Ξ̄(0, t)
∣∣ = vp +

∣∣Ξ̄(0, ζp)
∣∣ , ∣∣Θ̄(0, t)

∣∣ = t− ζp − vp +
∣∣Θ̄(0, ζp)

∣∣
n∗(0, t) = n∗(0, ζp) + 1

(91)

we can get

V (t) ≤ e−α1|Θ̄(0,t)|eα2|Ξ̄(0,t)|en∗(0,t)(φ1+φ2)V (0)

+ γ∗[1 + 2
∑
m∈N0;
ζm≤t

e−α1|Θ̄(ζm+vm,t)|eα2|Ξ̄(ζm,t)|en∗(ζm,t)(φ1+φ2)] ‖w(t)‖2∞ . (92)

Since that
|Ξ̄∗(τ, t)| ≤ |Ξ∗(τ, t)|+ (1 + n∗(τ, t))∆∗, (93)

where ∆∗ is the maximum trigger interval during the attack.
Then we have

|Ξ̄(τ, t)| ≤ (1− λ(τ, t))(κ∗ +
t− τ
T∗

) +

(
1 + (1− ϕ(τ, t))(η∗ +

t− τ
τ∗D

)

)
∆∗

≤ [((1− λ(τ, t))κ∗ + (1 + (1− ϕ(τ, t))η∗)∆∗)]

+ (t− τ)

(
(1− λ(τ, t))

T∗
+

(1− ϕ(τ, t))∆∗
τ∗D

)
= κ̄(τ, t) +

t− τ
T̄ (τ, t)

.

(94)
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Where κ̄(τ, t) = ((1− λ(τ, t))κ∗ + (1 + (1−ϕ(τ, t))η∗)∆∗),1/T̄ (τ, t) = (1− λ(τ, t))/T∗ +
(1− ϕ(τ, t))∆∗/τ

∗
D.

Then the maximum attack duration is denoted by v∗m, that

|Ξ̄(ζm, ζm + v∗m)| ≤ κ̄(ζm, ζm + v∗m) +
v∗m

T̄ (ζm, ζm + v∗m)

⇒ v∗m ≤ κ̄(ζm, ζm + v∗m) +
v∗m

T̄ (ζm, ζm + v∗m)

⇒ v∗m ≤
κ̄(ζm, ζm + v∗m)T̄ (ζm, ζm + v∗m)

T̄ (ζm, ζm + v∗m)− 1
.

(95)

Since ∣∣Ξ̄ (ζm, t)
∣∣ ≤ κ̄(ζm, t) +

t− ζm
T̄ (ζm, t)

(96)

and ∣∣Θ̄ (ζm + vm, t)
∣∣ = t− ζm −

∣∣Ξ̄ (ζm, t)
∣∣ . (97)

Let

α∗ = (α1 + α2) κ̄+ (φ1 + φ2) ϕ̄η∗, β∗ = α1 −
(α1 + α2)

T̄
− ϕ̄ (φ1 + φ2)

τ∗D
(98)

where κ̄ = κ̄(0, t) ,ϕ̄ = ϕ̄(0, t) and T̄ = T̄ (0, t).
We have

e−α1|Θ̄(0,t)|eα2|Ξ̄(0,t)|en∗(0,t)(φ1+φ2) ≤ eα∗e−β∗t (99)

and ∑
m∈N0;
ζm≤t

e−α1|Θ̄(ζm+vm,t)|eα2|Ξ̄(ζm,t)|en∗(ζm,t)(φ1+φ2) ≤
∑
m∈N0;
ζm≤t

eα∗e−β∗(t−ζm). (100)

Since that
t− ζm ≥ τ∗Dn∗(ζm, t)− τ∗Dη∗ (101)

we have ∑
m∈N0;
ζm≤t

e−β∗(t−ζm) ≤ eβ∗τ
∗
Dη∗

∑
m∈N0;
ζm≤t

e−β∗τ
∗
Dn∗(ζm,t). (102)

Let m(t) = sup {m ∈ N0|ζm ≤ t}, we get

∑
m∈N0;
ζm≤t

e−β∗τ
∗
Dn∗(ζm,t) =

m(t)∑
m=0

e−β∗τ
∗
Dn∗(ζm,t). (103)

Notice that n∗(ζm, t) = m(t)−m, we have

m(t)∑
m=0

e−β∗τ
∗
Dn∗(ζm,t) =

m(t)∑
m=0

e−β∗τ
∗
D(m(t)−m) =

m(t)∑
m=0

e−β∗τ
∗
Dm ≤ 1

1− e−β∗τ∗
D
. (104)
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We have

V (x(t)) ≤ eα∗e−β∗tV∗(0) + γ∗

[
1 + 2eα∗

eβ∗τ
∗
Dη∗

1− e−β∗τ∗
D

]
‖w(t)‖2∞ . (105)

We set x(t) = φ(t), t ∈ [−h, 0] for the supplemented initial condition in period [−µ2, 0].

SinceV (t) ≥ λmin{P1, P2}‖x(t)‖2, V (0) ≤ ψ ‖x(0)‖2µ2
, and ψ = λmax{P1, P2}+µ2λmax{Q1,

Q2}eα2µ2 +
(
µ3

2

/
2
)
λmax{R1, R2}eα2µ2 Then we have

λmin{P1, P2}‖x(t)‖2 ≤ eα∗e−β∗tV∗(0) + γ∗

[
1 + 2eα∗

eβ∗τ
∗
Dη∗

1− e−β∗τ∗
D

]
‖w(t)‖2∞

≤ eα∗e−β∗tψ ‖x(0)‖2µ2
+ γ∗

[
1 + 2eα∗

eβ∗τ
∗
Dη∗

1− e−β∗τ∗
D

]
‖w(t)‖2∞ .

(106)

Let ω=λmin{P1, P2}, we get

‖x(t)‖ ≤ e
α∗
2 e−

β∗
2 t

√
ψ

ω
‖x(0)‖µ2

+

√
γ∗
ω

[
1 + 2eα∗

eβ∗τ
∗
Dη∗

1− e−β∗τ∗
D

] 1
2

‖w(t)‖∞. (107)

Then if

β∗ > 0⇔ α1 >
(α1 + α2)

T̄
+
ϕ̄ (φ1 + φ2)

τ∗D
(108)

then the system (37) is ISS.

6.3. Proof of Theorem 2

Let Ti = P−1
i , Q̄i = TiQiTi, R̄i = TiRiTi, Ω̄i = TiΩiTi,X̄i1 = TiXi1Ti, X̄i2 = TiXi2Ti,

X̄i3 = TiXi3Ti, X̄i4 = TiXi4Ti, Yi = KiTi, define J1 = diag{T, T, T, T, T, T,R−1} and
J2 = diag{T, T, T, T, T, T,R−1}, then pre- and post-multiply J1 and its transpose on
both sides of (39), pre- and post-multiply J1 and its transpose on both sides of (40), we
can obtain (46) and (47). Utilizing the similar technique, pre- and post-multiply Ti(i =
1, 2) and its transpose on both sides of the left and right inequalities in (43), (44)and
(45), respectively, then by using the basic inequalities −T̄ R̄−1T̄ ≤ $2R̄ − 2$T̄ ,$ > 0
and Schur complement, we can obtain (48), (49)and (50).
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