Communications in Mathematics

Hayder R. Hashim
Solutions of the Diophantine Equation $7 X^{2}+Y^{7}=Z^{2}$ from Recurrence Sequences

Communications in Mathematics, Vol. 28 (2020), No. 1, 55-66

Persistent URL: http://dml.cz/dmlcz/148261

Terms of use:

© University of Ostrava, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Solutions of the Diophantine Equation
 $7 X^{2}+Y^{7}=Z^{2}$ from Recurrence Sequences

Hayder R. Hashim

Abstract

Consider the system $x^{2}-a y^{2}=b, P(x, y)=z^{2}$, where P is a given integer polynomial. Historically, the integer solutions of such systems have been investigated by many authors using the congruence arguments and the quadratic reciprocity. In this paper, we use Kedlaya's procedure and the techniques of using congruence arguments with the quadratic reciprocity to investigate the solutions of the Diophantine equation $7 X^{2}+Y^{7}=Z^{2}$ if $(X, Y)=\left(L_{n}, F_{n}\right)\left(\right.$ or $\left.(X, Y)=\left(F_{n}, L_{n}\right)\right)$ where $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$ represent the sequences of Fibonacci numbers and Lucas numbers respectively.

1 Introduction

The Lucas sequences $\left\{U_{n}(P, Q)\right\}$, with the parameters P and Q, are defined by

$$
U_{0}(P, Q)=0, \quad U_{1}(P, Q)=1 \quad \text { and } \quad U_{n}(P, Q)=P U_{n-1}-Q U_{n-2}
$$

for $n \geq 2$, and the associated Lucas sequences $\left\{V_{n}(P, Q)\right\}$ are defined similarly with the initial terms

$$
V_{0}(P, Q)=2 \quad \text { and } \quad V_{1}(P, Q)=P .
$$

Terms of Lucas sequences and associated Lucas sequences satisfy the identity

$$
V_{n}(P, Q)^{2}-D U_{n}(P, Q)^{2}=4 Q^{n},
$$

where $D=P^{2}-4 Q$. It is easy to see that the sequences of Fibonacci numbers and Lucas numbers are $\left\{F_{n}\right\}=\left\{U_{n}(1,-1)\right\}$ and $\left\{L_{n}\right\}=\left\{V_{n}(1,-1)\right\}$ respectively. On the other hand, the Diophantine equation of the form $A X^{2}+B Y^{r}=C Z^{2}$,

```
2020 MSC: 11D41, 11B39
Key words: Lucas sequences, Diophantine equations, Pell equations
Affiliation:
    Hayder R. Hashim - Institute of Mathematics, University of Debrecen, P.O. Box
        400,4002 Debrecen, Hungary
        E-mail: hashim.hayder.raheem@science.unideb.hu
```

where A, B, C, and r are nonzero integers such that $r>1$, has either no integer solutions or infinitely many nontrivial solutions in integers X, Y, and Z (see, e.g., [7] or [11]). In this paper, we investigate the integer solutions (X, Y, Z) of the Diophantine equation

$$
\begin{equation*}
7 X^{2}+Y^{7}=Z^{2} \tag{1}
\end{equation*}
$$

According to [11, page 111] the solutions of the above equation can be parametrized as

$$
\begin{aligned}
& X=7 a_{1}^{6} b_{1}+245 a_{1}^{4} b_{1}^{3}+1029 a_{1}^{2} b_{1}^{5}+343 b_{1}^{7} \\
& Y=a_{1}^{2}-7 b_{1}^{2} \\
& Z=a_{1}^{7}+147 a_{1}^{5} b_{1}^{2}+1715 a_{1}^{3} b_{1}^{4}+2401 a_{1} b_{1}^{6}
\end{aligned}
$$

where a_{1} and b_{1} are arbitrary integers, which provide infinitely many solutions of equation (1). In this paper, we deal with special solutions of this equation, namely where $(X, Y)=\left(L_{n}, F_{n}\right)$ (or $(X, Y)=\left(F_{n}, L_{n}\right)$), which are clearly equivalent to the solutions of the systems

$$
L_{n}^{2}-5 F_{n}^{2}= \pm 4, \quad 7 L_{n}^{2}+F_{n}^{7}=Z^{2}
$$

and

$$
L_{n}^{2}-5 F_{n}^{2}= \pm 4, \quad L_{n}^{7}+7 F_{n}^{2}=Z^{2}
$$

In other words, we examine the solutions to the following systems of Diophantine equations

$$
\begin{align*}
& x^{2}-5 y^{2}= \pm 4, \quad 7 x^{2}+y^{7}=z^{2} \tag{2}\\
& x^{2}-5 y^{2}= \pm 4, \tag{3}\\
& x^{7}+7 y^{2}=z^{2}
\end{align*}
$$

where $x=L_{n}, y=F_{n}$, and $z=Z$. A solution (x, y, z) of any system in (2) or (3) represents a solution (x, y) of one of its special Pell equations with the restriction given by the corresponding equation.

Historically, several authors investigated the existence and nonexistence of the integer solutions of certain systems of Diophantine equations of the form

$$
\begin{equation*}
x^{2}-a y^{2}=b, \quad P(x, y)=z^{2} \tag{4}
\end{equation*}
$$

where a is a positive integer that is not a perfect square, b is a nonzero integer, and $P(x, y)$ is a polynomial with integer coefficients. Many of the studies of systems of the form (4) use Baker's results on linear forms in logarithms of algebraic numbers [2] to give an upper bound on the size of the solutions. Using this bound with some techniques of Diophantine approximation, Baker and Davenport [3] proved that there is no solution in nonnegative integers other than $(x, y, z)=(1,1,1)$ or $(19,11,31)$ for the system

$$
x^{2}-3 y^{2}=-2, \quad z^{2}-8 y^{2}=-7 .
$$

Brown [4] proved that the equations

$$
y^{2}-8 t^{2}=1, \quad u^{2}-5 t^{2}=1
$$

have no common solution other than $(y, t, u)=(1,0,1)$ using Grinstead's technique [8]. Szalay [14] presented an alternative procedure for solving systems of simultaneous Pell equations

$$
a_{1} x^{2}+b_{1} y^{2}=c_{1}, \quad a_{2} x^{2}+b_{2} z^{2}=c_{2}
$$

in nonnegative integers x, y and z, with relatively small coefficients. He implemented the algorithm of this procedure in Magma to verify famous examples and give a new theorem related to such systems. In general, one can guarantee the finiteness of the number of solutions of (4) by the work of Thue [15] or Siegel [13]. On the other hand, many authors have given elementary solutions to systems of the form (4) such as Cohn [5], who considered the case where P is a linear polynomial. Cohn's method uses congruence arguments to eliminate some cases, and a clever invocation of quadratic reciprocity to handle the remaining cases. The congruence arguments are very sufficient if there exists no solution in such a system, however they fail in the presence of a solution. Mohanty and Ramasamy [10] adapted this method to show that the system of equations

$$
x^{2}-5 y^{2}=-20, \quad z^{2}-2 y^{2}=1,
$$

has no solution other than $(x, y, z)=(0,2,3)$. Muriefah and Al Rashed [1] showed that the system

$$
x^{2}-5 y^{2}=4, \quad z^{2}-442 x^{2}=441
$$

has no integer solutions using a similar method to that presented by Mohanty and Ramasamy.

Additionally, Peker and Cenberci [12] proved that the system

$$
y^{2}-10 x^{2}=9, \quad z^{2}-17 x^{2}=16
$$

cannot be solved simultaneously in nonzero integers x, y, z using the same method with Muriefah and Rashed. Kedlaya [9] gave a general procedure, based on the methods of Cohn and the theory of Pell equations, that solves many systems of the form (4). In fact, he applied this approach on several examples, in which P is univariate with degree at most two. Moreover, in some cases this procedure fails to solve a system completely. To investigate the solutions of the Diophantine equation (1) from the sequences of Fibonacci numbers and Lucas numbers, we use Kedlaya's procedure and similar techniques adapted by the methods of Mohanty and Ramasamy, Muriefah and Rashed, and Peker and Cenberci to determine and prove whether each of the four systems of equations in (2) and (3) has a solution. We employ Kedlaya's procedure and the techniques of using the congruence arguments and the quadratic reciprocity to prove that the system

$$
x^{2}-5 y^{2}=4, \quad 7 x^{2}+y^{7}=z^{2}
$$

has no more solutions other than $(x, y, z)=(3,1, \pm 8)$, and each of the other three systems can not be solved simultaneously.

2 Auxiliary results

For the proofs of our theorems, we need the following Lemma 1 presented by Copley [6], Lemmas 2, 3 and 4 and a procedure presented by Kedlaya [9] for checking if a given list of solutions to a system of the form (4) is complete, and a remark shows the general forms of nonnegative solutions for the Pell type equations

$$
x^{2}-5 y^{2}= \pm 4
$$

Lemma 1. Let $\left(x_{k}+y_{k} \sqrt{a}\right)$, where $k=0,1,2,3, \ldots$, be the solution of $x^{2}-a y^{2}=b$ in a fixed class C, where b is a given nonzero integer and a is a positive integer which is not a square, then

$$
\begin{align*}
x_{-k} & =x_{k}, \quad y_{-k}=-y_{k} \tag{5}\\
x_{k+r} & =u_{r} x_{k}+a v_{r} y_{k} \tag{6}\\
y_{k+r} & =u_{r} y_{k}+v_{r} x_{k} \tag{7}
\end{align*}
$$

where $\left(u_{r}+v_{r} \sqrt{a}\right)=\left(u_{1}+v_{1} \sqrt{a}\right)^{r}$ such that $\left(u_{1}, v_{1}\right)$ is the fundamental solution of the Pell equation $u^{2}-a v^{2}=1$.

Lemma 2. For all k, ω, r we have $y_{k+2 \omega r} \equiv(-1)^{\omega} y_{k}\left(\bmod u_{r}\right)$ and $y_{k+2 \omega r} \equiv y_{k}$ $\left(\bmod v_{r}\right)$.
(Of course, the same result holds for u_{k}, v_{k}, or x_{k} as well).
Lemma 3. For all k, ω we have $v_{k} \mid v_{\omega k}$; if ω is odd, we also have $u_{k} \mid u_{\omega k}$.
Lemma 4. If the sequence $\left\{f_{k}\right\}$ satisfies the recurrence relation

$$
f_{k+1}=2 f_{k} u_{1}-f_{k-1}
$$

then for any positive integer $\chi,\left\{f_{k}(\bmod \chi)\right\}$ is completely periodic.
(Of course, the same result holds for $f_{k}=u_{k}, v_{k}, x_{k}$, or y_{k} as well).
The Procedure: Denote $\left(u_{k}, v_{k}\right)$ be the k-th solution of the Pell equation

$$
u^{2}-a v^{2}=1
$$

For each base solution $\left(x_{0}, y_{0}\right)$ of the equation $x^{2}-a y^{2}=b$, let S be the set of integers m such that (x_{m}, y_{m}) is in the given list of solutions. One can prove that $P\left(x_{m}, y_{m}\right)$ is a prefect square if and only if $m \in S$ as follows (without having to give up):

- For each $m \in S$, let $\alpha=P\left(-x_{m},-y_{m}\right)$.
- If $|\alpha|$ is a perfect square, we give up; otherwise, let β be the product of all the primes that divide α an odd number of times.
- Let l be the period of $\left\{u_{k}(\bmod \beta)\right\}($ the period is guaranteed by Lemma 4$)$ and d be the largest odd divisor of l.
- Let q be the largest integer such that $2^{q} \mid l$, unless 4 does not divide l, in which case let $q=2$.
- Let s be the order of 2 in the group $(\mathbb{Z} / d \mathbb{Z})^{\times}$.
- Define the set, $U=\left\{t \in\{0, \ldots, d-1\}:\left(\frac{u_{2 q t}}{\beta}\right)=-1\right\}$.
- If U is empty, we give up; otherwise find an odd number j such that for each $\varepsilon=q, \ldots, q+s-1$, there exist $t \in U$ and $g \mid j$ with $2^{\varepsilon-q} g \equiv t(\bmod \beta)$.
- Let $\gamma_{m}=2^{q} j$ and γ be twice the least common multiple of γ_{m} for all $m \in S$.
- Find an integer δ with the following property: for every $k \in\{0, \ldots, \delta \gamma-1\}$, either $k \equiv m\left(\bmod 2 \gamma_{m}\right)$ for some $m \in S$; or there exists a prime number p such that $P\left(x_{k}, y_{k}\right)$ is a nonresidue $\bmod p$, with $\left\{x_{i}(\bmod p)\right\}$ and $\left\{y_{i}\right.$ $(\bmod p)\}$ have periods dividing $\delta \gamma$. Using Lemmas 2 and 3 , we note that the period condition can be guaranteed by having $p \mid v_{\kappa}$ for some κ where $2 \kappa \mid \delta \gamma$.
- Suppose that δ can be found satisfying the specified properties. To show that $P\left(x_{m}, y_{m}\right)$ is a prefect square if and only if $m \in S$, assume that there exists $k \notin S$ such that $P\left(x_{k}, y_{k}\right)$ is a perfect square. By the construction of δ, there exists m such that $k \equiv m\left(\bmod 2 \gamma_{m}\right)$, or else there exists a prime number p such that $P\left(x_{k}, y_{k}\right)$ is a nonresidue $(\bmod p)$. Since $k \notin S$, so $k \neq m$ and $k=m+2^{\varepsilon+1} j h$ for some h, ε with h odd and $\varepsilon \geq q$. Using Lemma 2, we get $x_{k} \equiv-x_{m}\left(\bmod u_{j 2^{\varepsilon}}\right)$ and $y_{k} \equiv-y_{m}\left(\bmod u_{j 2^{\varepsilon}}\right)$. Therefore,

$$
P\left(x_{k}, y_{k}\right) \equiv P\left(-x_{m},-y_{m}\right)=\alpha \quad\left(\bmod u_{j 2^{\varepsilon}}\right)
$$

The construction gives that for some $t \in U$ and some $g \mid j$ with $2^{\varepsilon-q} g \equiv t$ $(\bmod \beta)$. It is clear that $\varepsilon \geq q \geq 2$ and $\left\{u_{k}(\bmod 8)\right\}$ has period dividing 4. Thus, the Jacobi symbols $\left(\frac{-1}{u_{2} \varepsilon_{g}}\right)$ and $\left(\frac{2}{u_{2} \varepsilon_{g}}\right)$ both equal 1 . Since $|\alpha| / \beta$ is a perfect square and $u_{g 2^{\varepsilon}} \mid u_{j 2^{\varepsilon}}$ by Lemma 3 , we have by quadratic reciprocity

$$
\left(\frac{P\left(x_{k}, y_{k}\right)}{u_{2^{\varepsilon} g}}\right)=\left(\frac{\alpha}{u_{2^{\varepsilon} g}}\right)=\left(\frac{\beta}{u_{2^{\varepsilon} g}}\right)=\left(\frac{u_{2^{\varepsilon} g}}{\beta}\right)=\left(\frac{u_{2^{q} t}}{\beta}\right)=-1,
$$

which contradicts the assumption that $P\left(x_{k}, y_{k}\right)$ is a perfect square.
Remark 1. The Pell equation $u^{2}-5 v^{2}=1$ has the fundamental solution $\left(u_{1}, v_{1}\right)=$ $(9,4)$, and the Pell type equation $x^{2}-5 y^{2}=4$ has three non associated classes of solutions with the fundamental solutions $3+\sqrt{5}, 3-\sqrt{5}$, and 2 . Therefore, its general solutions are given by

$$
\begin{align*}
& x_{k}+y_{k} \sqrt{5}=(3+\sqrt{5})(9+4 \sqrt{5})^{k} \tag{8}\\
& x_{k}+y_{k} \sqrt{5}=(3-\sqrt{5})(9+4 \sqrt{5})^{k} \tag{9}\\
& x_{k}+y_{k} \sqrt{5}=(2)(9+4 \sqrt{5})^{k} \tag{10}
\end{align*}
$$

respectively. Similarly, the general solutions of the Pell type equation $x^{2}-5 y^{2}=-4$ are given by

$$
\begin{align*}
& x_{k}+y_{k} \sqrt{5}=(1+\sqrt{5})(9+4 \sqrt{5})^{k}, \tag{11}\\
& x_{k}+y_{k} \sqrt{5}=(-1+\sqrt{5})(9+4 \sqrt{5})^{k}, \tag{12}\\
& x_{k}+y_{k} \sqrt{5}=(4+2 \sqrt{5})(9+4 \sqrt{5})^{k}, \tag{13}
\end{align*}
$$

respectively.

3 Main results

Theorem 1. Suppose that $X=L_{n}$ and $Y=F_{n}$, then the Diophantine equation (1) has no more solutions other than $(X, Y, Z)=(3,1, \pm 8)$.

Proof. To prove this theorem, we have to show that $(3,1,8)$ and $(3,1,-8)$ are the only solutions to the systems of the simultaneous Diophantine equations in (2). In fact, they are the only solutions to the system

$$
\begin{align*}
& x^{2}-5 y^{2}=4, \tag{14}\\
& 7 x^{2}+y^{7}=z^{2} \tag{15}
\end{align*}
$$

where $x=L_{n}, y=F_{n}$ and $z=Z$. Now, let $P(x, y)=7 x^{2}+y^{7}$. Considering equation (8) and using Kedlaya's procedure, it is possible to show that $P\left(x_{m}, y_{m}\right)$ is a perfect square if and only if $m \in S=\{0\}$ and the set

$$
\left\{\left(x_{0}, y_{0}, z\right)\right\}=\{(3,1,-8),(3,1,8)\}
$$

is a complete list of solutions to the system of the Diophantine equations (14) and (15) with the procedure's output: $\alpha=\beta=62, l=d=5, q=2, s=3, U=$ $\{2,3\}, \gamma_{m}=60, \gamma=120$, and $\delta=1$ such that for $k=0, k \equiv m \equiv 0(\bmod 120)$. Following the last step in the procedure, one can easily show that there exists no k other than $k=0$ such that $k \equiv 0(\bmod 120)$ and $P\left(x_{k}, y_{k}\right)$ is a perfect square. Assume, for the sake of contradiction, that there exists $k \notin S$ such that $k \equiv 0$ $(\bmod 120)$ and $P\left(x_{k}, y_{k}\right)$ is a perfect square. Therefore, $k=2^{\varepsilon+1} j h=2^{\varepsilon+1} 15 h$ for some h, ε with h odd and $\varepsilon \geq q=2$. Using Lemma 2 , we obtain

$$
x_{k} \equiv-x_{0}=-3 \quad\left(\bmod u_{2^{\varepsilon} 15}\right) \quad \text { and } \quad y_{k} \equiv-y_{0}=-1 \quad\left(\bmod u_{2^{\varepsilon} 15}\right),
$$

which imply $P\left(x_{k}, y_{k}\right) \equiv P(-3,-1)=62=\alpha\left(\bmod u_{2^{\varepsilon} 15}\right)$. Since

$$
2^{\varepsilon-q} g \equiv t \quad(\bmod \beta)
$$

for some $t \in U=\{2,3\}$ and some $g \mid 15$ and $|\alpha| / \beta$ is equal 1 which is a perfect square, we get $u_{2^{\varepsilon} g} \mid u_{2^{\varepsilon} 15}$ by Lemma 3. Moreover, we have the Jacobi symbol $\left(\frac{2}{u_{2} \varepsilon_{g}}\right)$ is equal 1. Therefore, we obtain by the quadratic reciprocity that

$$
\left(\frac{P\left(x_{k}, y_{k}\right)}{u_{2^{\varepsilon} g}}\right)=\left(\frac{62}{u_{2^{\varepsilon} g}}\right)=\left(\frac{u_{2^{\varepsilon} g}}{62}\right)=\left(\frac{u_{2^{2} t}}{62}\right)=\left(\frac{37}{62}\right)=-1
$$

for all t, contradicting the assumption that $P\left(x_{k}, y_{k}\right)$ is a perfect square. Next, we consider $k \neq 0$. From equations (6) and (7) in Lemma 1, we can write

$$
\begin{align*}
& x_{k+15}=(3220013013190122249) x_{k}+5(1440033597185408060) y_{k}, \tag{16}\\
& y_{k+15}=(3220013013190122249) y_{k}+(1440033597185408060) x_{k} \tag{17}
\end{align*}
$$

which imply

$$
\begin{array}{llll}
x_{k+15} \equiv x_{k} \quad(\bmod 11) & \text { and } & y_{k+15} \equiv y_{k} \quad(\bmod 11), \\
x_{k+15} \equiv-x_{k} \quad(\bmod 17) & \text { and } & y_{k+15} \equiv-y_{k} \quad(\bmod 17), \\
x_{k+15} \equiv x_{k} \quad(\bmod 19) & \text { and } & y_{k+15} \equiv y_{k} \quad(\bmod 19), \\
x_{k+15} \equiv 35 y_{k} \quad(\bmod 41) & \text { and } & y_{k+15} \equiv 7 x_{k} \quad(\bmod 41), \\
x_{k+15} \equiv-x_{k} \quad(\bmod 61) & \text { and } & y_{k+15} \equiv-y_{k} \quad(\bmod 61), \\
x_{k+15} \equiv 40 y_{k} \quad(\bmod 107) & \text { and } & y_{k+15} \equiv 8 x_{k} \quad(\bmod 107), \\
x_{k+15} \equiv x_{k} \quad(\bmod 181) & \text { and } & y_{k+15} \equiv y_{k} \quad(\bmod 181), \\
x_{k+15} \equiv x_{k} \quad(\bmod 541) & \text { and } & y_{k+15} \equiv y_{k} \quad(\bmod 541), \\
x_{k+15} \equiv-x_{k} \quad(\bmod 109441) & \text { and } & y_{k+15} \equiv-y_{k} \quad(\bmod 109441), \\
x_{k+15} \equiv 4160200 y_{k} \quad(\bmod \xi) & \text { and } & y_{k+15} \equiv 832040 x_{k} \quad(\bmod \xi), \tag{27}
\end{array}
$$

where $\xi=10783342081$. From (18), equation (15) becomes $z^{2} \equiv 7 x_{k}^{2}+y_{k}^{7}(\bmod 11)$. If $k \equiv 1(\bmod 15)$, then $x_{k} \equiv x_{1} \equiv 3(\bmod 11)$ and $y_{k} \equiv y_{1} \equiv 10(\bmod 11)$ which imply $z^{2} \equiv 7(\bmod 11)$, but the Legendre symbol $\left(\frac{7}{11}\right)=-1$. So $k \not \equiv 1$ $(\bmod 15)$. Next, if $k \equiv 3(\bmod 15)$, then $z^{2} \equiv 6(\bmod 11)$ which is impossible since $\left(\frac{6}{11}\right)=-1$. Hence, $k \not \equiv 3(\bmod 15)$. From (19), equation (15) implies $z^{2} \equiv 7 x_{k}^{2}-y_{k}^{7}$ $(\bmod 17)$. If $k \equiv 4(\bmod 15)$, we get $x_{k} \equiv x_{4} \equiv 4(\bmod 17)$ and $y_{k} \equiv y_{4} \equiv 13$ $(\bmod 17)$. Thus, $z^{2} \equiv 6(\bmod 17)$, but $\left(\frac{6}{17}\right)=-1$. Therefore, $k \not \equiv 4(\bmod 15)$. If $k \equiv 5(\bmod 15)$ leads to $z^{2} \equiv 14(\bmod 17)$ and this gives a contradiction again. Thus, $k \not \equiv 5(\bmod 15)$. Using (21) and from equation (15), we get $z^{2} \equiv 17 x_{k}^{7}+6 y_{k}^{2}$ $(\bmod 41)$. If $k \equiv 12,14(\bmod 15)$, we obtain $z^{2} \equiv 29(\bmod 41)$. This is impossible since 29 is a quadratic nonresidue modulo 41 , hence $k \not \equiv 12,14(\bmod 15)$. From (22), equation (15) gives $z^{2} \equiv 7 x_{k}^{2}-y_{k}^{7}(\bmod 61)$. Similarly, if $k \equiv 7(\bmod 15)$ or $k \equiv 9(\bmod 15)$ then $z^{2} \equiv 43(\bmod 61)$ or $z^{2} \equiv 29(\bmod 61)$ respectively. But, these yield a contradiction since $\left(\frac{43}{61}\right)=-1=\left(\frac{29}{61}\right)$. So, $k \not \equiv 7,9(\bmod 15)$. Finally, using (25), equation (15) implies $z^{2} \equiv 7 x_{k}^{2}+y_{k}^{7}(\bmod 541)$ which is impossible if $k \equiv 2,6,8,10,11,13(\bmod 15)$. Therefore, $k \not \equiv 2,6,8,10,11,13(\bmod 15)$. Here, we have proved the completeness of the given list of solutions related to equation (8). Then, it remains to show that the equations (14) and (15) have no common solution at the equations (9) and (10) using the above techniques of congruence arguments and the quadratic reciprocity.

Now, we consider equation (9). By using (18), we get $z^{2} \equiv 7(\bmod 11)$ if $k \equiv 0$ $(\bmod 15)$. However $\left(\frac{7}{11}\right)=-1$. Also, if $k \equiv 2(\bmod 15)$, we get a contradiction since $z^{2} \equiv 6(\bmod 11)$ is impossible. Therefore, $k \not \equiv 0,2(\bmod 15)$. Next, from (20), (15) leads to $z^{2} \equiv 7 x_{k}^{2}+y_{k}^{7}(\bmod 19)$. If $k \equiv 1(\bmod 15)$, then $x_{k} \equiv x_{1} \equiv 7$ $(\bmod 19)$ and $y_{k} \equiv y_{1} \equiv 3(\bmod 19)$. So, $z^{2} \equiv 3(\bmod 19)$, but this is impossible since 3 is a quadratic nonresidue modulo 19 , hence $k \not \equiv 1(\bmod 15)$. From (21),
if $k \equiv 10(\bmod 15)$, then $z^{2} \equiv 14(\bmod 41)$. This again leads to a contradiction since $\left(\frac{14}{41}\right)=-1$, thus $k \not \equiv 10(\bmod 15)$. Using (22), the equation $z^{2} \equiv 7 x_{k}^{2}-y_{k}^{7}$ $(\bmod 61)$ leads to $z^{2} \equiv 51(\bmod 61), z^{2} \equiv 29(\bmod 61)$, or $z^{2} \equiv 43(\bmod 61)$ if $k \equiv 4(\bmod 15), k \equiv 6(\bmod 15)$, or $k \equiv 8(\bmod 15)$ respectively. But, 29, 43 and 51 are quadratic nonresidues modulo 61 , which implies $k \not \equiv 4,6,8(\bmod 15)$. If we use equation (24), (15) implies $z^{2} \equiv 7 x_{k}^{2}+y_{k}^{7}(\bmod 181)$. Here, we face a contradiction if $k \equiv 3,7,9(\bmod 15)$. Therefore, $k \not \equiv 3,7,9(\bmod 15)$. From (25), the equation $z^{2} \equiv 7 x_{k}^{2}+y_{k}^{7}(\bmod 541)$ and $k \equiv 5,11,12,13,14(\bmod 15)$ yield a contradiction. So $k \not \equiv 5,11,12,13,14(\bmod 15)$.

Finally, we consider (10). If $k \equiv 0(\bmod 15)$, then $z^{2} \equiv 11(\bmod 17)$, again giving a contradiction since $\left(\frac{11}{17}\right)=-1$. Moreover, if $k \equiv 5(\bmod 15)$, then $z^{2} \equiv 5$ $(\bmod 17)$. This is again impossible, so $k \not \equiv 0,5(\bmod 15)$. Now, we use equation (20). If $k \equiv 1(\bmod 15)$, then $x_{k} \equiv x_{1} \equiv 18(\bmod 19)$ and $y_{k} \equiv y_{1} \equiv 8$ $(\bmod 19)$.This implies $z^{2} \equiv 15(\bmod 19)$, but 15 is a quadratic nonresidue modulo 19. Hence, $k \not \equiv 1(\bmod 15)$. From (24), we get $z^{2} \equiv 155(\bmod 181)$ if $k \equiv 2$ $(\bmod 15)$. But, $\left(\frac{155}{181}\right)=-1$. Furthermore, if $k \equiv 3(\bmod 15)$, we obtain $z^{2} \equiv 22$ (mod 181), again yielding a contradiction. Similarly,

$$
k \equiv 4,6,9,10,11,12,13,14 \quad(\bmod 15)
$$

again leads to a contradiction. So

$$
k \not \equiv 2,3,4,6,9,10,11,12,13,14 \quad(\bmod 15) .
$$

Using equation (25) with $k \equiv 7(\bmod 15)$, we get $z^{2} \equiv 502(\bmod 541)$. This is impossible since $\left(\frac{502}{541}\right)=-1$. Therefore, $k \not \equiv 7(\bmod 15)$. If we use equation (27) for $k \equiv 8(\bmod 15)$, then (15) implies

$$
z^{2} \equiv 3401662621 \quad(\bmod 10783342081)
$$

This is impossible and hence $k \not \equiv 8(\bmod 15)$. We have thus proved that the equations (14) and (15) have no common solutions other than

$$
(x, y, z)=(3,1, \pm 8)=\left(L_{2},\left\{F_{1}, F_{2}\right\}, z\right)=(X, Y, Z)
$$

To complete the proof of the theorem, we must show that the other system of the simultaneous Diophantine equations in (2)

$$
\begin{align*}
& x^{2}-5 y^{2}=-4 \tag{28}\\
& 7 x^{2}+y^{7}=z^{2} \tag{29}
\end{align*}
$$

has no integer solution (x, y, z) such that $x=L_{n}, y=F_{n}$ and $z=Z$. Again, we use the same techniques of congruence arguments and the quadratic reciprocity to exhaust all the possibilities of $k \equiv \rho(\bmod r)$ for a proper r and $\rho=0,1,2, \ldots, r-1$. From equations (6) and (7), we can write

$$
\begin{align*}
& x_{k+10}=(1730726404001) x_{k}+5(774004377960) y_{k}, \tag{30}\\
& y_{k+10}=(1730726404001) y_{k}+(774004377960) x_{k}, \tag{31}
\end{align*}
$$

which lead to

$$
\begin{array}{llll}
x_{k+10} \equiv x_{k} \quad(\bmod 11) & \text { and } & y_{k+10} \equiv y_{k} \quad(\bmod 11), \\
x_{k+10} \equiv 15 y_{k} \quad(\bmod 23) & \text { and } & y_{k+10} \equiv 3 x_{k} \quad(\bmod 23), \\
x_{k+10} \equiv x_{k} \quad(\bmod 31) & \text { and } & y_{k+10} \equiv y_{k} \quad(\bmod 31), \\
x_{k+10} \equiv-x_{k} \quad(\bmod 41) & \text { and } & y_{k+10} \equiv-y_{k} \quad(\bmod 41), \\
x_{k+10} \equiv x_{k} \quad(\bmod 61) & \text { and } & y_{k+10} \equiv y_{k} \quad(\bmod 61), \\
x_{k+10} \equiv 85 y_{k} \quad(\bmod 241) & \text { and } & y_{k+10} \equiv 17 x_{k} \quad(\bmod 241), \\
x_{k+10} \equiv-x_{k} \quad(\bmod 2521) & \text { and } & y_{k+10} \equiv-y_{k} \quad(\bmod 2521) . \tag{38}
\end{array}
$$

First, we consider (11). From (32), equation (29) gives $z^{2} \equiv 7 x_{k}^{2}+y_{k}^{7}(\bmod 11)$. If $k \equiv 0,3(\bmod 10)$, then $z^{2} \equiv 8(\bmod 11)$. But, 8 is a quadratic nonresidue modulo 11. So $k \not \equiv 0,3(\bmod 10)$. Using (34), equation (29) implies $z^{2} \equiv 7 x_{k}^{2}+y_{k}^{7}$ $(\bmod 31)$. If $k \equiv 2(\bmod 10)$, then $x_{k} \equiv x_{2} \equiv 25(\bmod 31)$ and $y_{k} \equiv y_{2} \equiv$ $16(\bmod 31)$ which yield $z^{2} \equiv 12(\bmod 31)$. This is impossible, hence $k \not \equiv 2$ $(\bmod 10)$. Moreover, if $k \equiv 4(\bmod 10)$, then $z^{2} \equiv 15(\bmod 31)$, again leading to a contradiction. So $k \not \equiv 4(\bmod 10)$. From (36), we get $z^{2} \equiv 7 x_{k}^{2}+y_{k}^{7}(\bmod 61)$. If $k \equiv 1(\bmod 10)$, then $z^{2} \equiv 44(\bmod 61)$. However, $\left(\frac{44}{61}\right)=-1$, thus $k \not \equiv 1$ $(\bmod 10)$. In a similar way, if $k \equiv 5,6,9(\bmod 10)$, we obtain a contradiction again. Therefore, $k \not \equiv 5,6,9(\bmod 10)$. From (37), equation (29) leads to $z^{2} \equiv$ $23 x_{k}^{7}+206 y_{k}^{2}(\bmod 241)$. If $k \equiv 7(\bmod 10)$ or $k \equiv 8(\bmod 10)$, then $z^{2} \equiv 153$ $(\bmod 241)$ or $z^{2} \equiv 68(\bmod 241)$ respectively, again giving a contradiction. Hence, $k \not \equiv 7,8(\bmod 10)$.

Next, we consider (12). From (35), equation (29) gives

$$
z^{2} \equiv 7 x_{k}^{2}-y_{k}^{7} \quad(\bmod 41)
$$

which is impossible if $k \equiv 0,1,2,3,4,5,6,7(\bmod 10)$. This requires

$$
k \not \equiv 0,1,2,3,4,5,6,7 \quad(\bmod 10)
$$

Using (36), we get $z^{2} \equiv 44(\bmod 61)$ if $k \equiv 9(\bmod 10)$. This gives a contradiction again, so $k \not \equiv 9(\bmod 10)$. From (38), we obtain $z^{2} \equiv 7 x_{k}^{2}-y_{k}^{7}(\bmod 2521)$. Then $z^{2} \equiv 1129(\bmod 2521)$ if $k \equiv 8(\bmod 10)$. But, $\left(\frac{1129}{2521}\right)=-1$. Hence, $k \not \equiv 8$ $(\bmod 10)$.

Finally, we consider (13). Using (33), equation (29) implies $z^{2} \equiv 2 x_{k}^{7}+11 y_{k}^{2}$ $(\bmod 23)$, which is impossible if $k \equiv 0,1,2,3,4,5,6,7(\bmod 10)$. This forces

$$
k \not \equiv 0,1,2,3,4,5,6,7 \quad(\bmod 10)
$$

It remains to consider $k \equiv 8,9(\bmod 10)$. Here we use equation (35). If $k \equiv$ $8(\bmod 10)$ or $k \equiv 9(\bmod 10)$, then $z^{2} \equiv 30(\bmod 41)$ or $z^{2} \equiv 35(\bmod 41)$ respectively. But, 30 and 35 are quadratic nonresidues modulo 41 . So $k \not \equiv 8,9$ (mod 10). Thus, the simultaneous Diophantine equations (28) and (29) can not be solved simultaneously. Hence, Theorem 1 is proved.

Theorem 2. The Diophantine equation (1) has no solutions in integers X, Y, and Z if $X=F_{n}$ and $Y=L_{n}$.

Proof. We prove this theorem by showing the simultaneous Diophantine equations in (3) have no common solutions. Firstly, we consider the system of Diophantine equations

$$
\begin{align*}
& x^{2}-5 y^{2}=4, \tag{39}\\
& x^{7}+7 y^{2}=z^{2}, \tag{40}
\end{align*}
$$

where $x=L_{n}, y=F_{n}$ and $z=Z$. To prove this system has no solution, we follow the same approach used in the proof of Theorem 1 to exhaust all the possibilities of $k \equiv \rho(\bmod 15)$ for $\rho=0,1,2, \ldots, 14$, with using some equations of (16)-(27). Firstly, we consider (8). From (18), equation (40) gives $z^{2} \equiv x_{k}^{7}+7 y_{k}^{2}(\bmod 11)$. If $k \equiv 3(\bmod 15)$, then $z^{2} \equiv 7(\bmod 11)$. This is impossible, so $k \not \equiv 3(\bmod 15)$. Using (23), we get $z^{2} \equiv 51(\bmod 107)$ if $k \equiv 7(\bmod 15)$. But, $\left(\frac{51}{107}\right)=-1$. So $k \not \equiv 7(\bmod 15)$. From (24), we get a contradiction if $k \equiv 0,1,2,5,6,8,10,12$ $(\bmod 15)$. To exclude the rest possibilities, we use (25) which leads to $z^{2} \equiv x_{k}^{7}+7 y_{k}^{2}$ $(\bmod 541)$. If $k \equiv 4(\bmod 15)$, then $z^{2} \equiv 206(\bmod 541)$. This is a contradiction since 206 is a quadratic nonresidue modulo 541. Similarly, $k \equiv 9,11,13,14$ $(\bmod 15)$ leads to a contradiction again. Therefore, $k \not \equiv 4,9,11,13,14(\bmod 15)$.

Now, we consider (9). From (22), equation (40) implies $z^{2} \equiv 7 y_{k}^{2}-x_{k}^{7}(\bmod 61)$. Starting with $k \equiv 8(\bmod 15)$, we get $z^{2} \equiv 43(\bmod 61)$. Again, we get a contradiction, thus $k \not \equiv 8(\bmod 15)$. Using (24), we get $z^{2} \equiv x_{k}^{7}+7 y_{k}^{2}(\bmod 181)$. If $k \equiv 0(\bmod 15)$, then $x_{k} \equiv x_{0} \equiv 3(\bmod 181)$ and $y_{k} \equiv y_{0} \equiv 180(\bmod 181)$ which give $z^{2} \equiv 22(\bmod 181)$. This is impossible, since $\left(\frac{22}{181}\right)=-1$. Furthermore, $k \equiv 3,5,7,9,10,13,14(\bmod 15)$ yields a contradiction again. Therefore,

$$
k \not \equiv 0,3,5,7,9,10,13,14 \quad(\bmod 15)
$$

From (25), the equation $z^{2} \equiv x_{k}^{7}+7 y_{k}^{2}(\bmod 541)$ is impossible if $k \equiv 1,2,4,6,11$ $(\bmod 15)$. So $k \not \equiv 1,2,4,6,11(\bmod 15)$. Using (26), we get $z^{2} \equiv 7 y_{k}^{2}-x_{k}^{7}$ $(\bmod 109441)$. If $k \equiv 12(\bmod 15)$, then $z^{2} \equiv 98563(\bmod 109441)$. This is impossible since 98563 is a quadratic nonresidue modulo 109441. Hence, $k \not \equiv 12$ $(\bmod 15)$.

Finally, we consider (10). Equation (24) leads to $z^{2} \equiv x_{k}^{7}+7 y_{k}^{2}(\bmod 181)$, which is impossible if

$$
k \equiv 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 \quad(\bmod 15)
$$

Therefore, they are all excluded. Hence, the simultaneous Diophantine equations (39) and (40) have no common solution. We finish the proof of the theorem by proving the system of the Diophantine equations

$$
\begin{align*}
& x^{2}-5 y^{2}=-4 \tag{41}\\
& x^{7}+7 y^{2}=z^{2} \tag{42}
\end{align*}
$$

where $x=L_{n}, y=F_{n}$ and $z=Z$, can not be solved simultaneously. Again, we use some appropriate equations of (30)-(38) to exclude all the possibilities of $k \equiv \rho$ $(\bmod 10)$ for $\rho=0,1,2, \ldots, 9$. First of all, we consider equation (11). From (32),
equation (42) leads to $z^{2} \equiv 8(\bmod 11), z^{2} \equiv 6(\bmod 11)$, or $z^{2} \equiv 10(\bmod 11)$ if $k \equiv 0(\bmod 10), k \equiv 3(\bmod 10)$, or $k \equiv 4(\bmod 10)$ respectively. However, 6,8 , and 10 are quadratic nonresidues modulo 11 . So $k \not \equiv 0,3,4(\bmod 10)$. Using (33), we get $z^{2} \equiv 17 x_{k}^{2}+11 y_{k}^{7}(\bmod 23)$. If $k \equiv 1(\bmod 10)$, then $z^{2} \equiv 21(\bmod 23)$. This yields a contradiction, hence $k \not \equiv 1(\bmod 10)$. If we use (35), we obtain $z^{2} \equiv 7 y_{k}^{2}-x_{k}^{7}(\bmod 41)$ which can not be held for $k \equiv 5,6,7,8,9(\bmod 10)$. Then $k \not \equiv 5,6,7,8,9(\bmod 10)$. From (36), we get $z^{2} \equiv 31(\bmod 61)$ for $k \equiv 2(\bmod 10)$. But, $\left(\frac{31}{61}\right)=-1$. Therefore, $k \not \equiv 2(\bmod 10)$.

Next, we consider (12). Equation (32) and $k \equiv 0(\bmod 10)$ give $z^{2} \equiv 6$ $(\bmod 11)$, again yielding a contradiction. So $k \not \equiv 0(\bmod 10)$. Similarly, we get a contradiction again if we use (35) for $k \equiv 1,2,3,4,5,7(\bmod 10)$. Hence,

$$
k \not \equiv 1,2,3,4,5,7 \quad(\bmod 10) .
$$

From (37), we obtain $z^{2} \equiv 95 x_{k}^{2}+220 y_{k}^{7}(\bmod 241)$. If $k \equiv 6(\bmod 10)$, then $z^{2} \equiv 7(\bmod 241)$. Moreover, if $k \equiv 8(\bmod 10)$ or $k \equiv 9(\bmod 10)$, then $z^{2} \equiv 21$ $(\bmod 241)$ or $z^{2} \equiv 37(\bmod 241)$ respectively. But, 7,21 , and 37 are quadratic nonresidues modulo 241. So $k \not \equiv 6,8,9(\bmod 10)$.

Lastly, we consider (13). From (32), we have $z^{2} \equiv 8(\bmod 11)$ if $k \equiv 3$ $(\bmod 10)$. This is impossible. Therefore, $k \not \equiv 3(\bmod 10)$. Equation (36) leads to a contradiction again if $k \equiv 6(\bmod 10)$. So $k \not \equiv 6(\bmod 10)$. In a similar way, we can use (35) to eliminate all the remaining possibilities of $k \equiv \rho(\bmod 10)$ such that $\rho=0,1,2,4,5,7,8,9$. Hence, the simultaneous Diophantine equations (41) and (42) have no common solution. Therefore, Theorem 2 is completely proved.

Acknowledgement

The author is very grateful to the anonymous referee for the valuable suggestions. The work of the author is supported by the Stipendium Hungaricum Scholarship.

References

[1] F.S. Abu Muriefah, A. Al Rashed: The simultaneous Diophantine equations $y^{2}-5 x^{2}=4$ and $z^{2}-442 x^{2}=441$. Arabian Journal for Science and Engineering 31 (2) (2006) 207-211.
[2] A. Baker: Linear forms in the logarithms of algebraic numbers (IV). Mathematika 15 (2) (1968) 204-216.
[3] A. Baker, H. Davenport: The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$. Quart. J. Math. Oxford 20 (1969) 129-137.
[4] E. Brown: Sets in which $x y+k$ is always a square. Mathematics of Computation 45 (172) (1985) 613-620-.
[5] J.H.E. Cohn: Lucas and Fibonacci numbers and some Diophantine equations. Glasgow Mathematical Journal 7 (1) (1965) 24-28.
[6] G.N. Copley: Recurrence relations for solutions of Pell's equation. The American Mathematical Monthly 66 (4) (1959) 288-290.
[7] H. Darmon, A. Granville: On the equations $z^{m}=f(x, y)$ and $a x^{p}+b y^{q}=c z^{r}$. Bulletin of the London Mathematical Society 27 (6) (1995) 513-543.
[8] C.M. Grinstead: On a method of solving a class of Diophantine equations. Mathematics of Computation 32 (143) (1978) 936-940.
[9] K. Kedlaya: Solving constrained Pell equations. Mathematics of Computation 67 (222) (1998) 833-842.
[10] S.P. Mohanty, A.M.S. Ramasamy: The simultaneous diophantine equations $5 y^{2}-20=x^{2}$ and $2 y^{2}+1=z^{2}$. Journal of Number Theory 18 (3) (1984) 356-359.
[11] L.J. Mordell: Diophantine equations. Academic Press (1969).
[12] B. Peker, S. Cenberci: On the equations $y^{2}-10 x^{2}=9$ and $z^{2}-17 x^{2}=16$. International Mathematical Forum 12 (15) (2017) 715-720.
[13] C.L. Siegel: U̇ber einige Anwendungen diophantischer Approximationen. In: Zannier U.: On Some Applications of Diophantine Approximations. Publications of the Scuola Normale Superiore, vol. 2. Edizioni della Normale, Pisa (2014) 81-138.
[14] L. Szalay: On the resolution of simultaneous Pell equations. Annales Mathematicae et Informaticae 34 (2007) 77-87.
[15] A. Thue: U̇ber Annäherungswerte algebraischer Zahlen. Journal für die Reine und Angewandte Mathematik 135 (1909) 284-305.

Received: 21 January 2019
Accepted for publication: 4 June 2019
Communicated by: Attila Bérczes

