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Abstract. We introduce the right (left) Gorenstein subcategory relative to an additive
subcategory C of an abelian category A , and prove that the right Gorenstein subcate-
gory rG(C ) is closed under extensions, kernels of epimorphisms, direct summands and finite
direct sums. When C is self-orthogonal, we give a characterization for objects in rG(C ), and
prove that any object in A with finite rG(C )-projective dimension is isomorphic to a kernel
(or a cokernel) of a morphism from an object in A with finite C -projective dimension to an
object in rG(C ). As an application, we obtain a weak Auslander-Buchweitz context related
to the kernel of a hereditary cotorsion pair in A having enough injectives.

Keywords: right Gorenstein subcategory; self-orthogonal subcategory; relative projective
dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context
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1. Introduction

As a nice generalization of finitely generated projective modules, Auslander and

Bridger in [2] introduced finitely generated modules having Gorenstein dimension

zero over commutative Noetherian rings. For arbitrary modules over general rings,

Enochs and Jenda in [10] introduced Gorenstein projective dimension, which coin-

cides with Gorenstein dimension for finitely generated modules over commutative

Noetherian rings; meanwhile, they also introduced Gorenstein injective modules as

the dual of Gorenstein projective modules. Since then, these modules have become

crucial research objects in Gorenstein homological algebra, and have been studied

extensively, see [2], [4], [6], [7], [8], [9], [10], [11], [16], and the references therein.

Let A be an abelian category and C an additive subcategory of A . As a common

generalization of Gorenstein projective and Gorenstein injective modules, Sather-
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Wagstaff et al. in [20] introduced the Gorenstein subcategoryG(C ) ofA relative toC .

It is shown that Gorenstein subcategories share many nice properties of the categories

of Gorenstein projective modules and Gorenstein injective modules, see [14], [17]

and [20]. In [20], Section 5 the authors asked: do some important properties of the

category of Gorenstein projective (injective) modules such as exactness, closure of

kernels of epimorphisms and cokernels of monomorphisms, hold true for Gorenstein

subcategories? In fact, we will answer this question negatively. Why are the answers

negative? From the definition of the Gorenstein subcategory G(C ), we know that

C should be simultaneously a generator and a cogenerator for G(C ). It leads to some

limitations. The aim of this paper is to overcome such limitations by modifying the

definition of Gorenstein subcategories. The paper is organized as follows.

In Section 2, we give some terminology and notation.

In Section 3, we introduce right (left) Gorenstein subcategories relative to a sub-

category C of an abelian category A , such that when C is self-orthogonal, the

Gorenstein subcategory coincides with the intersection of the left and the right

Gorenstein subcategories. We prove that the right Gorenstein subcategory rG(C )

is exact and closed under kernels of epimorphisms (see Proposition 3.3), however,

the Gorenstein subcategory does not possess such properties in general (see Exam-

ple 3.4), which answers in [20], Question 5.8 negatively. Under the assumption that

C is self-orthogonal, we give some equivalent conditions for objects in rG(C ) (see

Theorem 3.7), which shows that the subcategory rG(C ) has some kind of stability.

Moreover, we prove that an object in A with finite rG(C )-projective dimension is

isomorphic to a kernel (or a cokernel) of a morphism from an object in A with finite

C -projective dimension to an object in rG(C ) (see Theorem 3.11).

In Section 4, as an application of the above results, we prove that if a hereditary

cotorsion pair (U ,V ) with kernel C has enough injectives then (rG(C ),C -pd<∞,C )

is a weak Auslander-Buchweitz context, where C -pd<∞ is the subcategory of A

consisting of objects with finite C -projective dimension (see Theorem 4.8).

2. Preliminaries

In this paper, A is an abelian category and all subcategories of A are full, additive

and closed under isomorphisms.

For a subcategory X of A , we write
⊥
X := {A ∈ A : Ext>1

A
(A,X) = 0 for X ∈X },

X
⊥ := {A ∈ A : Ext>1

A
(X,A) = 0 for X ∈ X },

⊥1X := {A ∈ A : Ext1A (A,X) = 0 for X ∈X },

X
⊥1 := {A ∈ A : Ext1A (X,A) = 0 for X ∈X }.
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For subcategories X , Y of A , we write X ⊥ Y if Ext>1
A

(X,Y ) = 0 for any

X ∈ X and Y ∈ Y ; and X is called self-orthogonal if X ⊥X .

Let C ⊆X be subcategories of A . We say that C is a generator for X if for any

X ∈ X there exists an exact sequence

0→ X ′ → C → X → 0

in A with X ′ ∈X and C ∈ C . We say that C is a projective generator for X if C

is a generator for X and C ⊥ X . Dually, we say that C is a cogenerator for X if

for any X ∈ X there exists an exact sequence

0→ X → C → X ′ → 0

in A with C ∈ C and X ′ ∈ X . We say that C is an injective cogenerator for X

if C is a cogenerator for X and X ⊥ C .

Let X be a subcategory of A and A ∈ A . The X -projective dimension X -pdA

of A is defined to be the infimum integer n for which there exists an exact sequence

0→ Xn → . . .→ X1 → X0 → A→ 0

in A with all Xi in X , and we set X - pdA = ∞ if no such integer exists. Dually,

the X -injective dimension X - idA of A is defined to be the infimum integer n for

which there exists an exact sequence

0→ A→ X0 → X1 → . . .→ Xn → 0

in A with all X i in X , and we set X - idA = ∞ if no such integer exists. We use

X - pd<∞ and X - id<∞ to denote the subcategories of A consisting of objects with

finite X -projective and X -injective dimensions, respectively.

A sequence E in A is called HomA (X ,−)-exact or HomA (−,X )-exact if

HomA (X,E) or HomA (E, X), respectively, is exact for any X ∈X . Following [20],

we write

res X̃ := {A ∈ A : there exists an exact HomA (X ,−)-exact sequence

. . .→ X1 → X0 → A→ 0 in A with all Xi inX },

and

cores X̃ := {A ∈ A : there exists an exact HomA (−,X )-exact sequence

0→ A→ X0 → X1 → . . . in A with all Xi in X }.
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Definition 2.1 ([20]). Let C be a subcategory of A . The Gorenstein subcate-

gory G(C ) of A relative to C is defined to be all G ∈ A such that there exists an

exact HomA (C ,−)-exact and HomA (−,C )-exact sequence

. . .→ C1 → C0 → C0 → C1 → . . .

in A with all Ci, C
i in C , such that G ∼= Im(C0 → C0).

The Gorenstein subcategory unifies the following notions: modules of Goren-

stein dimension zero (see [2]), Gorenstein projective modules, Gorenstein injective

modules ([10]), V -Gorenstein projective modules, V -Gorenstein injective modules

(see [12]), W -Gorenstein modules (see [14]), and so on; see [17] for the details.

Definition 2.2 ([19], Chapter 5.5). A category E is called exact if E is a full

subcategory of some abelian category A and it is closed under extensions.

3. One-sided Gorenstein subcategories

In this section, we fix a subcategory C of an abelian category A . Following [17],

Lemma 5.7, if C ⊥ C then

G(C ) = (⊥C ∩ cores C̃ ) ∩ (C ⊥ ∩ res C̃ ).

Motivated by this, we introduce right and left Gorenstein subcategories.

Definition 3.1. We call

rG(C ) := ⊥
C ∩ cores C̃ and lG(C ) := C

⊥ ∩ res C̃ ,

respectively, the right and left Gorenstein subcategory of A relative to C .

In the following example, all rings are associative with identities and all modules

are unitary. For a ring R, ModR is the category of left R-modules.

Example 3.2.

(1) In general, we have rG(C ) 6= lG(C ). Let R be a ring and let A = ModR. If C

is the subcategory of A consisting of projective modules, then rG(C ) is the

subcategory of A consisting of Gorenstein projective modules and lG(C ) = A .

If C is the subcategory of A consisting of injective modules, then rG(C ) = A

and lG(C ) is the subcategory of A consisting of Gorenstein injective modules.

(2) Let R,S be rings and RCS a semidualizing (R,S)-bimodule.
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(2.1) If A = ModR and C is the subcategory of A consisting of direct sum-

mands of direct sums of copies of C, then rG(C ) is the subcategory of A

consisting of GC -projective modules by [18], Proposition 2.4 (1), and lG(C )

is the Bass class BC(R) with respect to C by [21], Theorem 3.9.

(2.2) If A = ModS and C is the subcategory of A consisting of direct sum-

mands of direct products of copies of HomZ(C,Q/Z), where Z is the ad-

ditive group of integers and Q is the additive group of rational numbers,

then rG(C ) is the Auslander class AC(S) with respect to C by [22], Theo-

rem 3.11 (1) and [5], Proposition VI.5.1, and lG(C ) is the subcategory of A

consisting of GC -injective modules by [18], Proposition 2.4 (2).

In the following, we study the properties of rG(C ). The dual versions of all the

results on rG(C ) also hold true on lG(C ) by using completely dual arguments.

The following result shows that rG(C ) is an exact category, and has a quasi-

resolving structure that is closed under kernels of epimorphisms.

Proposition 3.3.

(1) The subcategory rG(C ) is closed under extensions, direct summands and finite

direct sums.

(2) The subcategory rG(C ) is closed under kernels of epimorphisms.

P r o o f. (1) Let

0→ L→M → N → 0

be an exact sequence in A with L,N ∈ rG(C ). Then it is HomA (−,C )-exact. Since

L,N ∈ rG(C ), we haveM ∈ ⊥C and there exist exact HomA (−,C )-exact sequences

0 −→ L
d′0

−→ C′0 d′1

−→ C′1 −→ . . . and 0 −→ N
d′′0

−→ C′′0 d′′1

−→ C′′1 −→ . . .

in A with all C′i and C′′i in C . It is trivial that all cokernels of d′
i
and d′′

i
are in

cores C̃ . Put C0 := C′0 ⊕ C′′0 and consider the diagram

0

��

0

��
0 // L

f
//

d′0

��

M
g

// N //

d′′0

��

0

0 // C′0
(10) // C0

(0 1)
// C′′0 // 0.

Since the upper row in this diagram is HomA (−,C )-exact, we get an epimorphism

HomA (M,C′0) ։ HomA (L,C′0) and there exists α : M → C′0 such that d′
0
= αf .
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Putting d0 :=
(

α

d′′0g

)
, we obtain the following commutative diagram with exact

columns and rows:

0

��

0

��✤
✤
✤ 0

��
0 // L

f
//

d′0

��

M
α

ww

g
//

d0

��✤
✤
✤ N //

d′′0

��

0

0 // C′0
(10) //

��

C0
(0 1)

//

��
✤
✤
✤ C′′0 //

��

0

0 //❴❴❴ Cokerd′
0 //❴❴❴

��

Cokerd0 //❴❴❴

��
✤
✤
✤ Cokerd′′

0 //❴❴❴

��

0

0 0 0.

It is easy to check that the bottom row and the middle column in this diagram

are HomA (−,C )-exact. Repeating this process, we get an exact HomA (−,C )-exact

sequence

0→M → C0 → C1 → . . .

in A with all Ci in C . Thus M ∈ cores C̃ and M ∈ rG(C ).

It is trivial that ⊥C is closed under direct summands. By [17], Theorem 4.6 (1),

cores C̃ is closed under direct summands. Thus rG(C ) is also closed under direct

summands.

It is easy to see that rG(C ) is closed under finite direct sums.

(2) Consider an exact sequence

0→ A→ A1 → A2 → 0

in A with A1, A2 ∈ rG(C ). First, it is HomA (−,C )-exact and A ∈ ⊥C . Moreover,

there exist exact HomA (−,C )-exact sequences

0→ A1 → C0
1 → C1

1 → . . .→ Cn
1 → . . . ,

0→ A2 → C0
2 → C1

2 → . . .→ Cn
2 → . . .

in A with all Ci
m in C . By [17], Theorem 3.8 (1), (5), we get an exact HomA (−,C )-

exact sequence

0→ A→ C0
1 → C1

1 ⊕ C0
2 → . . .→ Cn

1 ⊕ Cn−1
1 → . . .

that is, A ∈ cores C̃ . Thus A ∈ rG(C ), as desired. �

488



Sather-Wagstaff, Sharif and White in [20], Question 5.8 posed the following ques-

tions: Is G(C ) always exact? Is G(C ) always closed under kernels of epimorphisms

or cokernels of monomorphisms? The following example answers these two questions

negatively.

Example 3.4. Let Λ = kQ be a finite-dimensional hereditary path algebra over

an algebraically closed field k, where Q is the quiver

1← 2← 3.

Then the Auslander-Reiten quiver of Λ is (see [1], Chapter IV, Example 4.10)

[S1]

��❄
❄❄

❄❄
[S2]

��❃
❃❃

❃❃
[S3]

[P2]

??⑧⑧⑧⑧⑧

��❄
❄❄

❄❄
[I2]

??�����

[P3],

??�����

where the symbol [M ] denotes the isomorphism class of a module M , and

(1) S1 = (k ← 0 ← 0), S2 = (0 ← k ← 0) and S3 = (0 ← 0 ← k) are all simple

modules;

(2) P1 = S1, P2 = (k ← k ← 0) and P3 = (k ← k ← k) are all indecomposable

projective modules;

(3) I1 = P3, I2 = (0 ← k ← k) and I3 = S3 are all indecomposable injective

modules.

Let A = Λ-mod be the category of finitely generated left Λ-modules.

(i) Let C = add(S1 ⊕ S2 ⊕ P3 ⊕ S3) be the full subcategory of A consisting of all

direct summands of finite direct sum of S1 ⊕ S2 ⊕ P3 ⊕ S3. By computation,

G(C ) = add(S1 ⊕ S2 ⊕ P3 ⊕ S3). From the exact sequence

0→ S1 → P2 → S2 → 0

we see that G(C ) is not exact; and from the exact sequences

0→ P2 → P3 → S3 → 0 and 0→ S1 → P3 → I2 → 0

we see that G(C ) is neither closed under kernels of epimorphisms nor closed

under cokernels of monomorphisms.
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(ii) Let C = add(S1 ⊕P3 ⊕ S3). In this case, C ⊥ C . To illustrate it, we only need

to check Ext1Λ(S3, S1) = 0. In fact, by [1], Chapter IV, Corollary 2.14 we have

Ext1Λ(S3, S1) ∼= DHomΛ(S1, τS3) ∼= DHomΛ(S1, S2) = 0,

whereD := Homk(−, k). Moreover, by computation, G(C )=add(S1 ⊕ P3 ⊕ S3).

Thus the second and third short exact sequences in (i) show that G(C ) is still

neither closed under kernels of epimorphisms nor closed under cokernels of

monomorphisms.

In the rest of this section, we always assume C ⊥ C . In this setting, C ⊆ rG(C ).

We have the following lemma.

Lemma 3.5. For an object L ∈ A , L ∈ rG(C ) holds if and only if there exists

an exact (HomA (−,C )-exact) sequence

0→ L→ C → N → 0

in A with C ∈ C and N ∈ rG(C ).

P r o o f. The necessity follows from Proposition 3.3 (2).

For the sufficiency, since L ∈ rG(C ), there exists an exact HomA (−,C )-exact

sequence

0→ L→ C → N → 0

in A with C ∈ C and N ∈ cores C̃ . Since C ⊥ C , we have N ∈ ⊥C and thus

N ∈ rG(C ). �

Proposition 3.6. If

0→ L→M → N → 0

is an exact sequence in A with L,M ∈ rG(C ), then N ∈ rG(C ) if and only if

N ∈ ⊥1C .

P r o o f. The necessity is trivial. In the following we prove the sufficiency. Let

0→ L→M → N → 0

be an exact sequence in A with L,M ∈ rG(C ) and Ext1A (N,C) = 0 for any C ∈ C .

Since L ∈ rG(C ), by Lemma 3.5 there exists an exact sequence

0→ L→ C → L′ → 0
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in A with C ∈ C and L′ ∈ rG(C ). Consider the push-out diagram

0

��

0

��✤
✤
✤

0 // L //

��

M //

��
✤
✤
✤ N

✤
✤
✤

✤
✤
✤

// 0

0 //❴❴❴ C //❴❴❴

��

T //❴❴❴

��✤
✤
✤ N //❴❴❴ 0

L′ ❴❴❴ ❴❴❴

��

L′

��✤
✤
✤

0 0.

By Proposition 3.3(1), the middle column in this diagram shows that T ∈ rG(C ).

Since Ext1A (N,C) = 0 by assumption, the middle row in the above diagram splits.

Thus N is isomorphic to a direct summand of T , and hence it is in rG(C ) by Propo-

sition 3.3 (1). �

In the following, we give some equivalent conditions for objects in rG(C ).

Theorem 3.7. For any M ∈ A , the following statements are equivalent.

(1) M ∈ rG(C ).

(2) M ∈ ⊥C and for any subcategoryD ofA such that C is an injective cogenerator

for D there exists an exact HomA (−,C )-exact sequence

0→M → D0 → D1 → . . .

in A with all Di in D .

(3) There exists an exact HomA (−,C )-exact sequence

G := . . .→ G1 → G0 → G−1 → G−2 → . . .

in A with all Gi in rG(C ) such that M ∼= Ker(G−1 → G−2).

(4) For any subcategory D of A with C ⊆ D ⊆ rG(C ) there exists an exact

HomA (−,D)-exact sequence

G := . . .→ G1 → G0 → G−1 → G−2 → . . .

in A with all Gi in rG(C ) such that M ∼= Ker(G−1 → G−2).

(5) There exists an exact HomA (−, rG(C ))-exact sequence

G := . . .→ G1 → G0 → G−1 → G−2 → . . .

in A with all Gi in rG(C ) such that M ∼= Ker(G−1 → G−2).
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P r o o f. The implications (1)⇒ (2) and (5)⇒ (4)⇒ (3) are trivial.

(2)⇒ (1) Let M ∈ ⊥C and

0→M → D0 → D1 → . . .

be an exact HomA (−,C )-exact sequence in A with all Di in D . Put M1 :=

Im(D0 → D1). Since C is an injective cogenerator for D by assumption, we have

M1 ∈ ⊥C and there exists an exact sequence

0→ D0 → C0 → D′ → 0

in A with C0 ∈ C and D′ ∈ D . Consider the push-out diagram:

0

��

0

��
✤
✤
✤

0 // M

✤
✤
✤

✤
✤
✤

// D0

��

// M1

��
✤
✤
✤

// 0

0 //❴❴❴ M //❴❴❴ C0 //❴❴❴

��

M ′

��
✤
✤
✤

//❴❴❴ 0

D′ ❴❴❴ ❴❴❴

��

D′

��✤
✤
✤

0 0.

Since D′,M1 ∈ ⊥C , we have that M ′ ∈ ⊥C and therefore the middle row is

HomA (−,C )-exact. Similarly, we get an exact HomA (−,C )-exact sequence

0→M ′ → C1 →M ′′ → 0

in A with M ′′ ∈ ⊥C . Continuing this process, we obtain an exact HomA (−,C )-

exact sequence

0→M → C0 → C1 → . . .

in A with all Ci in C , as desired.

(1)⇒ (5) It holds by setting

G := . . . −→ 0 −→M
id
−→M −→ 0 −→ . . . .

(3)⇒ (1) Let

G := . . .→ G1 → G0 → G−1 → G−2 → . . .
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be an exact HomA (−,C )-exact sequence in A with all Gi in rG(C ) and M ∼=

Ker(G−1 → G−2). It is easy to see that M−i ∈
⊥C , where M−i := Ker(G−(i+1) →

G−(i+2)) for any i > 0 (note: M0 = M).

Since G−1 ∈ rG(C ), by Lemma 3.5 there exists an exact HomA (−,C )-exact se-

quence

0→ G−1 → C−1 → G′

−1 → 0

in A with C−1 ∈ C and G′
−1 ∈ rG(C ). Consider the push-out diagram

0

��

0

��
✤
✤
✤

0 // M

✤
✤
✤

✤
✤
✤

// G−1

��

// M−1

��
✤
✤
✤

// 0

0 //❴❴❴ M //❴❴❴ C−1
//❴❴❴

��

Q−1

��
✤
✤
✤

//❴❴❴ 0

G′
−1

❴❴❴ ❴❴❴

��

G′
−1

��✤
✤
✤

0 0.

Then Q−1 ∈
⊥C and the middle row in this diagram is HomA (−,C )-exact. Now

consider the push-out diagram

0

��

0

��
✤
✤
✤

0 // M−1
//

��

Q−1
//

��
✤
✤
✤

G′
−1

✤
✤
✤

✤
✤
✤

// 0

0 //❴❴❴ G−2
//❴❴❴

��

T−2
//❴❴❴

��✤
✤
✤

G′
−1

//❴❴❴ 0

M−2
❴❴❴ ❴❴❴

��

M−2

��✤
✤
✤

0 0.

Since G′
−1, G−2 ∈ rG(C ), we have T−2 ∈ rG(C ) by Proposition 3.3 (1). Since

M−2 ∈
⊥C , the middle column in the above diagram is HomA (−,C )-exact and we

get an exact HomA (−,C )-exact sequence

0→ Q−1 → T−2 → G−3 → G−4 → . . .
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in A . We repeat the argument by replacing M with Q−1 to get an exact

HomA (−,C )-exact sequence

0→ Q−1 → C−2 → Q−2 → 0

in A with C−2 ∈ C . Continuing this process, we obtain an exact HomA (−,C )-exact

sequence

0→M → C−1 → C−2 → . . .

in A with all Ci in C . It implies M ∈ rG(C ). �

We write rG2(C ) to be a subcategory of A consists of all A ∈ A such that there

exists an exact HomA (−,C )-exact sequence

. . .→ G1 → G0 → G0 → G1 → . . .

in A with all Gi, G
i in rG(C ) and A ∼= Im (G0 → G0). The next result is an

immediate consequence of Theorem 3.7, which generalizes [18], Theorem 2.9.

Corollary 3.8. rG2(C ) = rG(C ).

The next result shows that under some conditions, objects in rG(C ) possess the

symmetry just as objects in G(C ) do.

Corollary 3.9. If rG(C ) has a projective generator P, then the following state-

ments are equivalent for any G ∈ A .

(1) G ∈ rG(C ).

(2) There exists an exact HomA (−,C )-exact sequence

. . .→ P1 → P0 → C0 → C1 → . . .

in A with all Pi in P and Ci in C such that G ∼= Im(P0 → C0).

(3) There exists an exact HomR(−,C )-exact sequence

. . .→ W1 →W0 →W 0 →W 1 → . . .

in A with all Wi,W
i ∈ C ∪P and G ∼= Im(W0 →W 0).

P r o o f. The implications (1)⇔ (2)⇒ (3) are clear. Since C ∪P ⊆ rG(C ) by

assumption, the implication (3)⇒ (1) follows from Corollary 3.8. �

494



In the following, we will give some criteria for computing the G(C )-projective

dimension of an object in A . We need the following lemma.

Lemma 3.10. If

0→ K → G1
f
−→ G0 → A→ 0

is an exact sequence in A with G0, G1 ∈ rG(C ), then there exists an exact sequence

0→ K → C → G→ A→ 0

in A with C ∈ C and G ∈ rG(C ).

P r o o f. Since G1 ∈ rG(C ), by Lemma 3.5 there exists an exact sequence

0→ G1 → C → G′ → 0

in A with C ∈ C and G′ ∈ rG(C ). The push-out diagram

0

��

0

��✤
✤

✤

0 // K

✤

✤

✤

✤

✤

✤
// G1

��

// Im f

��✤
✤

✤
// 0

0 //❴❴❴ K //❴❴❴ C

��

//❴❴❴❴ L

��
✤
✤

✤
//❴❴❴❴ 0

G′

��

❴❴❴❴ ❴❴❴❴ G′

��✤
✤

✤

0 0

yields a push-out diagram

0

��

0

��✤
✤

✤

0 // Im f

��

// G0

��
✤

✤

✤
// A

✤

✤

✤

✤

✤

✤
// 0

0 //❴❴❴❴ L

��

//❴❴❴❴ G

��
✤

✤

✤
//❴❴❴ A //❴❴❴ 0

G′

��

❴❴❴❴ ❴❴❴❴ G′

��✤
✤

✤

0 0.
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By Proposition 3.3 (1), the middle column in the last diagram implies that G ∈

rG(C ). Splicing the middle rows of the two diagrams above, we get the desired exact

sequence. �

The following result provides some criteria for computing the G(C )-projective

dimension of an object in A , which shows that any object in A with finite rG(C )-

projective dimension is isomorphic to a kernel (a cokernel) of a morphism from an

object in A with finite C -projective dimension to an object in rG(C ).

Theorem 3.11. For any A ∈ A and n > 0, the following statements are equiva-

lent.

(1) rG(C )-pdA 6 n.

(2) There exists an exact sequence

0→ H → G→ A→ 0

in A with G ∈ rG(C ) and C -pdH 6 n− 1.

(3) There exists an exact (HomA (−,C )-exact) sequence

0→ A→ H ′ → G′ → 0

in A with G′ ∈ rG(C ) and C -pdH ′ 6 n.

P r o o f. (1) ⇒ (2) We proceed by induction on n. If n = 0 then H = 0 and

G = A give the desired exact sequence. If n = 1 then there exists an exact sequence

0→ G1 → G0 → A→ 0

in A with G0, G1 ∈ rG(C ). Applying Lemma 3.10 with K = 0, we get an exact

sequence

0→ C → G′

0 → A→ 0

in A with C ∈ C and G′
0 ∈ rG(C ). Now suppose n > 2. Then there exists an exact

sequence

0→ Gn → Gn−1 → . . .→ G0 → A→ 0

in A with all Gi in rG(C ). Set T := Im(G1 → G0). By the induction hypothesis,

we get the exact sequence

0→ Cn → Cn−1 → Cn−2 → . . .→ C2 → G′

1 → T → 0
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in A with all Ci in C and G′
1 ∈ rG(C ). Set B := Im(C2 → G′

1). By Lemma 3.10,

we get an exact sequence

0→ B → C1 → G→ A→ 0

in A with C1 ∈ C and G ∈ rG(C ). Thus we get the desired exact sequence

0→ Cn → Cn−1 → Cn−2 → . . .→ C1 → G→ A→ 0.

Then we get the desired exact sequence by putting H := Coker(C2 → C1).

(2)⇒ (3) Let

0→ H → G→ A→ 0

be an exact sequence in A with G ∈ rG(C ) and C -pdH 6 n− 1. Since G ∈ rG(C ),

by Lemma 3.5 there exists an exact HomA (−,C )-exact sequence

0→ G→ C → G′ → 0

in A with C ∈ C and G′ ∈ rG(C ). Consider the following push-out diagram:

0

��

0

��✤
✤

✤

0 // H

✤

✤

✤

✤

✤

✤
// G

��

// A

��✤
✤

✤
// 0

0 //❴❴❴ H //❴❴❴ C

��

//❴❴❴ H ′

��
✤

✤

✤
//❴❴❴ 0

G′

��

❴❴❴ ❴❴❴ G′

��
✤
✤

✤

0 0.

By the middle row in this diagram, we have C -pdH ′ 6 n. Moreover, since G′ ∈

rG(C ), the rightmost column is HomA (−,C )-exact. Thus we get the desired exact

sequence.

(3)⇒ (1) Let

0→ A→ H ′ → G′ → 0

be an exact sequence in A with G′ ∈ rG(C ) and C -pdH ′ 6 n. Then there exists an

exact sequence

0→ Cn → . . .→ C1 → C0 → H ′ → 0
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in A with all Ci in C . Set K := Ker(C0 → H ′). Then C -pdK 6 n − 1. Consider

the pull-back diagram

0

��
✤
✤
✤ 0

��
K ❴❴❴ ❴❴❴

��✤
✤
✤ K

��
0 //❴❴❴ G

��✤
✤
✤

//❴❴❴ C0

��

//❴❴❴ G′

✤
✤
✤

✤
✤
✤

//❴❴❴ 0

0 // A

��
✤
✤
✤

// H ′ //

��

G′ // 0

0 0.

Applying Proposition 3.3 (2) to the middle row in this diagram yields G ∈ rG(C ).

Thus rG(C )-pdA 6 n by the leftmost column in the above diagram. �

4. Weak Auslander-Buchweitz contexts

Following the approximation theory of Auslander-Buchweitz (see [3]), Hashimoto

(see [15]) introduced the following definition.

Definition 4.1 ([15]). A triple (X ,Y , ω) of subcategories of A is called a weak

Auslander-Buchweitz context in A if the following conditions are satisfied.

(1) X is closed under extensions, kernels of epimorphisms and direct summands.

(2) Y ⊆X -pd<∞ and Y is closed under extensions, cokernels of monomorphisms

and direct summands.

(3) ω = X ∩ Y and ω is an injective cogenerator for X .

A weak Auslander-Buchweitz context (X ,Y , ω) is called an Auslander-Buchweitz

context if A = X -pd<∞.

Definition 4.2 ([13]). Let U ,V be subcategories of A .

(1) The pair (U ,V ) is called a cotorsion pair in A if U = ⊥1V and V = U ⊥1 ; in

this case, C := U ∩ V is called the kernel of (U ,V ).

(2) A cotorsion pair (U ,V ) is said to have enough injectives if for any A ∈ A there

exists an exact sequence

0→ A→ V → U → 0
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in A with V ∈ V and U ∈ U . Dually, a cotorsion pair (U ,V ) is said to have

enough projectives if for any A ∈ A there exists an exact sequence

0→ V ′ → U ′ → A→ 0

in A with V ′ ∈ V and U ′ ∈ U .

(3) A cotorsion pair (U ,V ) is called hereditary if one of the following equivalent

conditions is satisfied.

(3.1) U ⊥ V .

(3.2) U is resolving in the sense that U contains all projectives in A , U is

closed under extensions and kernels of epimorphisms.

(3.3) V is coresolving in the sense that V contains all injectives in A , V is

closed under extensions and cokernels of monomorphisms.

In what follows, (U ,V ) is a hereditary cotorsion pair and C := U ∩ V is its

kernel. The following is a standard observation.

Lemma 4.3. For any A ∈ A and n > 0, the following statements are equivalent.

(1) U -pdA 6 n.

(2) Extn+1
A

(A, V ) = 0 for any V ∈ V .

(3) Ext>n+1
A

(A, V ) = 0 for any V ∈ V .

Lemma 4.4. If (U ,V ) has enough injectives, then C is an injective cogenerator

for U .

P r o o f. If (U ,V ) has enough injectives, then for any U ∈ U there exists an

exact sequence

0→ U → V → U1 → 0

in A with V ∈ V and U1 ∈ U . Since U is closed under extensions, we have V ∈ U

and so V ∈ C . Since U ⊥ C clearly, C is an injective cogenerator for U . �

The following result is used for obtaining our main result (Theorem 4.8).

Proposition 4.5. If (U ,V ) has enough injectives, then we have

(1) rG(C ) ∩U -pd<∞ = U .

(2) C -pd<∞ = U -pd<∞ ∩V .

(3) C -pd<∞ is closed under extensions, cokernels of monomorphisms and direct

summands.

499



P r o o f. (1) It is easy to see that U ⊆ rG(C ) ∩U -pd<∞ by Lemma 4.4.

Conversely, let A ∈ rG(C ) ∩ U -pd<∞. We will prove A ∈ U by induction on

n := U -pdA. The case for n = 0 is trivial. Now let n > 1 and let

0→ L→ U0 → A→ 0

be an exact sequence in A with U0 ∈ U (⊆ rG(C )) and U -pdL 6 n − 1. By

Proposition 3.3 (2), we have L ∈ rG(C ). Thus L ∈ U by the induction hypothesis.

By Lemma 4.4, we have an exact sequence

0→ L→ C → U → 0

in A with C ∈ C and U ∈ U . Consider the push-out diagram

0

��

0

��
✤
✤
✤

0 // L //

��

U0
//

��✤
✤
✤ A

✤
✤
✤

✤
✤
✤

// 0

0 //❴❴❴ C //❴❴❴

��

Q //❴❴❴

��
✤
✤
✤

A //❴❴❴ 0

U ❴❴❴ ❴❴❴

��

U

��✤
✤
✤

0 0.

By the middle column in this diagram, we have Q ∈ U . Since A ∈ rG(C ) and

C ∈ C , it follows that Ext1A (A,C) = 0 and the middle row in the above diagram

splits. Thus A is isomorphic to a direct summand of Q and A ∈ U .

(2) Clearly, C -pd<∞ ⊆ U -pd<∞. Since V is closed under cokernels of monomor-

phisms, we have C -pd<∞ ⊆ V . Thus C -pd<∞ ⊆ U -pd<∞ ∩V .

Conversely, let A ∈ U -pd<∞ ∩V and U -pdA = n(< ∞). Since U ⊆ rG(C ), by

Theorem 3.11 there exists an exact sequence

0→ H → G→ A→ 0

in A with G ∈ rG(C ) and C -pdH 6 n − 1. By Lemma 4.3, we have U -pdG 6 n.

Then G ∈ U by (1). Since V is closed under cokernels of monomorphisms and

extensions, we have H ∈ V , and hence G ∈ V . Thus G ∈ C (= U ∩ V ) and

C - pdA 6 n.
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(3) By Lemma 4.3, U -pd<∞ is closed under direct summands. Since V is closed

under direct summands, so is C -pd<∞ by (2).

Since C ⊥ C , we have C -pd<∞ ⊆ C⊥ by the dimension shifting. Then any short

exact sequence in A with the first term in C -pd<∞ is HomA (C ,−)-exact. Therefore

by [17], Lemma 3.1 (1) we get C -pd<∞ is closed under extensions, and by [17],

Theorem 3.6 (1), we get C -pd<∞ is closed under cokernels of monomorphisms. �

As a consequence, we have the following proposition.

Proposition 4.6. Assume that (U ,V ) has enough injectives. If (rG(C ),C -

pd<∞,C ) is an Auslander-Buchweitz context, then

(rG(C ),U -pd<∞ ∩V ) = (rG(C ),C - pd<∞)

is a cotorsion pair.

P r o o f. By Proposition 4.5 (2), U -pd<∞ ∩V = C -pd<∞. It is easy to see that

rG(C ) ⊥ C -pd<∞ by the dimension shifting. Thus rG(C ) ⊆ ⊥1(C -pd<∞) and C -

pd<∞ ⊆ rG(C )⊥1 . Since (rG(C ),C -pd<∞,C ) is an Auslander-Buchweitz context

by assumption, we have A = rG(C )-pd<∞.

Let A ∈ ⊥1(C -pd<∞). Then rG(C )-pdA <∞. By Theorem 3.11, there exists an

exact sequence

0→ H → G→ A→ 0

in A with G ∈ rG(C ) and C -pdH < ∞. Thus this exact sequence splits, and

hence A is isomorphic to a direct summand of G. Then by Proposition 3.3 (1) we

have A ∈ rG(C ) and ⊥1(C -pd<∞) ⊆ rG(C ).

Now let A ∈ rG(C )⊥1 . Note that rG(C )-pdA < ∞. By Theorem 3.11, there

exists an exact sequence

0→ A→ H ′ → G′ → 0

in A with G′ ∈ rG(C ) and C -pdH ′ < ∞. Thus this exact sequence splits, and

hence A is isomorphic to a direct summand of H ′. Then by Proposition 4.5 (3) we

have C -pdA <∞ and rG(C )⊥1 ⊆ C -pd<∞. �

We also need the following easy observation.

Lemma 4.7.

(1) C is an injective cogenerator for rG(C ).

(2) rG(C ) ∩ C -pd<∞ = C .

P r o o f. The assertion (1) is trivial. Since C ⊥ C , we have ⊥C ∩ C -pd<∞ = C

by the dimension shifting, so the assertion (2) follows. �
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Now we are in a position to give the following theorem.

Theorem 4.8. If (U ,V ) has enough injectives, then (rG(C ),C -pd<∞,C ) is

a weak Auslander-Buchweitz context.

P r o o f. It follows from Propositions 3.3 and 4.5 (3), and Lemma 4.7. �

By Theorem 4.8 and [15], Theorem 1.12.10, we immediately get the following

corollary.

Corollary 4.9. If (U ,V ) has enough injectives, then:

(1) C is a unique additive injective cogenerator for rG(C ) in the sense that if E

is an injective cogenerator for rG(C ), then addE = C , where addE is the

subcategory of A consisting of direct summands of finite direct sums of objects

in E .

(2) For any A ∈ rG(C )-pd<∞, the following statements are equivalent.

(i) A ∈ rG(C );

(ii) A ∈ ⊥(C -pd<∞);

(iii) A ∈ ⊥1(C -pd<∞);

(iv) A ∈ ⊥C .

(3) For any A ∈ rG(C )-pd<∞, the following statements are equivalent.

(i) A ∈ C -pd<∞;

(ii) A ∈ rG(C )⊥;

(iii) A ∈ rG(C )⊥1 ;

(iv) rG(C )- idA <∞ and A ∈ C⊥.

(4) For any A ∈ rG(C )-pd<∞, we have

rG(C )- pdA = inf{n : Extn+1
A

(A,C) = 0 for any C ∈ C )}

= inf{n : Extn+1
A

(A,W ) = 0 for any W ∈ C - pd<∞}.

(5) For any A ∈ C -pd<∞, we have rG(C )- pdA = C - pdA.

(6) For an exact sequence

0→ L→M → N → 0

in A , if any two of L, M and N are in rG(C )-pd<∞, then so is the third.

As a dual of Definition 4.1, we give the following definition.
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Definition 4.10. A triple (X ,Y , ω) of subcategories of A is called a weak co-

Auslander-Buchweitz context if the following conditions are satisfied.

(1) X is closed under extensions, cokernels of monomorphisms and direct sum-

mands.

(2) Y ⊆ X -id<∞ and Y is closed under kernels of epimorphisms, extensions and

direct summands.

(3) ω = X ∩ Y and ω is a projective generator for X .

A weak co-Auslander-Buchweitz context (X ,Y , ω) is called a co-Auslander-

Buchweitz context if X -id<∞ = A.

By using arguments completely dual to those in the proofs of Proposition 4.6 and

Theorem 4.8, we have the following proposition.

Proposition 4.11. Assume that (U ,V ) has enough projectives. If (lG(C ),C -

id<∞,C ) is a co-Auslander-Buchweitz context, then

(lG(C ),U ∩ V - id<∞) = (rG(C ),C - id<∞)

is a cotorsion pair.

Theorem 4.12. If (U ,V ) has enough projectives, then (lG(C ),C -id<∞,C ) is

a weak co-Auslander-Buchweitz context.
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